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• We have seen that periodogram-based meth-
ods can lead to biased estimators with large
variance

• Parametric methods assume a model for the
physical process which generated the data,
e.g. an ARMA model

• The aim is to estimate the parameters of the
assumed model from the observed data

• The choice of the model to be used can be
informed by the power spectral density plot
(e.g. estimated by the periodogram)

• Recall the result: If a random process {Xn}
can be modelled as white noise exciting a fil-
ter with frequency response H(ejω) then its
spectral density is

SX(ejω) = σ2 |H(ejω)|2

where σ2 is the variance of the white noise
process. [It is usually assumed that σ2 = 1
and the scaling is incorporated as gain in the
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frequency response]

• The frequency responseH(ejω) of the ARMA
model can be represented
by a finite number of parameters which are then
to be estimated from the data

• (Example: PSD of the AR(P) process.) Let
Xn = aXn−P +Wn, |a| < 1 and E

{
W 2

n

}
=

σ2.

SX(ejω) =
σ2

(1− aejωP ) (1− ae−jωP )

=
σ2

1 + a2 − 2a cos(ωP )

which has period 2π/P .

• (A cautionary note.) Parametric models need
to be chosen carefully - an inappropriate model
for the data can give misleading results
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Figure 1: Parameters σ = 1, a = 0.5

1 ARMA Models

A quite general representation is the autoregressive
moving-average (ARMA) model:

• The ARMA(P,Q) model difference equation
representation is:

xn = −
P∑
p=1

ap xn−p +

Q∑
q=0

bq wn−q (1)
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where:

ap are the AR parameters,

bq are the MA parameters

and {Wn} is white noise with unit variance,
σ2 = 1.

• Clearly the ARMA model is a pole-zero IIR
filter-based model with transfer function

H(z) =
B(z)

A(z)

where

A(z) = 1 +

P∑
p=1

apz
−p, B(z) =

Q∑
q=0

bqz
−q

(2)

• Unless otherwise stated we will always as-
sume that the filter is stable, i.e. the poles
(solutions of A(z) = 0) all lie within the unit
circle to ensure the ARMA process is WSS
and has a causal representation
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• Using the above result, the power spectrum
of the ARMA process is:

SX(ejω) =
|B(ejω)|2

|A(ejω)|2

• The ARMA model is quite a flexible and gen-
eral way to model a stationary random pro-
cess

• The spectrum can be factored as

B(z)

A(z)
= b0

Q∏
i=1

(1− z−1ci)

P∏
i=1

(1− z−1di)

• The spectrum can be manipulated by choos-
ing Q,P , {ci}Qi=1, {di}Pi=1 subject to |di| < 1.

(As an exercise, plot log10
|B(ejω)|
|A(ejω)| in the inter-

val ω ∈ [0, 2π) in Matlab.)

• The poles model well the peaks in the spec-
trum (sharper peaks implies poles closer to
the unit circle)
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• The zeros model troughs in the spectrum
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2 Autocorrelation function
of the ARMA Model

• The autocorrelation function RXX [r] for the
output xn of the ARMA model is:

RXX [r] = E[xnxn+r]

• Substituting for xn+r from equation 1 gives:

RXX [r]

= E

xn
−

P∑
p=1

ap xn+r−p +

Q∑
q=0

bq wn+r−q




= −
P∑
p=1

apE[xnxn+r−p] +

Q∑
q=0

bqE[xnwn+r−q]

• The white noise process {Wn} is wide-sense
stationary so that {Xn} is also wide-sense
stationary

• Let the system impulse response be

xn =

∞∑
m=−∞

hmwn−m
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The system is causal, i.e. hm = 0 for m < 0

• Therefore

E[xnwn+k] = E[wn+k

∞∑
m=−∞

hmwn−m]

• For a white process

E[wn+k wn−m] =

{
σ2 if m = −k
0 otherwise

and let σ2 = 1 (without loosing generality.)
Hence E[xnwn+k] is independent of n and let

RXW [k] = E[xnwn+k] = h−k

• Therefore RXX [r] satisfies the same ARMA
difference equation that related xn and wn:

RXX [r] = −
P∑
p=1

apRXX [r − p] +

Q∑
q=0

bqRXW [r − q]

(3)

• A more convenient expression for the cross-
correlation term RXW [.] is needed.
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• Substituting this expression for RXW [k] into
equation (3) gives the Yule-Walker Equation
for an ARMA process,

RXX [r] = −
P∑
p=1

apRXX [r − p] +

Q∑
q=0

bq hq−r

(4)

• Since the system is causal, or hm = 0 for
m < 0, equation (4) may be rewritten as:

RXX [r] = −
P∑
p=1

apRXX [r − p] + cr (5)

where:

cr =


∑Q

q=r bq hq−r if 0 ≤ r ≤ Q

0 if r > Q∑Q
q=0 bq hq+|r| if r < 0

(6)
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• Note that equation (5) expands to

RXX [0] +

P∑
p=1

apRXX [−p] = c0

RXX [1] +

P∑
p=1

apRXX [1− p] = c1

...

RXX [Q] +

P∑
p=1

apRXX [Q− p] = cQ

...

RXX [Q + P ] +

P∑
p=1

apRXX [Q + P − p] = 0

(note cQ+1 onwards is 0)
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• Collect into a matrix form

RX


1
a1
a2
...
aP


︸ ︷︷ ︸

a

=



c0
c1
...
cQ
0
...
0


︸ ︷︷ ︸

c

(7)

where RX is the matrix

RXX [0] RXX [−1] . . . RXX [−P ]
RXX [1] RXX [0] . . . RXX [1− P ]
... ... ...
RXX [Q] RXX [Q− 1] . . . RXX [Q− P ]
RXX [Q + 1] RXX [Q] . . . RXX [Q− P + 1]
... ... ...
RXX [Q + P ] RXX [Q + P − 1] . . . RXX [Q]


• This is the matrix version of the Yule-Walker

equations
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3 Solution of the Yule-Walker
Equations

• We would like to solve for the ARMA pa-
rameters from estimates of the autocorrela-
tion function:

• In principle, if the auto-correlation function
RXX [r] of a discrete random process is spec-
ified for sufficient number of values of r then
a set of simultaneous equations may be set
up and solved for the model parameters {ai}
and {bi}.

• Unknowns cr =
∑Q

q=r bq hq−r and {hn} are
complicated functions of {ai} and {bi}

• There are numerous methods for estimating
ARMA models, e.g. Prony’s method, see
Matlab routines. However, a full solution in
the general case is difficult.

• We will study the solution of equation 7 for
two special cases, namely the AR model and
the MA model.
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4 The AR Model (Q = 0)

• If Q = 0 then the ARMA model becomes the
AR model:

xn = −
P∑
p=1

ap xn−p + b0wn (8)

• The AR model is used in numerous applica-
tions, including speech, audio, economics, ...

• Equation (6), which was cr =
∑Q

q=r bq hq−r
for r ≤ Q and cr = 0 for r > Q becomes:

cr =

{
b0 h0 if r = 0

0 if r > 0

• Consideration of the difference equation for
the AR model,

xn = h0wn +
∑
m≥1

hmwn−m

shows that h0 = b0.
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• The matrix Yule-Walker equation becomes:
RXX [0] RXX [−1] . . . RXX [−P ]
RXX [1] RXX [0] . . . RXX [1− P ]
... ... ...
RXX [P ] RXX [P − 1] . . . RXX [0]


×


1
a1
...
aP

 =


b20
0
...
0

 (9)

and we use this to solve for ai and b0

• Solve for ai and b20 by partitioning the matrix
as:
RXX [0] RXX [−1] . . . RXX [−P ]
RXX [1] RXX [0] . . . RXX [1− P ]
... ... ...
RXX [P ] RXX [P − 1] . . . RXX [0]


×


1
a1
...
aP

 =


b20
0
...
0
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(concentrate on rows 2 onwards only)

• Taking the bottom P elements of the right
and left hand sides:
RXX [0] RXX [−1] . . . RXX [1− P ]
RXX [1] RXX [0] . . . RXX [2− P ]
... ... ...
RXX [P − 1] RXX [P − 2] . . . RXX [0]


×


a1
a2
...
aP

 = −


RXX [1]
RXX [2]
...
RXX [P ]

 (10)

or
RP−1a = −r (11)

• Hence a = −R−1P−1r and

b20 =

[
RXX [0] RXX [−1] . . . RXX [−P ]

]
1
a1
...
aP


(12)
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• Thus if we can estimate the autocorrelation
function using one of the standard methods
described earlier, then we can estimate the
AR parameters and hence the spectrum.

• (Relation to MMSE estimation.) The Yule-
Walker solution a = −R−1P−1r is also the so-
lution to the following optimization problem:

min
h
E

{(
xn +

∑P
i=1hixn−i

)2}
where

xn = −
P∑
i=1

ai xn−i + b0wn

(i.e. the AR model driven by noise wn.)
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Check: Let e = xn +
∑P

i=1hixn−i.

e2 = x2n + hT

 xn−1...
xn−P

 [xn−1, . . . , xn−P ]h

+ 2hT

 xn−1...
xn−P

xn.
E(e2) = RXX [0] + hTRP−1h+2hTr

Using the fact that the minimiser of E(e2)
satisfies RP−1h = −r, the minimum value of
E(e2) is

RXX [0] + a′ Tr

which is equal to b20 in (12). (Thus b20 > 0.)

• Error keeps decreasing until model order is
correct:

min
h
E

{(
xn +

∑P
i=1hixn−i

)2}
s.t. h′j+1 = · · · = h′P = 0
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will be greater than or equal to the uncon-
strained minimisation problem

b20 = min
h
E

{(
xn +

∑P
i=1hixn−i

)2}

5 Levinson’s method

• Assume that we have an AR(P ) process

• The Yule-Walker equation (see (9)) for a j-th
order AR process (or AR(j) process) where
j < P is

Rj


1
a1
...
aj

 =


εj
0
...
0


where Rj is
RXX [0] RXX [1] . . . RXX [j]
RXX [1] RXX [0] . . . RXX [j − 1]
... ... . . . ...
RXX [j − 1] . . . RXX [0] RXX [1]
RXX [j] RXX [j − 1] . . . RXX [0]

 .
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(All instances of RXX [i] with i < 0 replaced
withRXX [|i|] sinceRXX is an even function.)

• Note last row is row one backwards, second
last row is row two backwards etc

• Let the solution be a1, . . . , aj and εj (and we
know εj > 0)

• The Levinson’s method is used to extend this
solution to an AR(j+ 1) process. The idea is
as follows

• It is clear that

Rj+1


1
a1
...
aj
0

 =


εj
0
...
0
γj


where

γj = RXX [j + 1] + RXX [j]a1 + RXX [j − 1]a2
+ · · · + RXX [1]aj
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• Using the fact that the last row of Rj+1 is
row one backwards, second last row is row
two backwards etc, we have that

Rj+1


0
aj
...
a1
1

 =


γj
0
...
0
εj


• Thus for any constant c

Rj+1




1
a1
...
aj
0

 + c


0
aj
...
a1
1


 =


εj + cγj

0
...
0

γj + cεj


• Setting c = −γj/εj gives the solution to the

AR(j + 1) model!

Rj+1


1
a′1
...
a′j+1

 =


εj+1

0
...
0
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where a′i = ai−(γj/εj)aj+1−i, a
′
j+1 = −γj/εj

and εj+1 = εj − γ2j/εj

• Computational cost is

γj j multiplications
γj/εj, γ2j/εj 2 multiplications, 1 division

a′1, . . . , a
′
j j multiplications

so (2j + 3) multiplications in total

• Cost for solving the AR(P ) model recursively
is

P−1∑
j=0

2j + 3 = P 2 + 2P

compared to O(P 3) if we inverted the matrix
in (10)
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