4F7 Spectrum Estimation Parametric Methods Sumeetpal Singh
 Email : sss40@eng.cam.ac.uk

Modification history:
<2008: S. Godsill, P. Rayner Revised by S.S. Singh

- We have seen that periodogram-based methods can lead to biased estimators with large variance
- Parametric methods assume a model for the physical process which generated the data, e.g. an ARMA model
- The aim is to estimate the parameters of the assumed model from the observed data
- The choice of the model to be used can be informed by the power spectral density plot (e.g. estimated by the periodogram)
- Recall the result: If a random process $\left\{X_{n}\right\}$ can be modelled as white noise exciting a filter with frequency response $H\left(e^{j \omega}\right)$ then its spectral density is

$$
S_{X}\left(e^{j \omega}\right)=\sigma^{2}\left|H\left(e^{j \omega}\right)\right|^{2}
$$

where σ^{2} is the variance of the white noise process. [It is usually assumed that $\sigma^{2}=1$ and the scaling is incorporated as gain in the

frequency response]

- The frequency response $H\left(e^{j \omega}\right)$ of the ARMA model can be represented
by a finite number of parameters which are then to be estimated from the data
- (Example: PSD of the $\mathrm{AR}(\mathrm{P})$ process.) Let $X_{n}=a X_{n-P}+W_{n},|a|<1$ and $E\left\{W_{n}^{2}\right\}=$ σ^{2}.

$$
\begin{aligned}
S_{X}\left(e^{j \omega}\right) & =\frac{\sigma^{2}}{\left(1-a e^{j \omega P}\right)\left(1-a e^{-j \omega P}\right)} \\
& =\frac{\sigma^{2}}{1+a^{2}-2 a \cos (\omega P)}
\end{aligned}
$$

which has period $2 \pi / P$.

- (A cautionary note.) Parametric models need to be chosen carefully - an inappropriate model for the data can give misleading results

Figure 1: Parameters $\sigma=1, a=0.5$

1 ARMA Models

A quite general representation is the autoregressive moving-average (ARMA) model:

- The $\operatorname{ARMA}(\mathrm{P}, \mathrm{Q})$ model difference equation representation is:

$$
\begin{equation*}
x_{n}=-\sum_{p=1}^{P} a_{p} x_{n-p}+\sum_{q=0}^{Q} b_{q} w_{n-q} \tag{1}
\end{equation*}
$$

where:
a_{p} are the AR parameters,
b_{q} are the MA parameters
and $\left\{W_{n}\right\}$ is white noise with unit variance, $\sigma^{2}=1$.

- Clearly the ARMA model is a pole-zero IIR filter-based model with transfer function

$$
H(z)=\frac{B(z)}{A(z)}
$$

where

$$
\begin{equation*}
A(z)=1+\sum_{p=1}^{P} a_{p} z^{-p}, \quad B(z)=\sum_{q=0}^{Q} b_{q} z^{-q} \tag{2}
\end{equation*}
$$

- Unless otherwise stated we will always assume that the filter is stable, i.e. the poles (solutions of $A(z)=0$) all lie within the unit circle to ensure the ARMA process is WSS and has a causal representation
- Using the above result, the power spectrum of the ARMA process is:

$$
S_{X}\left(e^{j \omega}\right)=\frac{\left|B\left(e^{j \omega}\right)\right|^{2}}{\left|A\left(e^{j \omega}\right)\right|^{2}}
$$

- The ARMA model is quite a flexible and general way to model a stationary random process
- The spectrum can be factored as

$$
\frac{B(z)}{A(z)}=b_{0} \frac{\prod_{i=1}^{Q}\left(1-z^{-1} c_{i}\right)}{\prod_{i=1}^{P}\left(1-z^{-1} d_{i}\right)}
$$

- The spectrum can be manipulated by choosing $Q, P,\left\{c_{i}\right\}_{i=1}^{Q},\left\{d_{i}\right\}_{i=1}^{P}$ subject to $\left|d_{i}\right|<1$. (As an exercise, plot $\left.\log _{10} \frac{\left|B\left(e^{j \omega}\right)\right|}{\left|A\left(e^{j \omega}\right)\right|} \right\rvert\,$ in the interval $\omega \in[0,2 \pi)$ in Matlab.)
- The poles model well the peaks in the spectrum (sharper peaks implies poles closer to the unit circle)
- The zeros model troughs in the spectrum

2 Autocorrelation function of the ARMA Model

- The autocorrelation function $R_{X X}[r]$ for the output x_{n} of the ARMA model is:

$$
R_{X X}[r]=E\left[x_{n} x_{n+r}\right]
$$

- Substituting for x_{n+r} from equation 1 gives: $R_{X X}[r]$
$=E\left[x_{n}\left\{-\sum_{p=1}^{P} a_{p} x_{n+r-p}+\sum_{q=0}^{Q} b_{q} w_{n+r-q}\right\}\right]$
$=-\sum_{p=1}^{P} a_{p} E\left[x_{n} x_{n+r-p}\right]+\sum_{q=0}^{Q} b_{q} E\left[x_{n} w_{n+r-q}\right]$
- The white noise process $\left\{W_{n}\right\}$ is wide-sense stationary so that $\left\{X_{n}\right\}$ is also wide-sense stationary
- Let the system impulse response be

$$
x_{n}=\sum_{m=-\infty}^{\infty} h_{m} w_{n-m}
$$

The system is causal, i.e. $h_{m}=0$ for $m<0$

- Therefore

$$
E\left[x_{n} w_{n+k}\right]=E\left[w_{n+k} \sum_{m=-\infty}^{\infty} h_{m} w_{n-m}\right]
$$

- For a white process

$$
E\left[w_{n+k} w_{n-m}\right]= \begin{cases}\sigma^{2} & \text { if } m=-k \\ 0 & \text { otherwise }\end{cases}
$$

and let $\sigma^{2}=1$ (without loosing generality.)
Hence $E\left[x_{n} w_{n+k}\right]$ is independent of n and let

$$
R_{X W}[k]=E\left[x_{n} w_{n+k}\right]=h_{-k}
$$

- Therefore $R_{X X}[r]$ satisfies the same ARMA difference equation that related x_{n} and w_{n} :

$$
\begin{equation*}
R_{X X}[r]=-\sum_{p=1}^{P} a_{p} R_{X X}[r-p]+\sum_{q=0}^{Q} b_{q} R_{X W}[r-q] \tag{3}
\end{equation*}
$$

- A more convenient expression for the crosscorrelation term $R_{X W}[$.$] is needed.$
- Substituting this expression for $R_{X W}[k]$ into equation (3) gives the Yule-Walker Equation for an ARMA process,

$$
\begin{equation*}
R_{X X}[r]=-\sum_{p=1}^{P} a_{p} R_{X X}[r-p]+\sum_{q=0}^{Q} b_{q} h_{q-r} \tag{4}
\end{equation*}
$$

- Since the system is causal, or $h_{m}=0$ for $m<0$, equation (4) may be rewritten as:

$$
\begin{equation*}
R_{X X}[r]=-\sum_{p=1}^{P} a_{p} R_{X X}[r-p]+c_{r} \tag{5}
\end{equation*}
$$

where:

$$
c_{r}= \begin{cases}\sum_{q=r}^{Q} b_{q} h_{q-r} & \text { if } 0 \leq r \leq Q \tag{6}\\ 0 & \text { if } r>Q \\ \sum_{q=0}^{Q} b_{q} h_{q+|r|} & \text { if } r<0\end{cases}
$$

- Note that equation (5) expands to

$$
\begin{array}{r}
R_{X X}[0]+\sum_{p=1}^{P} a_{p} R_{X X}[-p]=c_{0} \\
R_{X X}[1]+\sum_{p=1}^{P} a_{p} R_{X X}[1-p]=c_{1} \\
\vdots \\
R_{X X}[Q]+\sum_{p=1}^{P} a_{p} R_{X X}[Q-p]=c_{Q} \\
\vdots \\
R_{X X}[Q+P]+\sum_{p=1}^{P} a_{p} R_{X X}[Q+P-p]=0
\end{array}
$$

(note c_{Q+1} onwards is 0)

- Collect into a matrix form

$$
\mathbf{R}_{X} \underbrace{\left[\begin{array}{c}
1 \tag{7}\\
a_{1} \\
a_{2} \\
\vdots \\
a_{P}
\end{array}\right]}_{\mathbf{a}}=\underbrace{\left[\begin{array}{l}
c_{0} \\
c_{1} \\
\vdots \\
c_{Q} \\
0 \\
\vdots \\
0
\end{array}\right]}_{\mathbf{c}}
$$

where \mathbf{R}_{X} is the matrix

$$
\left[\begin{array}{llll}
R_{X X}[0] & R_{X X}[-1] & \ldots & R_{X X}[-P] \\
R_{X X}[1] & R_{X X}[0] & \ldots & R_{X X}[1-P] \\
\vdots & \vdots & & \vdots \\
R_{X X}[Q] & R_{X X}[Q-1] & \ldots & R_{X X}[Q-P] \\
R_{X X}[Q+1] & R_{X X}[Q] & \ldots & R_{X X}[Q-P+1] \\
\vdots & \vdots & & \vdots \\
R_{X X}[Q+P] & R_{X X}[Q+P-1] & \ldots & R_{X X}[Q]
\end{array}\right]
$$

- This is the matrix version of the Yule-Walker equations

3 Solution of the Yule-Walker Equations

- We would like to solve for the ARMA parameters from estimates of the autocorrelation function:
- In principle, if the auto-correlation function $R_{X X}[r]$ of a discrete random process is specified for sufficient number of values of r then a set of simultaneous equations may be set up and solved for the model parameters $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$.
- Unknowns $c_{r}=\sum_{q=r}^{Q} b_{q} h_{q-r}$ and $\left\{h_{n}\right\}$ are complicated functions of $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$
- There are numerous methods for estimating ARMA models, e.g. Prony's method, see Matlab routines. However, a full solution in the general case is difficult.
- We will study the solution of equation 7 for two special cases, namely the AR model and the MA model.

4 The AR Model $(Q=0)$

- If $Q=0$ then the ARMA model becomes the AR model:

$$
\begin{equation*}
x_{n}=-\sum_{p=1}^{P} a_{p} x_{n-p}+b_{0} w_{n} \tag{8}
\end{equation*}
$$

- The AR model is used in numerous applications, including speech, audio, economics, ...
- Equation (6), which was $c_{r}=\sum_{q=r}^{Q} b_{q} h_{q-r}$ for $r \leq Q$ and $c_{r}=0$ for $r>Q$ becomes:

$$
c_{r}= \begin{cases}b_{0} h_{0} & \text { if } r=0 \\ 0 & \text { if } r>0\end{cases}
$$

- Consideration of the difference equation for the AR model,

$$
x_{n}=h_{0} w_{n}+\sum_{m \geq 1} h_{m} w_{n-m}
$$

shows that $h_{0}=b_{0}$.

- The matrix Yule-Walker equation becomes:

$$
\begin{align*}
& {\left[\begin{array}{llll}
R_{X X}[0] & R_{X X}[-1] & \ldots & R_{X X}[-P] \\
R_{X X}[1] & R_{X X}[0] & \ldots & R_{X X}[1-P] \\
\vdots & \vdots & & \vdots \\
R_{X X}[P] & R_{X X}[P-1] & \ldots & R_{X X}[0] \\
\times\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{P}
\end{array}\right]=\left[\begin{array}{c}
b_{0}^{2} \\
0 \\
\vdots \\
0
\end{array}\right]
\end{array}\right.}
\end{align*}
$$

and we use this to solve for a_{i} and b_{0}

- Solve for a_{i} and b_{0}^{2} by partitioning the matrix as:

$$
\begin{aligned}
& {\left[\begin{array}{l|lll}
R_{X X}[0] & R_{X X}[-1] & \ldots & R_{X X}[-P] \\
\hline R_{X X}[1] & R_{X X}[0] & \ldots & R_{X X}[1-P] \\
\vdots & \vdots & \vdots \\
R_{X X}[P] & & R_{X X}[P-1] & \ldots \\
\\
\times\left[\begin{array}{c}
1 \\
a_{1} \\
\vdots \\
a_{P}
\end{array}\right]=\left[\begin{array}{c}
\frac{b_{0}^{2}}{0} \\
\vdots \\
0
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

(concentrate on rows 2 onwards only)

- Taking the bottom P elements of the right and left hand sides:

$$
\begin{align*}
& {\left[\begin{array}{llll}
R_{X X}[0] & R_{X X}[-1] & \ldots & R_{X X}[1-P] \\
R_{X X}[1] & R_{X X}[0] & \ldots & R_{X X}[2-P] \\
\vdots & \vdots & \vdots \\
R_{X X}[P-1] & R_{X X}[P-2] & \ldots & R_{X X}[0]
\end{array}\right]} \\
& \times\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{P}
\end{array}\right]=-\left[\begin{array}{l}
R_{X X}[1] \\
R_{X X}[2] \\
\vdots \\
R_{X X}[P]
\end{array}\right] \tag{10}
\end{align*}
$$

or

$$
\begin{equation*}
\mathbf{R}_{P-1} \mathbf{a}=-\mathbf{r} \tag{11}
\end{equation*}
$$

- Hence $\mathbf{a}=-\mathbf{R}_{P-1}^{-1} \mathbf{r}$ and

$$
b_{0}^{2}=\left[\begin{array}{llll}
R_{X X}[0] & R_{X X}[-1] & \ldots & R_{X X}[-P]
\end{array}\right]\left[\begin{array}{l}
1 \\
a_{1} \\
\vdots \\
a_{P}
\end{array}\right]
$$

- Thus if we can estimate the autocorrelation function using one of the standard methods described earlier, then we can estimate the $A R$ parameters and hence the spectrum.
- (Relation to MMSE estimation.) The YuleWalker solution $\mathbf{a}=-\mathbf{R}_{P-1}^{-1} \mathbf{r}$ is also the solution to the following optimization problem:

$$
\min _{\mathbf{h}} E\left\{\left(x_{n}+\sum_{i=1}^{P} h_{i} x_{n-i}\right)^{2}\right\}
$$

where

$$
x_{n}=-\sum_{i=1}^{P} a_{i} x_{n-i}+b_{0} w_{n}
$$

(i.e. the AR model driven by noise w_{n}.)

Check: Let $e=x_{n}+\sum_{i=1}^{P} h_{i} x_{n-i}$.

$$
\begin{aligned}
e^{2} & =x_{n}^{2}+\mathbf{h}^{\mathrm{T}}\left[\begin{array}{l}
x_{n-1} \\
\vdots \\
x_{n-P}
\end{array}\right]\left[x_{n-1}, \ldots, x_{n-P}\right] \mathbf{h} \\
& +2 \mathbf{h}^{\mathrm{T}}\left[\begin{array}{l}
x_{n-1} \\
\vdots \\
x_{n-P}
\end{array}\right] x_{n} . \\
& E\left(e^{2}\right)=R_{X X}[0]+\mathbf{h}^{\mathrm{T}} \mathbf{R}_{P-1} \mathbf{h}+2 \mathbf{h}^{\mathrm{T}} \mathbf{r}
\end{aligned}
$$

Using the fact that the minimiser of $E\left(e^{2}\right)$ satisfies $\mathbf{R}_{P-1} \mathbf{h}=-\mathbf{r}$, the minimum value of $E\left(e^{2}\right)$ is

$$
R_{X X}[0]+\mathbf{a}^{\prime \mathrm{T}} \mathbf{r}
$$

which is equal to b_{0}^{2} in (12). (Thus $b_{0}^{2}>0$.)

- Error keeps decreasing until model order is correct:

$$
\begin{aligned}
& \min _{\mathbf{h}} E\left\{\left(x_{n}+\sum_{i=1}^{P} h_{i} x_{n-i}\right)^{2}\right\} \\
& \text { s.t. } h_{j+1}^{\prime}=\cdots=h_{P}^{\prime}=0
\end{aligned}
$$

will be greater than or equal to the unconstrained minimisation problem

$$
b_{0}^{2}=\min _{\mathbf{h}} E\left\{\left(x_{n}+\sum_{i=1}^{P} h_{i} x_{n-i}\right)^{2}\right\}
$$

5 Levinson's method

- Assume that we have an $\operatorname{AR}(P)$ process
- The Yule-Walker equation (see (9)) for a j-th order AR process (or $\mathrm{AR}(j)$ process) where $j<P$ is

$$
\mathbf{R}_{j}\left[\begin{array}{l}
1 \\
a_{1} \\
\vdots \\
a_{j}
\end{array}\right]=\left[\begin{array}{l}
\epsilon_{j} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where \mathbf{R}_{j} is
$\left[\begin{array}{llll}R_{X X}[0] & R_{X X}[1] & \ldots & R_{X X}[j] \\ R_{X X}[1] & R_{X X}[0] & \ldots & R_{X X}[j-1] \\ \vdots & \vdots & \ddots & \vdots \\ R_{X X}[j-1] & \ldots & R_{X X}[0] & R_{X X}[1] \\ R_{X X}[j] & R_{X X}[j-1] & \ldots & R_{X X}[0]\end{array}\right]$.
(All instances of $R_{X X}[i]$ with $i<0$ replaced with $R_{X X}[|i|]$ since $R_{X X}$ is an even function.)

- Note last row is row one backwards, second last row is row two backwards etc
- Let the solution be a_{1}, \ldots, a_{j} and ϵ_{j} (and we know $\epsilon_{j}>0$)
- The Levinson's method is used to extend this solution to an $\mathrm{AR}(j+1)$ process. The idea is as follows
- It is clear that

$$
\mathbf{R}_{j+1}\left[\begin{array}{l}
1 \\
a_{1} \\
\vdots \\
a_{j} \\
0
\end{array}\right]=\left[\begin{array}{l}
\epsilon_{j} \\
0 \\
\vdots \\
0 \\
\gamma_{j}
\end{array}\right]
$$

where

$$
\begin{aligned}
\gamma_{j} & =R_{X X}[j+1]+R_{X X}[j] a_{1}+R_{X X}[j-1] a_{2} \\
& +\cdots+R_{X X}[1] a_{j}
\end{aligned}
$$

- Using the fact that the last row of \mathbf{R}_{j+1} is row one backwards, second last row is row two backwards etc, we have that

$$
\mathbf{R}_{j+1}\left[\begin{array}{l}
0 \\
a_{j} \\
\vdots \\
a_{1} \\
1
\end{array}\right]=\left[\begin{array}{l}
\gamma_{j} \\
0 \\
\vdots \\
0 \\
\epsilon_{j}
\end{array}\right]
$$

- Thus for any constant c

$$
\mathbf{R}_{j+1}\left(\left[\begin{array}{l}
1 \\
a_{1} \\
\vdots \\
a_{j} \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
a_{j} \\
\vdots \\
a_{1} \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
\epsilon_{j}+c \gamma_{j} \\
0 \\
\vdots \\
0 \\
\gamma_{j}+c \epsilon_{j}
\end{array}\right]
$$

- $\operatorname{Setting} c=-\gamma_{j} / \epsilon_{j}$ gives the solution to the $\mathrm{AR}(j+1)$ model!

$$
\mathbf{R}_{j+1}\left[\begin{array}{l}
1 \\
a_{1}^{\prime} \\
\vdots \\
a_{j+1}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\epsilon_{j+1} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

21
where $a_{i}^{\prime}=a_{i}-\left(\gamma_{j} / \epsilon_{j}\right) a_{j+1-i}, a_{j+1}^{\prime}=-\gamma_{j} / \epsilon_{j}$ and $\epsilon_{j+1}=\epsilon_{j}-\gamma_{j}^{2} / \epsilon_{j}$

- Computational cost is

so $(2 j+3)$ multiplications in total
- Cost for solving the $\mathrm{AR}(P)$ model recursively is

$$
\sum_{j=0}^{P-1} 2 j+3=P^{2}+2 P
$$

compared to $O\left(P^{3}\right)$ if we inverted the matrix in (10)

