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We have seen that periodogram-based meth-
ods can lead to biased estimators with large
variance

Parametric methods assume a model for the

physical process which generated the data,
e.g. an ARMA model

The aim is to estimate the parameters of the
assumed model from the observed data

The choice of the model to be used can be
informed by the power spectral density plot
(e.g. estimated by the periodogram)

Recall the result: If a random process {X,,}
can be modelled as white noise exciting a fil-
ter with frequency response H(e’*) then its
spectral density is

Sx(e™) = o |[H(e™)[*

where o2 is the variance of the white noise
process. [It is usually assumed that o = 1
and the scaling is incorporated as gain in the



frequency response]

The frequency response H (e/*) of the ARMA
model can be represented

by a finite number of parameters which are then
to be estimated from the data

(Example: PSD of the AR(P) process.) Let

X, =aX,_p+ W, |a| <1land E{W?} =

o2,

0.2

(1 — ae*f) (1 — ae=ivr)

0.2

“1+a?—2a cos(wP)

Sx<€jw> =

which has period 27/ P.

(A cautionary note.) Parametric models need
to be chosen carefully - an inappropriate model
for the data can give misleading results
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Figure 1. Parameters o =1, a = 0.5

1 ARMA Models

A quite general representation is the autoregressive
moving-average (ARMA) model:

e The ARMA(P,Q) model difference equation

representation is:
P Q
T, = —Zapxn_p+ quwn_q (1)
p=1 q=0




where:

a, are the AR parameters,
b, are the MA parameters

and {W,} is white noise with unit variance,
2
o = 1.

Clearly the ARMA model is a pole-zero IIR

filter-based model with transfer function

H(z) iéi;
where
P Q
Alz) =1+ Z a,z2” P, B(z)= Z byz ™!

Unless otherwise stated we will always as-
sume that the filter is stable, i.e. the poles
(solutions of A(z) = 0) all lie within the unit

circle to ensure the ARMA process is WSS
and has a causal representation



Using the above result, the power spectrum
of the ARMA process is:

SX(ejw) —

The ARMA model is quite a flexible and gen-
eral way to model a stationary random pro-
cess

The spectrum can be factored as

The spectrum can be manipulated by choos-
ing Q, P, {c;}Y2, {d}2, subject to |d;| < 1.

: | B(e))]
(As an exercise, plot logy, A7)

val w € [0, 27) in Matlab.)

in the inter-

The poles model well the peaks in the spec-
trum (sharper peaks implies poles closer to
the unit circle)



e The zeros model troughs in the spectrum



2 Autocorrelation function
of the ARMA Model

e The autocorrelation function Rxx|r]| for the
output x,, of the ARMA model is:

Rxx [T] — E[xnxn+r]

e Substituting for x,., from equation 1 gives:

RXX [T]
- . 0
=F |z, — Z Ap Tpgr—p + Z by Wntr—qg
p=1 q=0
P Q
= — Z ap BlTn @y r—p] + Z by Elx,wp -]
p=1 q=0

e The white noise process {W,,} is wide-sense
stationary so that {X,} is also wide-sense
stationary

e Let the system impulse response be

00
Tpn = § hm Wn—m

m=—aoo
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The system is causal, i.e. h,, =0 for m < 0

e Therefore

E[ajn wn—!—k wn+k E h Wp,— m
m=—oo
e For a white process

o2 ifm=—k

Elwp 1 Wy =
[Wntk | {O otherwise

and let 02 = 1 (without loosing generality.)
Hence E|x, w, ;] is independent of n and let

Rxwlk] = Elz, wnir] = hoy,

e Therefore Ry x|r| satisfies the same ARMA
difference equation that related x,, and w,;

Q
CLpRXXT— -|—Zb RXWT_Q]

Mw

Rxx|r]

: 8

e A more convenient expression for the cross-
correlation term Ryyy|.] is needed.
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e Substituting this expression for Ry |k] into
equation (3) gives the Yule-Walker Equation

for an ARMA process,

P Q

Rxx[rl == a,Rxxlr —pl+ > byl
p=1 q=0

(4)

e Since the system is causal, or h,, = 0 for

m < 0, equation (4) may be rewritten as:

P

p=1

RX)([T] —= _ZaprXX[T_p]—i_CT’ (5)

where:

( ZqQ:r bg g
0

10

if0<r<q@

ifr>qQ

S by gy T <0

(6)




e Note that equation (5) expands to
P
RX)([O] + ZCLPRX)([—]?] = C
p=1

P
RXX[H + ZCLPRXXD — p] = C1

p=1

P
Rxx[Q+ ) a,Rxx[Q — p] = cq

p=1

P
Ryx[Q+ Pl+ > a,Rxx[Q+ P —p]=0

p=1

(note co+1 onwards is 0)
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e Collect into a matrix form

Rxx[Q)
Rxx Q + 1]

RXX:Q + P]

Co

1 C1
aq :

RX a9 = CQ
: 0
ap :
— |0

a b —
——

Rxx|
Rxx|

Rxx

Q+P—u”.:

Rxx

—P]
1P|

Q — P
Q — P +1]
Q)

e 'T'his is the matrix version of the Yule-Walker

equations
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3 Solution of the Yule-Walker
Equations

e We would like to solve for the ARMA pa-
rameters from estimates of the autocorrela-
tion function:

e In principle, if the auto-correlation function
Rx x|r| of a discrete random process is spec-
ified for sufficient number of values of r then
a set of simultaneous equations may be set
up and solved for the model parameters {a; }

and {b;}.

e Unknowns ¢, = ZQ by hy—r and {h,} are
complicated functions of {a;} and {b;}

e There are numerous methods for estimating
ARMA models, e.g. Prony’s method, see
Matlab routines. However, a full solution in
the general case is difficult.

e We will study the solution of equation 7 for
two special cases, namely the AR model and

the MA model.
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4

The AR Model (Q =0)

If ) = 0 then the ARMA model becomes the
AR model:

P
T, = — Z ap Tn—p + bowy, (8)

p=1

The AR model is used in numerous applica-
tions, including speech, audio, economics, ...

Equation (6), which was ¢, = ZQ by Py
forr < @ and ¢, =0 for r > Q) becomes

boh() ifr=20
Cr =
0 iftr >0

Consideration of the difference equation for
the AR model,

Lp = hOwn + Z hm Wpn—m

m>1

shows that hg = bg.
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e The matrix Yule-Walker equation becomes:

_RXX[O] Rxx[—l] RXx[—P]
RXX[H RXX[O] RXX[I—P]

Rex[Pl RyxlP—1] ... Ryl

_ | - _ b(2) -
% ay _ 0 (9)
- CLP — - O —

and we use this to solve for a; and by

e Solve for a; and b3 by partitioning the matrix
as:

RXX:O] RXX:—l] RXX:—P]
RXX_l] RX)(_O] RX)(_l—P]

RXX:P] RXX:P—l] RXX:O]

EN
=]
_aP_ _O -




(concentrate on rows 2 onwards only)

e Taking the bottom P elements of the right
and left hand sides:

ai _RXx[l]
" a:2 _ :RXX[Q]
_CLP_ _RXX[P] i
or

Rp_1a = —T

e Hence a = —R]_Dl_lr and
52 B RX)([O] Rxx[—l]

0=

Ryx[0]  Rxx[-1]
RXX_l] RXX _O]
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RXX:P— 1] RXX:P—Q]

Rxx|—P]

... Rxx[l1—P]]
. Ryx[2— P
Rxx|0]
(10)

(11)




e Thus if we can estimate the autocorrelation
function using one of the standard methods
described earlier, then we can estimate the
AR parameters and hence the spectrum.

e (Relation to MMSE estimation.) The Yule-
Walker solution a = —R]_Dl_lr 1s also the so-
lution to the following optimization problem:

: p 2
min F (ZE‘n + Zizlhixnﬂ)

h

where

P
Ty = — g a; Tn—i + bowy,

1=1

(i.e. the AR model driven by noise w;,.)
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Check: Let e = x,, + Zilhixn—i-

Lp—1
e =22 +h' | : Zp-1,...,2,_plh
_:Cn_P -
Ln—1
+2h' | : T,
_ajn_P -

E(e?) = Rxx[0] + h'Rp_;h+2h'r

Using the fact that the minimiser of E(e?)
satisfies Rp_1h = —r, the minimum value of
E(e?) is

Rxx [O] +a’ Tr

which is equal to b3 in (12). (Thus b3 > 0.)

e Lrror keeps decreasing until model order is
correct:

min £ { (CIZn + Zflhixni)Q}

h

St Ry == hp =0
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will be greater than or equal to the uncon-
strained minimisation problem

b2:minE{<az —I—ZP hix )2}
0 n i=1"tiln—i

h

5 Levinson’s method

e Assume that we have an AR(P) process

e The Yule-Walker equation (see (9)) for a j-th
order AR process (or AR(j) process) where

j < Pis
o e
R, [ “|=|"
o] Lo
where R is
Ryx[0)  Rxx[l] ... Rxx[J]
Rxx|1] Rxx|0] Rxx|j — 1]
Rxxlj—1] ... Rxx|0] Rxx|1]
- Rxx|j] Rxxlj—1] ... Rxx|0]
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(All instances of Rxx|¢] with ¢ < 0 replaced
with Ry x[|¢|] since Rx x is an even function.)

Note last row is row one backwards, second
last row is row two backwards etc

Let the solution be ay, ..., a; and €; (and we
know €; > 0)

The Levinson’s method is used to extend this
solution to an AR(j + 1) process. The idea is
as follows

It 1s clear that

1 €
ay 0
Rjyi | ¢ =
Q; 0
0] L

where

v; = Rxx|j + 1] + Rxx[jla1 + Rxx|j — 1]az
4+ RXX[l]CLj
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e Using the fact that the last row of R4 is
row one backwards, second last row is row
two backwards etc, we have that

0 j
a 0
Rji1 | =
ay 0
I

e Thus for any constant c

/_1 | _O_\ _Gj—BC’)/j_
a a;
Rj+1 51 +C SJ =
a; a1 0
o] 1] e

e Setting ¢ = —~;/€; gives the solution to the
AR(j + 1) model!

1 €j+1
/
ay 0
Rj_|_1 : —
/
RIES N 0]
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where a; = G,Z'—(’Yj/ej>aj+1—ia a}+1 = _’Yj/ej
and €41 = € — 77 /€

Computational cost is

v 4 multiplications
Vi €j, ’yjz /€; 2 multiplications, 1 division
ay,...,a; 4 multiplications

so (27 + 3) multiplications in total

Cost for solving the AR(P) model recursively

1S
P-1

» 2j+3=P+2P

J=0

compared to O(P?) if we inverted the matrix
in (10)
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