4F7 Spectrum Estimation Parametric Methods Sumeetpal Singh

Email: sss40@eng.cam.ac.uk

Modification history:

 \leq 2008: S. Godsill, P. Rayner

Revised by S.S. Singh

- We have seen that periodogram-based methods can lead to biased estimators with large variance
- Parametric methods assume a model for the physical process which generated the data, e.g. an ARMA model
- The aim is to estimate the parameters of the assumed model from the observed data
- The choice of the model to be used can be informed by the power spectral density plot (e.g. estimated by the periodogram)
- Recall the result: If a random process $\{X_n\}$ can be modelled as white noise exciting a filter with frequency response $H(e^{j\omega})$ then its spectral density is

$$S_X(e^{j\omega}) = \sigma^2 |H(e^{j\omega})|^2$$

where σ^2 is the variance of the white noise process. [It is usually assumed that $\sigma^2 = 1$ and the scaling is incorporated as gain in the

frequency response]

- The frequency response $H(e^{j\omega})$ of the ARMA model can be represented

 by a finite number of parameters which are then to be estimated from the data
- (Example: PSD of the AR(P) process.) Let $X_n = aX_{n-P} + W_n$, |a| < 1 and $E\{W_n^2\} = \sigma^2$.

$$S_X(e^{j\omega}) = \frac{\sigma^2}{(1 - ae^{j\omega P})(1 - ae^{-j\omega P})}$$
$$= \frac{\sigma^2}{1 + a^2 - 2a\cos(\omega P)}$$

which has period $2\pi/P$.

• (A cautionary note.) Parametric models need to be chosen carefully - an inappropriate model for the data can give misleading results

Figure 1: Parameters $\sigma = 1$, a = 0.5

1 ARMA Models

A quite general representation is the autoregressive moving-average (ARMA) model:

• The ARMA(P,Q) model difference equation representation is:

$$x_n = -\sum_{p=1}^{P} a_p x_{n-p} + \sum_{q=0}^{Q} b_q w_{n-q}$$
 (1)

where:

 a_p are the AR parameters, b_q are the MA parameters

and $\{W_n\}$ is white noise with unit variance, $\sigma^2 = 1$.

• Clearly the ARMA model is a pole-zero IIR filter-based model with transfer function

$$H(z) = \frac{B(z)}{A(z)}$$

where

where
$$A(z) = 1 + \sum_{p=1}^{P} a_p z^{-p}, \quad B(z) = \sum_{q=0}^{Q} b_q z^{-q}$$
 (2)

Unless otherwise stated we will always assume that the filter is stable, i.e. the poles (solutions of A(z) = 0) all lie within the unit circle to ensure the ARMA process is WSS and has a causal representation

• Using the above result, the power spectrum of the ARMA process is:

$$S_X(e^{j\omega}) = \frac{|B(e^{j\omega})|^2}{|A(e^{j\omega})|^2}$$

- The ARMA model is quite a flexible and general way to model a stationary random process
- The spectrum can be factored as

$$\frac{B(z)}{A(z)} = b_0 \frac{\prod_{i=1}^{Q} (1 - z^{-1}c_i)}{\prod_{i=1}^{P} (1 - z^{-1}d_i)}$$

- The spectrum can be manipulated by choosing $Q, P, \{c_i\}_{i=1}^Q, \{d_i\}_{i=1}^P$ subject to $|d_i| < 1$. (As an exercise, plot $\log_{10} \frac{|B(e^{j\omega})|}{|A(e^{j\omega})|}$ in the interval $\omega \in [0, 2\pi)$ in Matlab.)
- The poles model well the peaks in the spectrum (sharper peaks implies poles closer to the unit circle)

• The zeros model troughs in the spectrum

2 Autocorrelation function of the ARMA Model

• The autocorrelation function $R_{XX}[r]$ for the output x_n of the ARMA model is:

$$R_{XX}[r] = E[x_n x_{n+r}]$$

• Substituting for x_{n+r} from equation 1 gives:

$$R_{XX}[r]$$

$$= E \left[x_n \left\{ -\sum_{p=1}^{P} a_p x_{n+r-p} + \sum_{q=0}^{Q} b_q w_{n+r-q} \right\} \right]$$

$$= -\sum_{p=1}^{P} a_p E[x_n x_{n+r-p}] + \sum_{q=0}^{Q} b_q E[x_n w_{n+r-q}]$$

- The white noise process $\{W_n\}$ is wide-sense stationary so that $\{X_n\}$ is also wide-sense stationary
- Let the system impulse response be

$$x_n = \sum_{m=-\infty}^{\infty} h_m \, w_{n-m}$$

The system is causal, i.e. $h_m = 0$ for m < 0

• Therefore

$$E[x_n w_{n+k}] = E[w_{n+k} \sum_{m=-\infty}^{\infty} h_m w_{n-m}]$$

• For a white process

$$E[w_{n+k} w_{n-m}] = \begin{cases} \sigma^2 & \text{if } m = -k\\ 0 & \text{otherwise} \end{cases}$$

and let $\sigma^2 = 1$ (without loosing generality.) Hence $E[x_n w_{n+k}]$ is independent of n and let

$$R_{XW}[k] = E[x_n w_{n+k}] = h_{-k}$$

• Therefore $R_{XX}[r]$ satisfies the same ARMA difference equation that related x_n and w_n :

$$R_{XX}[r] = -\sum_{p=1}^{P} a_p R_{XX}[r-p] + \sum_{q=0}^{Q} b_q R_{XW}[r-q]$$
(3)

• A more convenient expression for the cross-correlation term $R_{XW}[.]$ is needed.

• Substituting this expression for $R_{XW}[k]$ into equation (3) gives the Yule-Walker Equation for an ARMA process,

$$R_{XX}[r] = -\sum_{p=1}^{P} a_p R_{XX}[r-p] + \sum_{q=0}^{Q} b_q h_{q-r}$$
(4)

• Since the system is causal, or $h_m = 0$ for m < 0, equation (4) may be rewritten as:

$$R_{XX}[r] = -\sum_{p=1}^{P} a_p R_{XX}[r-p] + c_r$$
 (5)

where:

$$c_{r} = \begin{cases} \sum_{q=r}^{Q} b_{q} h_{q-r} & \text{if } 0 \leq r \leq Q \\ 0 & \text{if } r > Q \\ \sum_{q=0}^{Q} b_{q} h_{q+|r|} & \text{if } r < 0 \end{cases}$$
 (6)

• Note that equation (5) expands to

$$R_{XX}[0] + \sum_{p=1}^{P} a_p R_{XX}[-p] = c_0$$
$$R_{XX}[1] + \sum_{p=1}^{P} a_p R_{XX}[1-p] = c_1$$

:

$$R_{XX}[Q] + \sum_{p=1}^{P} a_p R_{XX}[Q-p] = c_Q$$

:

$$R_{XX}[Q+P] + \sum_{p=1}^{P} a_p R_{XX}[Q+P-p] = 0$$

(note c_{Q+1} onwards is 0)

• Collect into a matrix form

$$\mathbf{R}_{X} \begin{bmatrix} 1 \\ a_{1} \\ a_{2} \\ \vdots \\ a_{P} \end{bmatrix} = \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{Q} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 (7)

where \mathbf{R}_X is the matrix

$$\begin{bmatrix} R_{XX}[0] & R_{XX}[-1] & \dots & R_{XX}[-P] \\ R_{XX}[1] & R_{XX}[0] & \dots & R_{XX}[1-P] \\ \vdots & \vdots & & \vdots \\ R_{XX}[Q] & R_{XX}[Q-1] & \dots & R_{XX}[Q-P] \\ R_{XX}[Q+1] & R_{XX}[Q] & \dots & R_{XX}[Q-P+1] \\ \vdots & & \vdots & & \vdots \\ R_{XX}[Q+P] & R_{XX}[Q+P-1] & \dots & R_{XX}[Q] \end{bmatrix}$$

• This is the matrix version of the Yule-Walker equations

3 Solution of the Yule-Walker Equations

- We would like to solve for the ARMA parameters from estimates of the autocorrelation function:
- In principle, if the auto-correlation function $R_{XX}[r]$ of a discrete random process is specified for sufficient number of values of r then a set of simultaneous equations may be set up and solved for the model parameters $\{a_i\}$ and $\{b_i\}$.
- Unknowns $c_r = \sum_{q=r}^{Q} b_q h_{q-r}$ and $\{h_n\}$ are complicated functions of $\{a_i\}$ and $\{b_i\}$
- There are numerous methods for estimating ARMA models, e.g. Prony's method, see Matlab routines. However, a full solution in the general case is difficult.
- We will study the solution of equation 7 for two special cases, namely the AR model and the MA model.

4 The AR Model (Q = 0)

• If Q = 0 then the ARMA model becomes the AR model:

$$x_n = -\sum_{p=1}^{P} a_p x_{n-p} + b_0 w_n$$
 (8)

- The AR model is used in numerous applications, including speech, audio, economics, ...
- Equation (6), which was $c_r = \sum_{q=r}^{Q} b_q h_{q-r}$ for $r \leq Q$ and $c_r = 0$ for r > Q becomes:

$$c_r = \begin{cases} b_0 h_0 & \text{if } r = 0\\ 0 & \text{if } r > 0 \end{cases}$$

• Consideration of the difference equation for the AR model,

$$x_n = h_0 w_n + \sum_{m \ge 1} h_m w_{n-m}$$

shows that $h_0 = b_0$.

• The matrix Yule-Walker equation becomes:

$$\begin{bmatrix} R_{XX}[0] & R_{XX}[-1] & \dots & R_{XX}[-P] \\ R_{XX}[1] & R_{XX}[0] & \dots & R_{XX}[1-P] \\ \vdots & \vdots & & \vdots \\ R_{XX}[P] & R_{XX}[P-1] & \dots & R_{XX}[0] \end{bmatrix}$$

$$\times \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_P \end{bmatrix} = \begin{bmatrix} b_0^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \tag{9}$$

and we use this to solve for a_i and b_0

• Solve for a_i and b_0^2 by partitioning the matrix as:

$$\begin{bmatrix} R_{XX}[0] & R_{XX}[-1] & \dots & R_{XX}[-P] \\ R_{XX}[1] & R_{XX}[0] & \dots & R_{XX}[1-P] \\ \vdots & \vdots & & \vdots \\ R_{XX}[P] & R_{XX}[P-1] & \dots & R_{XX}[0] \end{bmatrix}$$

$$\times \begin{bmatrix} \frac{1}{a_1} \\ \vdots \\ a_P \end{bmatrix} = \begin{bmatrix} \frac{b_0^2}{0} \\ \vdots \\ 0 \end{bmatrix}$$

(concentrate on rows 2 onwards only)

• Taking the bottom P elements of the right and left hand sides:

$$\begin{bmatrix} R_{XX}[0] & R_{XX}[-1] & \dots & R_{XX}[1-P] \\ R_{XX}[1] & R_{XX}[0] & \dots & R_{XX}[2-P] \\ \vdots & \vdots & & \vdots \\ R_{XX}[P-1] & R_{XX}[P-2] & \dots & R_{XX}[0] \end{bmatrix} \times \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_P \end{bmatrix} = - \begin{bmatrix} R_{XX}[1] \\ R_{XX}[2] \\ \vdots \\ R_{XX}[P] \end{bmatrix}$$
(10)

or

$$\mathbf{R}_{P-1}\mathbf{a} = -\mathbf{r} \tag{11}$$

• Hence $\mathbf{a} = -\mathbf{R}_{P-1}^{-1}\mathbf{r}$ and

Therefore
$$\mathbf{a} = -\mathbf{i}\mathbf{c}_{P-1}\mathbf{i}$$
 and
$$b_0^2 = \begin{bmatrix} R_{XX}[0] & R_{XX}[-1] & \dots & R_{XX}[-P] \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_P \end{bmatrix}$$
(12)

- Thus if we can estimate the autocorrelation function using one of the standard methods described earlier, then we can estimate the AR parameters and hence the spectrum.
- (Relation to MMSE estimation.) The Yule-Walker solution $\mathbf{a} = -\mathbf{R}_{P-1}^{-1}\mathbf{r}$ is also the solution to the following optimization problem:

$$\min_{\mathbf{h}} E\left\{ \left(x_n + \sum_{i=1}^{P} h_i x_{n-i} \right)^2 \right\}$$

where

$$x_n = -\sum_{i=1}^{P} a_i x_{n-i} + b_0 w_n$$

(i.e. the AR model driven by noise w_n .)

Check: Let
$$e = x_n + \sum_{i=1}^{P} h_i x_{n-i}$$
.

$$e^{2} = x_{n}^{2} + \mathbf{h}^{T} \begin{bmatrix} x_{n-1} \\ \vdots \\ x_{n-P} \end{bmatrix} [x_{n-1}, \dots, x_{n-P}] \mathbf{h}$$
$$+ 2\mathbf{h}^{T} \begin{bmatrix} x_{n-1} \\ \vdots \\ x_{n-P} \end{bmatrix} x_{n}.$$

$$E(e^2) = R_{XX}[0] + \mathbf{h}^{\mathrm{T}} \mathbf{R}_{P-1} \mathbf{h} + 2\mathbf{h}^{\mathrm{T}} \mathbf{r}$$

Using the fact that the minimiser of $E(e^2)$ satisfies $\mathbf{R}_{P-1}\mathbf{h} = -\mathbf{r}$, the minimum value of $E(e^2)$ is

$$R_{XX}[0] + \mathbf{a}'^{\mathrm{T}}\mathbf{r}$$

which is equal to b_0^2 in (12). (Thus $b_0^2 > 0$.)

• Error keeps decreasing until model order is correct:

$$\min_{\mathbf{h}} E\left\{ \left(x_n + \sum_{i=1}^{P} h_i x_{n-i} \right)^2 \right\}$$
s.t. $h'_{j+1} = \dots = h'_P = 0$

will be greater than or equal to the unconstrained minimisation problem

$$b_0^2 = \min_{\mathbf{h}} E\left\{ \left(x_n + \sum_{i=1}^P h_i x_{n-i} \right)^2 \right\}$$

5 Levinson's method

- Assume that we have an AR(P) process
- The Yule-Walker equation (see (9)) for a j-th order AR process (or AR(j) process) where j < P is

$$\mathbf{R}_j \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_j \end{bmatrix} = \begin{bmatrix} \epsilon_j \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where \mathbf{R}_j is

$$\begin{bmatrix} R_{XX}[0] & R_{XX}[1] & \dots & R_{XX}[j] \\ R_{XX}[1] & R_{XX}[0] & \dots & R_{XX}[j-1] \\ \vdots & \vdots & \ddots & \vdots \\ R_{XX}[j-1] & \dots & R_{XX}[0] & R_{XX}[1] \\ R_{XX}[j] & R_{XX}[j-1] & \dots & R_{XX}[0] \end{bmatrix}.$$

(All instances of $R_{XX}[i]$ with i < 0 replaced with $R_{XX}[|i|]$ since R_{XX} is an even function.)

- Note last row is row one <u>backwards</u>, second last row is row two backwards etc
- Let the solution be a_1, \ldots, a_j and ϵ_j (and we know $\epsilon_j > 0$)
- The Levinson's method is used to extend this solution to an AR(j+1) process. The idea is as follows
- It is clear that

$$\mathbf{R}_{j+1} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_j \\ 0 \end{bmatrix} = \begin{bmatrix} \epsilon_j \\ 0 \\ \vdots \\ 0 \\ \gamma_j \end{bmatrix}$$

where

$$\gamma_j = R_{XX}[j+1] + R_{XX}[j]a_1 + R_{XX}[j-1]a_2 + \dots + R_{XX}[1]a_j$$

• Using the fact that the last row of \mathbf{R}_{j+1} is row one <u>backwards</u>, second last row is row two backwards etc, we have that

$$\mathbf{R}_{j+1} \begin{bmatrix} 0 \\ a_j \\ \vdots \\ a_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \gamma_j \\ 0 \\ \vdots \\ 0 \\ \epsilon_j \end{bmatrix}$$

• Thus for any constant c

$$\mathbf{R}_{j+1} \begin{pmatrix} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_j \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ a_j \\ \vdots \\ a_1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \epsilon_j + c\gamma_j \\ 0 \\ \vdots \\ 0 \\ \gamma_j + c\epsilon_j \end{bmatrix}$$

• Setting $c = -\gamma_j/\epsilon_j$ gives the solution to the AR(j+1) model!

$$\mathbf{R}_{j+1} \begin{bmatrix} 1 \\ a'_1 \\ \vdots \\ a'_{j+1} \end{bmatrix} = \begin{bmatrix} \epsilon_{j+1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where
$$a'_i = a_i - (\gamma_j/\epsilon_j)a_{j+1-i}$$
, $a'_{j+1} = -\gamma_j/\epsilon_j$
and $\epsilon_{j+1} = \epsilon_j - \gamma_j^2/\epsilon_j$

• Computational cost is

$$\gamma_j$$
 j multiplications $\gamma_j/\epsilon_j, \quad \gamma_j^2/\epsilon_j$ 2 multiplications, 1 division a_1', \dots, a_j' j multiplications

so (2j+3) multiplications in total

• Cost for solving the AR(P) model recursively is

$$\sum_{j=0}^{P-1} 2j + 3 = P^2 + 2P$$

compared to $O(P^3)$ if we inverted the matrix in (10)