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1 Properties of an Estimator

• To evaluate how good an estimator is, characterise its bias and variance

•An estimator θ̂ of a random quantity θ is unbiased if the expected value
of the estimate equals the true value, i.e.

E[θ̂] = θ

Otherwise the estimator is termed biased. Variability an estimator has
around its mean value is (or variance)

var(θ̂) = E[(θ̂ − E[θ̂])2]

•A good estimator will make some suitable trade-off between low bias
and low variance.

Now, apply these ideas to the periodogram ...
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2 Expected Value of the Periodogram

• The expected value of the periodogram is

E[ŜX(ejω)] = E

 N−1∑
k=−(N−1)

R̂XX [k] e−jkω


=

N−1∑
k=−(N−1)

E[R̂XX [k]] e−jkω, (1)

which is the DTFT of the expected autocorrelation function estimate

•E[R̂XX [k]] depends on whether we used the ‘biased’ or ‘unbiased’
forms for R̂XX
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• Consider first the unbiased form:

E[R̂XX [k]] = E

 1

N − k

N−1−k∑
n=0

xn xn+k


=

1

N − k

N−1−k∑
n=0

E[xnxn+k]

=
1

N − k

N−1−k∑
n=0

RXX [k]

= RXX [k] (2)

•Repeat calculation for the biased version:

E[R̂XX [k]] =
N − k
N

RXX [k], 0 ≤ k < N (3)

• In summary, noting that R̂XX [−k] = R̂XX [k],

E[R̂XX [k]] = wkRXX [k], k = −N + 1, ..., N − 1
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where, for the unbiased estimate,

wk =

{
1, |k| < N

0, otherwise
(Rectangular window)

and for the biased estimate,

wk =

{
N−|k|
N , |k| < N

0, otherwise
(Bartlett (triangular) window)

• Substituting into the expression for E[ŜX(ejω)] we obtain:

E[ŜX(ejω)] =

N−1∑
k=−(N−1)

E[R̂XX [k]] e−jkω

=

N−1∑
k=−(N−1)

wkRXX [k] e−jkω

=

∞∑
k=−∞

wkRXX [k] e−jkω
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• The DTFT of a product of two functions wk and RXX is equal to the
convolution of their individual DTFTs:

E[ŜX(ejω)] =
1

2π

∫ π

−π
W (ejθ)SX(ej(ω−θ)) dθ (4)

where SX(.) is the true power spectrum and W (.) is the DTFT of the
particular window function wk.
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Consider now the biased and unbiased cases:

1. Biased. W (.) is the DTFT of the Bartlett or triangular window:

W (ejω) =
1

N

[
sin(N ω

2 )

sin(ω2 )

]2

−→ 2πδ(ω)

(2πδ because
∫ π
−πW (ejθ)dθ = 2π)

2. Unbiased. W (.) is the DTFT of the rectangular window:

W (ejω) =

[
sin(2N − 1)ω2

sin(ω2 )

]
•Note that the Bartlett window spectrum is always positive - hence the

spectrum estimate is also positive.

•Rectangular window spectrum has negative parts, hence spectrum esti-
mate can be negative (i.e. invalid estimate): a reason to prefer Bartlett

•Note also that both estimators are biased in that the expected value
does not equal the true spectrum SX(ejω). However Bartlett asymp-
totically unbiased: limN→∞E[ŜX(ejω)] = SX(ejω)
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3 Example: periodogram of white noise

• For a white noise process

RXX [k] =

{
σ2 k = 0

0 otherwise
= σ2δk

where δk is the Kronecker delta-function.

• Substituting this into the expression for expected value of the peri-
odogram:

E[ŜX(ejω)] =

∞∑
k=−(∞)

wkRXX [k] e−jkω

=

∞∑
k=−∞

wkσ
2δk e

−jkω = w0σ
2

= σ2 (for both Bartlett & rect. windows)

•Hence the periodogram is unbiased for white noise
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4 Variance of the Periodogram

• The good news was that the periodogram is asymptotically unbiased:

lim
N→∞

E[ŜX(ejω)] = SX(ejω)

•We would wish that it is also consistent. A consistent estimator is one
which is asymptotically unbiased and whose variance tends to zero as
N →∞.

• The variance of the periodogram cannot easily be analysed for general
random processes. However, for a Gaussian random process it can be
shown that:

var(ŜX(ejω)) = E[(ŜX(ejω)− E[ŜX(ejω)])2]

≈ SX(ejω)2

this result being exact for white Gaussian processes.

• Since this does not depend on N , the variance does not reduce to zero
as N increases

9



5 Variance of periodogram - Gaussian white noise case

• It is generally harder to work out the variance of the periodogram for
general processes. However, for white Gaussian noise it is straightfor-
ward but tedious

• To find the variance of the periodogram for white Gaussian noise ,
expand the formula directly

var
(
ŜX(ejω)2

)
= E[ŜX(ejω)2]−

(
E[ŜX(ejω)]

)2
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• Expand the first term

E[ŜX(ejω)2]

= E


 1

N

∣∣∣∣∣∣
N−1∑
n=0

xne
−jnω

∣∣∣∣∣∣
2


2


=
1

N2
E[

N−1∑
n1=0

xn1e
−jn1ω

N−1∑
n2=0

xn2e
+jn2ω

×
N−1∑
n3=0

xn3e
−jn3ω

N−1∑
n4=0

xn4e
+jn4ω]

=
1

N2

N−1∑
n1=0

N−1∑
n2=0

N−1∑
n3=0

N−1∑
n4=0

E[xn1xn2xn3xn4]e−j(n1+n3−n2−n4)ω
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• Possible values for E[xn1xn2xn3xn4] are

3σ4 when n1 = n2 = n3 = n4,

σ2 when pairs of indices match, e.g. n1 = n2, n3 = n4,

0 otherwise

•When n1 = n2 = n3 = n4,

E[xn1xn2xn3xn4] = E[x4
n]

=

∫ +∞

−∞
x4
n

1√
2πσ2

e
− x2

n
2σ2dxn = 3σ4

There are N such cases in the multiple summation, corresponding to
n1 = 0, 1, 2, . . . , N − 1.

•When 3 time indices are equal, e.g. n1 = n2 = n3 and n4 6= n1,

E[xn1xn2xn3xn4] = E[x3
n1
xn4] = E[x3

n1
]E[xn4] = 0

since xn1 and xn4 are independent
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•When 2 pairs of time indices are equal, e.g. n1 = n2 and n3 = n4 and
n1 6= n3. Here,

E[xn1xn2xn3xn4] = E[x2
n1
x2
n3

] = E[x2
n1

]E[x2
n3

] = σ4.

• There are a number of ways for two pairs to be equal in the multiple
summation:

a) n1 = n2 and n3 = n4. There are N × (N − 1) ways for this to
happen:

N−1∑
n1=0
n2=n1︸ ︷︷ ︸
N terms

N−1∑
n3=0
n3 6=n1
n4=n3︸ ︷︷ ︸

N−1 terms

and the exp. term in this case becomes ej0 = 1.

b) n1 = n3 and n2 = n4. There are N × (N − 1) ways for this to

happen, and the exponential term in this case becomes e−j(2n1−2n2)ω.
c) n1 = n4 and n2 = n3. There are N × (N − 1) ways for this to
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happen, and the exponential term in this case becomes ej0 = 1.

• Try to verify that for all other cases E[xn1xn2xn3xn4] = 0
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• Combining these together we have:

1

N2

N−1∑
n1=0

N−1∑
n2=0

N−1∑
n3=0

N−1∑
n4=0

E[xn1xn2xn3xn4]e−j(n1+n3−n2−n4)ω

=
1

N2

(
3Nσ4 + N × (N − 1)× σ4ej0

+
∑
n1

∑
n2

n1 6=n2

σ4e−j(2n1−2n2)ω + N × (N − 1)σ4
)

=
1

N2

(
3Nσ4 + N × (N − 1)× σ4ej0

)
+

1

N2

∑
n1

∑
n2

σ4e−j(2n1−2n2)ω


+

1

N2

(
−Nσ4 + N × (N − 1)σ4

)
=

1

N2

2N2σ4 +
∑
n1

∑
n2

σ4e−j(2n1−2n2)ω


=

1

N2

2N2σ4 + σ4
N−1∑
n1=0

e−2jn1ω
N−1∑
n2=0

e2jn2ω


= σ4

(
2 +

(
sin(Nω)

N sin(ωT )

)2
)
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For the transition from the second last line to the last line, use
N−1∑
n=0

arn =

a1−rN
1−r .

• Finally, looking at the second term in the variance formula:

var(ŜX(ejω))

= E[ŜX(ejω)2]− E[ŜX(ejω)]2

this is simply the squared value of the expected value of the periodogram
for white noise which we have calculated

E[ŜX(ejω)]2 = (σ2)2 = σ4

so that:

var(ŜX(ejω)) = E[ŜX(ejω)2]− E[ŜX(ejω)]2

= σ4

(
1 +

{
sin(Nω)

N sin(ω)

}2
)

≈ σ4 as N →∞
= SX(ejω)2
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[See Matlab demo periodogram white noise.m]

6 Variance of periodogram - general case

• It is much more complex to evaluate the variance of the periodogram
for a general random process. However, some approximations can be
used to arrive at a similar expression for the Gaussian case.

•We can rewrite a stationary random process as a white noise process
v = {vn} with power spectrum equal to σ2 driving a linear filter
H(ejω):

v = {vn} −→ H(ejω) −→ x = {xn}
• The power spectrum of such a process is:

SX(ejω) = σ2|H(ejω)|2

•Now, define as usual windowed versions of {vn} and {xn}:

vw,n =

{
vn, n = 0, 1, ..., N − 1

0, otherwise
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xw,n =

{
xn, n = 0, 1, ..., N − 1

0, otherwise

• The windowed version xw = {xw,n} is not equal to the convolution
of vw = {vw,n} with the filter h = {hn}. However if the window is
long compared to the length of the filter so that the transient effects
are small then

xw ≈ h ∗ vw
and the corresponding approximate result when the DTFT is per-
formed:

Xw(ejω) ≈ Vw(ejω)H(ejω)

• To get the periodogram estimate:

1/N |Xw(ejω)|2 ≈ 1/N |Vw(ejω)|2|H(ejω)|2
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and hence:

var(1/N |Xw(ejω)|2)

≈ var(1/N |Vw(ejω)|2)(|H(ejω)|2)2

=
1

σ4
var(1/N |Vw(ejω)|2)(SX(ejω))2

• But, v = {vn} is white Gaussian noise, whose periodogram has vari-
ance equal to σ4 when N is large. Hence:

var(ŜX(ejω) = var(1/N |Xw(ejω)|2) ≈ SX(ejω)2

as required.
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7 Example: Sine-wave plus Gaussian noise

Consider a random process of the form:

xn = sin(ωnT + φ) + vn

where {vn} is a white Gaussian noise process and φ is a random phase
distributed uniformly between 0 and 2π.

•Here the spectral estimation task may be to estimate the frequency of
the sine-wave from observations of the process

• For small N the sine-wave component can be hidden in the noise of
the periodogram

•As N increases both the frequency resolution and signal-to-noise ratio
improve.

• In the case of the random phase sine wave alone, the variance of the
periodogram is very small, and hence the errors for small N are mostly
due to the bias, which reduces asymptotically to zero.

• See figures below - periodograms for various values of N
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