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1 Properties of an Estimator

e To evaluate how good an estimator is, characterise its bias and variance

e An estimator € of a random quantity 6 is unbiased if the expected value
of the estimate equals the true value, i.e.

N

Bl =0

Otherwise the estimator is termed biased. Variability an estimator has
around its mean value is (or variance)

var(6) = E[(6 — E[d])’]
e A good estimator will make some suitable trade-off between low bias

and low variance.

Now, apply these ideas to the periodogram ...



> Expected Value of the Periodogram

e The expected value of the periodogram IS

E[Sx(e’)] = E Z RXX[k]e—fkw
——

Lk= |
= Z E[Rx x[k]] e /™, (1)

which is the DTF'T Of the expected autocorrelation function estimate

e F[Rx x|k]| depends on whether we used the ‘biased’ or ‘unbiased’
forms for Ry x



e Consider first the unbiased form:

A 1 N—-1-k
ERyxlkl]]=FE N & P
L n:O -
1 N—-1-k
N 7 > Elwpw,y]
n=>0
! N—-1-k
=7 Ry x k|
n=0
= Ry x|k]
e Repeat calculation for the biased version:
. N —k
ElRxx[b| = ——FRxxlk], 0<k<N

e In summary, noting that Ry y[—k] = Rx x|k,
ERyx[k] = wyRxxk], k=-N+1,...,N—1



where, for the unbiased estimate,

1, |kl <N
wp =< i - (Rectangular window)
0, otherwise

and for the biased estimate,

N—k
wy, = { %’ k] < N (Bartlett (triangular) window)
0, otherwise
e Substituting into the expression for E[Sy (/)] we obtain:
N—1
E[Sx(e’) = > E[Rxx[k|le ™
—(N—-1)
N—-1
= > wpRyxlk]e I
—(N—-1)
O



e The DTFT of a product of two functions wy, and Rx x is equal to the

convolution of their individual DTFTs:
R . 1 [T . .
ElSx () == [ W(e?)Sx(e/ ) dp (4)
2T )

where Sx(.) is the true power spectrum and W (.) is the DTFT of the

particular window function wy,.




Consider now the biased and unbiased cases:

1. Biased. W {(.) is the DTF'T of the Bartlett or triangular window:

sin( N¥)72
W (%) = jlv [ SH(IJ(V%?)] > 276 (w)

(278 because [T W (el?)dO = 2r)
2. Unbiased. W {(.) is the DTFT of the rectangular window:
sin(2N — 1)%
sin(3) ]
e Note that the Bartlett window spectrum is always positive - hence the
spectrum estimate is also positive.

W) = |

e Rectangular window spectrum has negative parts, hence spectrum esti-
mate can be negative (i.e. invalid estimate): a reason to prefer Bartlett

e Note also that both estimators are biased in that the expected value
does not equal the true spectrum Sx (e/*). However Bartlett asymp-
totically unbiased: limpy_ o E[Sx(e/¥)] = Sx(e/¥)
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s Example: periodogram of white noise

e For a white noise process

o’ k=
Rx x|k] = { =0

=070
0  otherwise
where 0;. is the Kronecker delta-function.

e Substituting this into the expression for expected value of the peri-
odogram:

w .
—= Z wpo2dy, eI = wyo?
k=—0o0

— ¢ (for both Bartlett & rect. windows)

e Hence the periodogram is unbiased for white noise



12 Variance of the Periodogram

e The good news was that the periodogram is asymptotically unbiased:

lim E[Sx(e/“)] = Sy (e!*)

N—00

e We would wish that it is also consistent. A consistent estimator is one
which is asymptotically unbiased and whose variance tends to zero as
N — oo.

e The variance of the periodogram cannot easily be analysed for general
random processes. However, for a Gaussian random process it can be
shown that:

var(Sx (¢! w)) E[(Sx(e¥) — B[Sx ()]
this result being exact for white Gaussian processes.

e Since this does not depend on NV, the variance does not reduce to zero
as [V 1ncreases



5 Variance of periodogram - Gaussian white noise case

e [t is generally harder to work out the variance of the periodogram for
general processes. However, for white Gaussian noise it is straighttor-
ward but tedious

e To find the variance of the periodogram for white Gaussian noise
expand the formula directly

i (Sx(e7)2) = ElSx()] - (ElSx ()

)
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e Fixpand the first term
E[Sx (e/)]

PN

Z xnle_]mw } :xn2€+]n2w

X Z x e_jn3w Z T e—l—j’n4w]
n3 o
—1 N-—1

NQYYYY

n1=0ng=0nz=0ny=0

Elzn, TnyTnyzn,le™ (n1+ng—ny—nyw
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e Possible values for E|zp,Tn,Tn,2n,] are

304 when n1 = n9 = ng = ny,
o? when pairs of indices match, e.g. n; = n9, n3 = ny,
0 otherwise

e When ny = no = ng = ny,

Elxn, TnyTnsTn,] = E[m%}

+00 1 _%2 A
\/7

There are IV such cases in the multiple summation, corresponding to
n=0,1,2,..., N —1.
e When 3 time indices are equal, e.g. ny = no = ng and ng # ny,
B\ xn,TnoTnstn,| = E[:):%lajm] = E[x%l]E[xm] =0

since Tp, and xp, are independent
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e When 2 pairs of time indices are equal, e.g. ny = n9 and n3 = n4 and
ni #* n3. Here,

2 .2 2 4
Elzn Tnytngn,) = Elry, xn,] = Eloy, |Elr,] = o

e There are a number of ways for two pairs to be equal in the multiple
sumination:
a) n1 = ng and n3 = nyg. There are N x (N — 1) ways for this to
happen:

Nz—l Nz—l

n1=0 n3=0

no=nj n3#n]

=

N terms ——
N—1 terms

and the exp. term in this case becomes eV = 1.

b) ny = ng and no = ny. There are N x (N — 1) ways for this to
happen, and the exponential term in this case becomes e~/ (2n1—2ng)w
c) ny = ny and no = n3. There are N x (N — 1) ways for this to
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happen, and the exponential term in this case becomes e/V = 1.

o Try to verify that for all other cases E|xpn,Zn,TnsTn,] =0
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o Combining these together we have:
—1N-1

N2 S‘ S‘ S‘ S‘ Ewnﬁngiﬁngﬂ?m] —J(n1+n3 no—"ny4)w

n1=0n9=0 n3=0 ny=0

1 .
N2<3N0‘ + N X (N—l) ><0'4€]0
+ 2204 —j(2n1—2n9)w + N x (N—1>04>
774#7?/2
1

ZW(SNOZL + N X (N —-1) XOA‘ejO)

2204 —j(2n1—2n9)w

: ( No* ‘|‘N><(N—1)0‘)

N2

L2 2N"o" + 2204 —j(2n1—2ng)w
N



N—-1
For the transition from the second last line to the last line, use ) ar”™ =
n=0
1—rN
l—r -

e Finally, looking at the second term in the variance formula:
var(Sx (e/%))
= E[Sx(e™)’] — E[Sx (/)]
this is simply the squared value of the expected value of the periodogram
for white noise which we have calculated

E[Sx(e!) = (0%) = 0
so that: | | |
Var(ﬁX(ejw)) = E[Sx(ejw)Z] — E[SX(@WHQ

e (1 + {]Sivﬂs(ian( c:})) }2>

%04 as N — oo

= Sy (&)’

a
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[See Matlab demo periodogram white noise.m|

¢ Variance of periodogram - general case

e [t is much more complex to evaluate the variance of the periodogram
for a general random process. However, some approximations can be
used to arrive at a similar expression for the Gaussian case.

e We can rewrite a stationary random process as a white noise process

v = {vp} with power spectrum equal to o2 driving a linear filter
H(e%¥):

v=Avp} — H(e™) | g = {xn}
e The power spectrum of such a process is:
Sx(e/¥) = o”|H(e¥)|?
e Now, define as usual windowed versions of {v,} and {x}:

B {vn, n=20,1,...N—1

Yw,n = :
’ 0, otherwise
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0,  otherwise

Tn, n=0,1..N—1
Lw,n =

e The windowed version zy, = {zwn} is not equal to the convolution
of vy = {vwn} with the filter A = {hy}. However if the window is
long compared to the length of the filter so that the transient effects
are small then

T ~= h *x vy

and the corresponding approximate result when the DTEFT is per-
formed:

Xou(e?%) ~ Vi (e?¥)H ()
e To get the periodogram estimate:
L/N|[Xu(e?)" = 1/N|Viy(e?¥) [P | H (e)¥)
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and hence:
var(l/N]Xw(ejw)\Z)

~ var(1/N|V(e?*)]?)(| H (&)%)

_ ﬁma /N Vi (7)) (S x (79))?

e But, v = {v,} is white Gaussian noise, whose periodogram has vari-
ance equal to 0% when N is large. Hence:

Var(SX(ejw) — Var(l/N|Xw(€jw)‘2) ~ SX(ejw>2

as required.
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7 Example: Sine-wave plus Gaussian noise

Consider a random process of the form:
Ty = sin(wnT + @) + vy,

where {vy,} is a white Gaussian noise process and ¢ is a random phase
distributed uniformly between 0 and 2.

e Here the spectral estimation task may be to estimate the frequency of
the sine-wave from observations of the process

e For small NV the sine-wave component can be hidden in the noise of
the periodogram

e As N increases both the frequency resolution and signal-to-noise ratio
1mprove.

e In the case of the random phase sine wave alone, the variance of the
periodogram is very small, and hence the errors for small [V are mostly
due to the bias, which reduces asymptotically to zero.

e See figures below - periodograms for various values of N
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