4F7 (Adaptive Filters and) Spectrum Estimation

Properties of the Periodogram

Sumeetpal Singh Email : sss40@eng.cam.ac.uk

Modification history: ≤ 2008 : S. Godsill, P. Rayner Revised S.S. Singh

¹ Properties of an Estimator

- To evaluate how good an estimator is, characterise its bias and variance
- An estimator $\hat{\theta}$ of a random quantity θ is unbiased if the expected value of the estimate equals the true value, i.e.

 $E[\hat{\theta}] = \theta$

Otherwise the estimator is termed biased. Variability an estimator has around its mean value is (or variance)

 $\operatorname{var}(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^2]$

• A good estimator will make some suitable trade-off between low bias and low variance.

Now, apply these ideas to the periodogram \ldots

- ² Expected Value of the Periodogram
- \bullet The expected value of the periodogram is

$$E[\hat{S}_{X}(e^{j\omega})] = E\left[\sum_{k=-(N-1)}^{N-1} \hat{R}_{XX}[k] e^{-jk\omega}\right]$$
$$= \sum_{k=-(N-1)}^{N-1} E[\hat{R}_{XX}[k]] e^{-jk\omega},$$
(1)

which is the DTFT of the expected autocorrelation function estimate

 $\bullet\; E[\hat{R}_{XX}[k]]$ depends on whether we used the 'biased' or 'unbiased' forms for \hat{R}_{XX}

• Consider first the unbiased form:

$$E[\hat{R}_{XX}[k]] = E\left[\frac{1}{N-k}\sum_{n=0}^{N-1-k} x_n x_{n+k}\right]$$
$$= \frac{1}{N-k}\sum_{n=0}^{N-1-k} E[x_n x_{n+k}]$$
$$= \frac{1}{N-k}\sum_{n=0}^{N-1-k} R_{XX}[k]$$
$$= R_{XX}[k]$$

• Repeat calculation for the biased version:

$$E[\hat{R}_{XX}[k]] = \frac{N-k}{N} R_{XX}[k], \quad 0 \le k < N$$
(3)

(2)

• In summary, noting that
$$\hat{R}_{XX}[-k] = \hat{R}_{XX}[k]$$
,
 $E[\hat{R}_{XX}[k]] = w_k R_{XX}[k], \quad k = -N+1, ..., N-1$

where, for the unbiased estimate,

$$w_k = \begin{cases} 1, & |k| < N \\ 0, & \text{otherwise} \end{cases} \text{ (Rectangular window)}$$

and for the biased estimate,

$$w_k = \begin{cases} \frac{N - |k|}{N}, \ |k| < N\\ 0, & \text{otherwise} \end{cases}$$
(Bartlett (triangular) window)

• Substituting into the expression for $E[\hat{S}_X(e^{j\omega})]$ we obtain:

$$\begin{split} E[\hat{S}_X(e^{j\omega})] &= \sum_{k=-(N-1)}^{N-1} E[\hat{R}_{XX}[k]] e^{-jk\omega} \\ &= \sum_{k=-(N-1)}^{N-1} w_k R_{XX}[k] e^{-jk\omega} \\ &= \sum_{k=-\infty}^{\infty} w_k R_{XX}[k] e^{-jk\omega} \end{split}$$

• The DTFT of a *product* of two functions w_k and R_{XX} is equal to the *convolution* of their individual DTFTs:

$$E[\hat{S}_X(e^{j\omega})] = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(e^{j\theta}) S_X(e^{j(\omega-\theta)}) \, d\theta \tag{4}$$

where $S_X(.)$ is the true power spectrum and W(.) is the DTFT of the particular window function w_k .

Consider now the biased and unbiased cases:

1. Biased. W(.) is the DTFT of the Bartlett or triangular window:

$$W(e^{j\omega}) = \frac{1}{N} \left[\frac{\sin(N\frac{\omega}{2})}{\sin(\frac{\omega}{2})} \right]^2 \longrightarrow 2\pi\delta(\omega)$$

 $(2\pi\delta \text{ because } \int_{-\pi}^{\pi} W(e^{j\theta})d\theta = 2\pi)$

2. Unbiased. W(.) is the DTFT of the rectangular window:

$$W(e^{j\omega}) = \left[\frac{\sin(2N-1)\frac{\omega}{2}}{\sin(\frac{\omega}{2})}\right]$$

- Note that the Bartlett window spectrum is always positive hence the spectrum estimate is also positive.
- Rectangular window spectrum has negative parts, hence spectrum estimate can be negative (i.e. invalid estimate): a reason to prefer Bartlett
- Note also that both estimators are biased in that the expected value does not equal the true spectrum $S_X(e^{j\omega})$. However Bartlett asymptotically unbiased: $\lim_{N\to\infty} E[\hat{S}_X(e^{j\omega})] = S_X(e^{j\omega})$

- ³ Example: periodogram of white noise
- For a white noise process

$$R_{XX}[k] = \begin{cases} \sigma^2 & k = 0\\ 0 & \text{otherwise} \end{cases} = \sigma^2 \delta_k$$

where δ_k is the Kronecker delta-function.

• Substituting this into the expression for expected value of the periodogram:

$$E[\hat{S}_X(e^{j\omega})] = \sum_{k=-(\infty)}^{\infty} w_k R_{XX}[k] e^{-jk\omega}$$
$$= \sum_{k=-\infty}^{\infty} w_k \sigma^2 \delta_k e^{-jk\omega} = w_0 \sigma^2$$
$$= \sigma^2 \quad \text{(for both Bartlett \& rect. windows)}$$

• Hence the periodogram is unbiased for white noise

4 Variance of the Periodogram

- The good news was that the periodogram is asymptotically unbiased: $\lim_{N\to\infty} E[\hat{S}_X(e^{j\omega})] = S_X(e^{j\omega})$
- We would wish that it is also consistent. A consistent estimator is one which is asymptotically unbiased and whose variance tends to zero as $N \to \infty$.
- The variance of the periodogram cannot easily be analysed for general random processes. However, for a Gaussian random process it can be shown that:

$$\operatorname{var}(\hat{S}_X(e^{j\omega})) = E[(\hat{S}_X(e^{j\omega}) - E[\hat{S}_X(e^{j\omega})])^2]$$
$$\approx S_X(e^{j\omega})^2$$

this result being exact for *white* Gaussian processes.

• Since this does not depend on N, the variance does not reduce to zero as N increases

⁵ Variance of periodogram - Gaussian white noise case

- It is generally harder to work out the variance of the periodogram for general processes. However, for white Gaussian noise it is straightforward but tedious
- \bullet To find the variance of the periodogram for white Gaussian noise , expand the formula directly

$$\operatorname{var}\left(\hat{S}_X(e^{j\omega})^2\right) = E[\hat{S}_X(e^{j\omega})^2] - \left(E[\hat{S}_X(e^{j\omega})]\right)^2$$

• Expand the first term

• Possible values for $E[x_{n_1}x_{n_2}x_{n_3}x_{n_4}]$ are

$$3\sigma^4$$
 when $n_1 = n_2 = n_3 = n_4$,

- σ^2 when pairs of indices match, e.g. $n_1 = n_2, n_3 = n_4$,
- 0 otherwise

• When
$$n_1 = n_2 = n_3 = n_4$$
,
 $E[x_{n_1}x_{n_2}x_{n_3}x_{n_4}] = E[x_n^4]$
 $= \int_{-\infty}^{+\infty} x_n^4 \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x_n^2}{2\sigma^2}} dx_n = 3\sigma^4$

There are N such cases in the multiple summation, corresponding to $n_1 = 0, 1, 2, \ldots, N - 1$.

• When 3 time indices are equal, e.g. $n_1 = n_2 = n_3$ and $n_4 \neq n_1$, $E[x_{n_1}x_{n_2}x_{n_3}x_{n_4}] = E[x_{n_1}^3x_{n_4}] = E[x_{n_1}^3]E[x_{n_4}] = 0$ since x_{n_1} and x_{n_4} are independent • When 2 pairs of time indices are equal, e.g. $n_1 = n_2$ and $n_3 = n_4$ and $n_1 \neq n_3$. Here,

$$E[x_{n_1}x_{n_2}x_{n_3}x_{n_4}] = E[x_{n_1}^2x_{n_3}^2] = E[x_{n_1}^2]E[x_{n_3}^2] = \sigma^4.$$

• There are a number of ways for two pairs to be equal in the multiple summation:

a) $n_1 = n_2$ and $n_3 = n_4$. There are $N \times (N - 1)$ ways for this to happen:

and the exp. term in this case becomes $e^{j0} = 1$.

b) $n_1 = n_3$ and $n_2 = n_4$. There are $N \times (N - 1)$ ways for this to happen, and the exponential term in this case becomes $e^{-j(2n_1-2n_2)\omega}$. c) $n_1 = n_4$ and $n_2 = n_3$. There are $N \times (N - 1)$ ways for this to happen, and the exponential term in this case becomes $e^{j0} = 1$.

• Try to verify that for all other cases $E[x_{n_1}x_{n_2}x_{n_3}x_{n_4}] = 0$

• Combining these together we have:

$$\frac{1}{N^2} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} \sum_{n_3=0}^{N-1} \sum_{n_4=0}^{N-1} E[x_{n_1} x_{n_2} x_{n_3} x_{n_4}] e^{-j(n_1+n_3-n_2-n_4)\omega}$$

$$= \frac{1}{N^2} \left(3N\sigma^4 + N \times (N-1) \times \sigma^4 e^{j0} + \sum_{n_1 \neq n_2} \sigma^4 e^{-j(2n_1-2n_2)\omega} + N \times (N-1)\sigma^4 \right)$$

$$= \frac{1}{N^2} \left(3N\sigma^4 + N \times (N-1) \times \sigma^4 e^{j0} \right)$$

$$+ \frac{1}{N^2} \left(\sum_{n_1} \sum_{n_2} \sigma^4 e^{-j(2n_1-2n_2)\omega} \right)$$

$$+ \frac{1}{N^2} \left(-N\sigma^4 + N \times (N-1)\sigma^4 \right)$$

$$= \frac{1}{N^2} \left(2N^2\sigma^4 + \sum_{n_1} \sum_{n_2} \sigma^4 e^{-j(2n_1-2n_2)\omega} \right)$$

For the transition from the second last line to the last line, use $\sum_{n=1}^{N-1} ar^n =$

n=0

$$a\frac{1-r^N}{1-r}.$$

• Finally, looking at the second term in the variance formula: $var(\hat{S}_X(e^{j\omega}))$ $= E[\hat{S}_X(e^{j\omega})^2] - E[\hat{S}_X(e^{j\omega})]^2$

this is simply the squared value of the expected value of the periodogram for white noise which we have calculated

$$E[\hat{S}_X(e^{j\omega})]^2 = (\sigma^2)^2 = \sigma^4$$

so that:

$$\operatorname{var}(\hat{S}_X(e^{j\omega})) = E[\hat{S}_X(e^{j\omega})^2] - E[\hat{S}_X(e^{j\omega})]^2$$
$$= \sigma^4 \left(1 + \left\{\frac{\sin(N\omega)}{N\sin(\omega)}\right\}^2\right)$$
$$\approx \sigma^4 \quad \text{as } N \to \infty$$
$$= S_X(e^{j\omega})^2$$

[See Matlab demo periodogram_white_noise.m]

⁶ Variance of periodogram - general case

- It is much more complex to evaluate the variance of the periodogram for a general random process. However, some approximations can be used to arrive at a similar expression for the Gaussian case.
- We can rewrite a stationary random process as a white noise process $v = \{v_n\}$ with power spectrum equal to σ^2 driving a linear filter $H(e^{j\omega})$:

$$v = \{v_n\} \longrightarrow \boxed{H(e^{j\omega})} \longrightarrow x = \{x_n\}$$

• The power spectrum of such a process is:

$$S_X(e^{j\omega}) = \sigma^2 |H(e^{j\omega})|^2$$

• Now, define as usual windowed versions of $\{v_n\}$ and $\{x_n\}$:

$$v_{w,n} = \begin{cases} v_n, & n = 0, 1, \dots, N-1 \\ 0, & \text{otherwise} \end{cases}$$

$$x_{w,n} = \begin{cases} x_n, & n = 0, 1, \dots, N-1 \\ 0, & \text{otherwise} \end{cases}$$

• The windowed version $x_w = \{x_{w,n}\}$ is not equal to the convolution of $v_w = \{v_{w,n}\}$ with the filter $h = \{h_n\}$. However if the window is long compared to the length of the filter so that the transient effects are small then

 $x_w \approx h * v_w$

and the corresponding approximate result when the DTFT is performed:

 $X_w(e^{j\omega}) \approx V_w(e^{j\omega})H(e^{j\omega})$

• To get the periodogram estimate:

 $1/N|X_w(e^{j\omega})|^2 \approx 1/N|V_w(e^{j\omega})|^2|H(e^{j\omega})|^2$

and hence:

$$\begin{aligned} var(1/N|X_w(e^{j\omega})|^2) \\ \approx var(1/N|V_w(e^{j\omega})|^2)(|H(e^{j\omega})|^2)^2 \\ = \frac{1}{\sigma^4}var(1/N|V_w(e^{j\omega})|^2)(S_X(e^{j\omega}))^2 \end{aligned}$$

• But, $v = \{v_n\}$ is white Gaussian noise, whose periodogram has variance equal to σ^4 when N is large. Hence:

$$\operatorname{var}(\hat{S}_X(e^{j\omega}) = \operatorname{var}(1/N|X_w(e^{j\omega})|^2) \approx S_X(e^{j\omega})^2$$

as required.

7 Example: Sine-wave plus Gaussian noise

Consider a random process of the form:

 $x_n = \sin(\omega nT + \phi) + v_n$

where $\{v_n\}$ is a white Gaussian noise process and ϕ is a random phase distributed uniformly between 0 and 2π .

- Here the spectral estimation task may be to estimate the frequency of the sine-wave from observations of the process
- \bullet For small N the sine-wave component can be hidden in the noise of the periodogram
- \bullet As N increases both the frequency resolution and signal-to-noise ratio improve.
- In the case of the random phase sine wave alone, the variance of the periodogram is very small, and hence the errors for small N are mostly due to the bias, which reduces asymptotically to zero.
- \bullet See figures below periodograms for various values of N

