4F7 Spectrum Estimation
Power Spectrum Estimation
Sumeetpal Singh
Email : sss40Qeng.cam.ac.uk

Modification history:
< 2008: S. Godsill, P. Rayner
Revised by S.S. Singh



1 Discrete Signals

Widowing effects are observed for continuous time
and discrete time signals
Consider the discrete case shown in figure 1.
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Figure 1: Windowed discrete signal

The sampled values of the window signal are
w, = w(pT') and g, = g(pT'), respectively.



The DTFT of the windowed signal w,g, is
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Like the continuous case, the spectrum of the
windowed signal is the convolution of the infinite
duration signal spectrum and the window spec-
trum.

Note that all discrete time spectra are periodic
functions of frequency w.



As for the continuous case we can consider the
use of tapered windows and one class of window
functions is the generalised Hamming window given

by
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a=1 Rectangular window
a = 0.5 Hanning window (Raised Cosine or Cosine Arch)
a = 0.54 Hamming window

We can evaluate the spectrum (DTFEFT) of the
generalised window as follows
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This is shown in figure 2 for the Hanning window
(a = 0.5) and for other values of a.

Many other windows with different side-lobe
and central lobe properties are available, e.g. Black-
man, Bartlett, Chebyshev, Kaiser, ...

These are all available as Matlab functions, so
you can easily display them and their DFT within
Matlab.

Matlab demo: disc wind.m (Type window at
the Matlab command line for an interactive win-
dow display program.) wvtool (Built in Matlab
window visualization tool.)
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Figure 2: Discrete Window spectra for o
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2 Power Spectrum Estima-
tion

e We will consider the problem of estimating
the Power Spectrum (power spectral density)
of a wide-sense stationary random process

e The Fourier transform is an important tool
for analysing deterministic signals and is equally
important for random processes too

e For arandom process (or random signal), it is
meaningless to evaluate the Fourier transform
of a particular waveform since the random
process is an ensemble of discrete time signals

e [t is possible to obtain a frequency domain
representation by “expressing the Fourier trans-
form in terms of an ensemble average”

e The power spectrum is the Fourier transform
of the autocorrelation sequence

e The power spectrum tells us about the ex-
pected or average power of a signal at each
frequency in the spectrum
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o First revise 3F1/3F3 concepts of random pro-
cesses and power spectrum in continuous and
discrete time

Recommended textbooks:

Discrete random signals and statistical signal
processing - Charles W. Therrien. Prentice-Hall.
Chapter 10

Statistical digital signal processing and model-
ing - Monson H. Hayes (1996), Wiley: New York,
Chapters 3, 8



3 Discrete time random processes
revision

A discrete-time random process (or time series)

{X,} can be thought of as a continuous-time ran-

dom process {X(t)} evaluated at times t = nT.

Four important statistics are the mean, variance,
autocovariance and autocorrelation

e The mean of a random process { X, } is | X,,]
and the variance is

E[X% — E[X,)°

e The autocovariance is

I {(an o E[an]) (Xn E[Xm])}

5y —

e The autocorrelation is

Rxx[ni,ne) = E|X,,, X,

e A process { X} is wide-sense stationary (WSS)
process if i) its mean is a constant, K| X,,] = ¢
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for all n, ii) Ry x(n1, ns) depends only on the
difference k£ = ny — nq, i.e.

Raxl = B X, (1)

and, iii) the variance is E[X?] — E[X,,]? finite

The Power Spectrum or Spectral Density of a
WSS random process {X,,} is defined as the

Discrete time Fourier Transform (DTFEFT) of
RXX [k]7

Sx(e’) = Y Rxx[kle ™ (2

where 7' is the sampling period.

Rx x|k] can be recovered from the power spec-
trum

1 2T ‘ '
Ryxlk] = / Sx(e’?)e’*dp
0

o

The power spectrum is real, non-negative, even
and periodic (as a function of w)
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e For an ergodicrandom process we can esti-
mate expectations by performing time-averaging
on a single sample function (or realisation of
the porcess), e.g.

| N
p=FElX,] = ]\}i—EHOOQN 3 ZN z, (Mean ergodic)
Rx x K]
| N
= ]\}EIlooQ N1 ; r,Tnr (Correlation ergodic)

(3)

e Unless otherwise stated, assume that the sig-
nals we encounter are both wide-sense sta-
tionary and ergodic

e The total power of the signal is

1 2T _
RX)([O] — / SX(e‘ye)dQ
0

T or

Since integrating gives the total power, Sy (e/?),
as a function of 6, is a (power spectrum) den-
sity
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e You can prove the following result (Hayes, pg
99)

—Jjnw

Sx(e) = lim 2N 1

(4)
Interpretation: truncate the sequence, com-
pute the Fourier transform, square the abso-

lute value and then compute the expectation.

e Another physical interpretation (Haykin, pg
120): if you filter the random process through
an ideal bandpass filter with upper and lower
cut off frequencies w,, and w; respectively,

H(e)=1onlyif 0 < w < |w|] <w, <)

the power of the output is

1 [@u | 1 |
—/ SX(eje)dH ~ —(wy, — wy)Sx ()

T Jo, T
where w, = (wy, + wy)/2. Recall the result
Sy (e) = |H(e!) ’ Sx(e?*).
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Question: Why is it usetul to evalu-
ate power spectrum rather than just take
Fourier transforms of single sample func-
tions?

Example: white noise

e Figure 3 shows 3 random realizations from a
white noise process and corresponding spec-
tra

e Note that the individual spectra tell us noth-
ing particularly useful because of the random-
ness between realizations

e Figure 4 shows the mean of 500 random spec-
tra of white noise, i.e. approximating equa-
tion 4

We see that the expected flat power spectrum
is now well estimated.

e Similar considerations apply to spectrum es-
timation for non-white random processes

e In practice we only have access to one or a
few random realizations from the process. We
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will thus use the results for ergodic signals to
estimate the required ensemble expectation

White noise Fourier Transform
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Figure 3: White noise sequences and their Fourier
Transforms
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Spectrum averaged over 500 sample functions
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Figure 4: Average of 500 realizations of white noise
Fourier Transforms
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4 Practical Power Spectrum
Estimation

e For an autocorellation ergodic process

Rocxlk] = NIEHOOQN +1 Z otk

e Given an infinitely long realisation, estimat-
ing the power spectrum is straightforward

e In practise we only have a limited dataset,
e.g. N data points, {z,} "}

e The second difficulty is that the data may be
corrupted by noise or an intefering signal

e Power spectrum estimation techniques must
cope with these constraints

e The basic principle is, generally, to estimate
the autocorrelation function Ry x and then
compute the Fourier transform. This gives
rise to the Correlogram and Periodogram es-
timates
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e Further improvements can be made if we per-
form various types of smoothing or averaging
- Bartlett, Blackman-Tukey, Welch methods
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5 Correlogram and Periodogram
Estimates

e These classical techniques are based on the
principle of obtaining estimates of the auto-
correlation function Ry x of the random pro-
cess and then taking the Fourier transform as
In equation 2:

Sx(e’) = Y Rxx[k]e ™

e [f the process is WSS and ergodic, we can es-
timate Rxx based upon equation 3 assuming
a correlation ergodic signal:

AN
Rxx|k] = SN 1 Z LTk
N

e There are several ways to proceed when the
number of data points is finite; we consider
the consequences of two of these.
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Assume that N data points are available, {z, }.'
Two possible estimates of the autocorrelation func-
tion are:

1. Sample autocorrelation function (biased esti-
mate):

1N 1—k
Rxxlk _N Ty Tpsr O0< k<N

5)

2. Sample autocorrelation function (unbiased es-
timate):

Ry x[k] Z Ty Tptr O0< k<N

e Limits of the sum ensure only available sam-
ples are used in the estimators

e (5) is biased since we divide the summation
by N rather than N — k., the number of terms
in the summation.
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e Note that the autocorrelation is an even func-
tion so that estimates for negative k are given
by: A A

Rxx|—k] = Rxx|K]|
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e Assume Rxx|k| =0 for |k| > L, where L is
some chosen constant, typically with L <<
N

e The Correlogram estimate for the power spec-
trum is obtained by taking the DTFT of the
sample autocorrelation function, Ry x|k]:

63“’ Z RXX _]kw, L <N
k=—L

e [f the maximum correlation lag is taken to be:
L=N-1

then the resulting estimate is:
6‘7w = Z RXX _ka (7)

e When the biased estimator (5) is used for
Rx x, this can be rewritten in terms of the
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DTFT of {xg, x1, ..., tN_1}:
N » 1 N (2
Sx (e’ )I—\X Gl
e]” ane Jnw

which is known as the Periodogram.
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e To prove (8), rewrite the biased estimate as:

No1—k
RXX E T Ttk

:N E Up Un+k

n=——oo

where v,, = w,,x,, 1s a version of x,, truncated
by multiplication with a rectangular window:

I, n=0,1,....,.N —1
Wy = .
0, otherwise

Let n' = —n and define the sequence u,, =
Vop, n=0,x1,£2,...

. [—
RXX[/C] = N Z V_p/ U(—n’+k)

n’— 00

L Z wv :%{u*v}(k)

1.e. a standard discrete time convolution of
{u, }n with {v, }.
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o Taking the DTFT of both sides we get (by

the discrete time convolution theorem):

Sx(e?) = —U(e/) V(™)

N
where:
+00 (N—-1)
V(e!”) = g vpe M = g rpe "
n=—o00 n=0
)W
= X, (e!*)
e and
+00 +00
U(e!) = E upe " = g v_pe "
n=—00 n=—00
0 N-1
_ E : x_ne—jnw _ E :l,nejnw
n=—N+1 n=0
o * ( _Jw
o Xw<€ )

where X, is the DTF'T of the windowed sig-
nal x, w,.
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e Hence

Sy(e?) = %U(eﬂ“) V(e

1 : . 1 ,
= FXLE)Xu) = F Xl
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