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1 Discrete Signals

Widowing effects are observed for continuous time
and discrete time signals

Consider the discrete case shown in figure 1.

g(pT)

g(pT) . w(pT)

N=16

Figure 1: Windowed discrete signal

The sampled values of the window signal are
wp = w(pT ) and gp = g(pT ), respectively.
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The DTFT of the windowed signal wpgp is

G(ejω) =

∞∑
p=−∞

gp e
−jpω

Gw(ejω) =

∞∑
p=−∞

gpwpe
−jpω

=

∞∑
p=−∞

gp

{
1

2π

∫ 2π

0

W (ejθ)ejpθdθ

}
e−jpω

=
1

2π

∫ 2π

0

W (ejθ)

∞∑
p=−∞

gp e
−jp(ω−θ) dθ

Gw(ejω) =
1

2π

∫ 2π

0

W (ejθ)G(ej(ω−θ)) dθ

Like the continuous case, the spectrum of the
windowed signal is the convolution of the infinite
duration signal spectrum and the window spec-
trum.

Note that all discrete time spectra are periodic
functions of frequency ω.
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As for the continuous case we can consider the
use of tapered windows and one class of window
functions is the generalised Hamming window given
by

wn = α− (1− α) cos

(
2π

N
n

)
for n = 0 to N − 1

α = 1 Rectangular window
α = 0.5 Hanning window (Raised Cosine or Cosine Arch)
α = 0.54 Hamming window

We can evaluate the spectrum (DTFT) of the
generalised window as follows

W (ejω) =

N−1∑
p=0

{
α− (1− α)

2

[
ej

2π
N p + e−j

2π
N p
]}

e−jpω

which gives

W (ejω) = e−j(N−1)
ω
2

{
α

sin(N ω
2 )

sin(ω2 )

+
1− α

2

[
e−j

π
N

sin
[
N
2 (ω − 2π

N )
]

sin
[
1
2(ω −

2π
N )
] + ej

π
N

sin
[
N
2 (ω + 2π

N )
]

sin
[
1
2(ω + 2π

N )
] }
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This is shown in figure 2 for the Hanning window
(α = 0.5) and for other values of α.

Many other windows with different side-lobe
and central lobe properties are available, e.g. Black-
man, Bartlett, Chebyshev, Kaiser, ...

These are all available as Matlab functions, so
you can easily display them and their DFT within
Matlab.

Matlab demo: disc wind.m (Type window at
the Matlab command line for an interactive win-
dow display program.) wvtool (Built in Matlab
window visualization tool.)
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Figure 2: Discrete Window spectra for α =
1.0 (−−−), α = 0.5 (· · · ), α = 0.54 (–).
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2 Power Spectrum Estima-
tion

• We will consider the problem of estimating
the Power Spectrum (power spectral density)
of a wide-sense stationary random process

• The Fourier transform is an important tool
for analysing deterministic signals and is equally
important for random processes too

• For a random process (or random signal), it is
meaningless to evaluate the Fourier transform
of a particular waveform since the random
process is an ensemble of discrete time signals

• It is possible to obtain a frequency domain
representation by “expressing the Fourier trans-
form in terms of an ensemble average”

• The power spectrum is the Fourier transform
of the autocorrelation sequence

• The power spectrum tells us about the ex-
pected or average power of a signal at each
frequency in the spectrum
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• First revise 3F1/3F3 concepts of random pro-
cesses and power spectrum in continuous and
discrete time

Recommended textbooks:
Discrete random signals and statistical signal

processing - Charles W. Therrien. Prentice-Hall.
Chapter 10

Statistical digital signal processing and model-
ing - Monson H. Hayes (1996), Wiley: New York,
Chapters 3, 8
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3 Discrete time random processes-
revision

A discrete-time random process (or time series)
{Xn} can be thought of as a continuous-time ran-
dom process {X(t)} evaluated at times t = nT .
Four important statistics are the mean, variance,
autocovariance and autocorrelation

• The mean of a random process {Xn} isE[Xn]
and the variance is

E[X2
n]− E[Xn]2

• The autocovariance is

E {(Xn1 − E[Xn1]) (Xn2 − E[Xn2])}

• The autocorrelation is

RXX [n1, n2] = E[Xn1Xn2]

• A process {Xn} is wide-sense stationary (WSS)
process if i) its mean is a constant, E[Xn] = c
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for all n, ii) RXX(n1, n2) depends only on the
difference k = n2 − n1, i.e.

RXX [k] = E[XnXn+k] , (1)

and, iii) the variance is E[X2
n]−E[Xn]2 finite

• The Power Spectrum or Spectral Density of a
WSS random process {Xn} is defined as the
Discrete time Fourier Transform (DTFT) of
RXX [k],

SX(ejω) =

∞∑
k=−∞

RXX [k] e−jkω (2)

where T is the sampling period.

• RXX [k] can be recovered from the power spec-
trum

RXX [k] =
1

2π

∫ 2π

0

SX(ejθ)ejkθdθ

• The power spectrum is real, non-negative, even
and periodic (as a function of ω)
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• For an ergodicrandom process we can esti-
mate expectations by performing time-averaging
on a single sample function (or realisation of
the porcess), e.g.

µ = E[Xn] = lim
N→∞

1

2N + 1

+N∑
−N

xn (Mean ergodic)

RXX [k]

= lim
N→∞

1

2N + 1

+N∑
−N

xnxn+k (Correlation ergodic)

(3)

• Unless otherwise stated, assume that the sig-
nals we encounter are both wide-sense sta-
tionary and ergodic

• The total power of the signal is

RXX [0] =
1

2π

∫ 2π

0

SX(ejθ)dθ

Since integrating gives the total power, SX(ejθ),
as a function of θ, is a (power spectrum) den-
sity
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• You can prove the following result (Hayes, pg
99)

SX(ejω) = lim
N→∞

1

2N + 1
E


∣∣∣∣∣

N∑
n=−N

xne
−jnω

∣∣∣∣∣
2
 .

(4)
Interpretation: truncate the sequence, com-
pute the Fourier transform, square the abso-
lute value and then compute the expectation.

• Another physical interpretation (Haykin, pg
120): if you filter the random process through
an ideal bandpass filter with upper and lower
cut off frequencies ωu and ωl respectively,

H(ejω) = 1 only if 0 < ωl ≤ |ω| ≤ ωu < π)

the power of the output is

1

π

∫ ωu

ωl

SX(ejθ)dθ ≈ 1

π
(ωu − ωl)SX(ejωc)

where ωc = (ωu + ωl)/2. Recall the result

SY (ejω) =
∣∣H(ejω)

∣∣2 SX(ejω).
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Question: Why is it useful to evalu-
ate power spectrum rather than just take
Fourier transforms of single sample func-
tions?

Example: white noise

• Figure 3 shows 3 random realizations from a
white noise process and corresponding spec-
tra

• Note that the individual spectra tell us noth-
ing particularly useful because of the random-
ness between realizations

• Figure 4 shows the mean of 500 random spec-
tra of white noise, i.e. approximating equa-
tion 4

We see that the expected flat power spectrum
is now well estimated.

• Similar considerations apply to spectrum es-
timation for non-white random processes

• In practice we only have access to one or a
few random realizations from the process. We
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will thus use the results for ergodic signals to
estimate the required ensemble expectation
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Figure 3: White noise sequences and their Fourier
Transforms
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Figure 4: Average of 500 realizations of white noise
Fourier Transforms
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4 Practical Power Spectrum
Estimation

• For an autocorellation ergodic process

RXX [k] = lim
N→∞

1

2N + 1

N∑
n=−N

xnxn+k

• Given an infinitely long realisation, estimat-
ing the power spectrum is straightforward

• In practise we only have a limited dataset,
e.g. N data points, {xn}N−1n=0

• The second difficulty is that the data may be
corrupted by noise or an intefering signal

• Power spectrum estimation techniques must
cope with these constraints

• The basic principle is, generally, to estimate
the autocorrelation function RXX and then
compute the Fourier transform. This gives
rise to the Correlogram and Periodogram es-
timates
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• Further improvements can be made if we per-
form various types of smoothing or averaging
- Bartlett, Blackman-Tukey, Welch methods
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5 Correlogram and Periodogram
Estimates

• These classical techniques are based on the
principle of obtaining estimates of the auto-
correlation function RXX of the random pro-
cess and then taking the Fourier transform as
in equation 2:

SX(ejω) =

∞∑
k=−∞

RXX [k] e−jkω

• If the process is WSS and ergodic, we can es-
timate RXX based upon equation 3 assuming
a correlation ergodic signal:

RXX [k] ≈ 1

2N + 1

+N∑
−N

xnxn+k

• There are several ways to proceed when the
number of data points is finite; we consider
the consequences of two of these.
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Assume thatN data points are available, {xn}N−1n=0 .
Two possible estimates of the autocorrelation func-
tion are:

1. Sample autocorrelation function (biased esti-
mate):

R̂XX [k] =
1

N

N−1−k∑
n=0

xn xn+k 0 ≤ k < N

(5)

2. Sample autocorrelation function (unbiased es-
timate):

R̂XX [k] =
1

N − k

N−1−k∑
n=0

xn xn+k 0 ≤ k < N

(6)

• Limits of the sum ensure only available sam-
ples are used in the estimators

• (5) is biased since we divide the summation
by N rather than N−k, the number of terms
in the summation.
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• Note that the autocorrelation is an even func-
tion so that estimates for negative k are given
by:

R̂XX [−k] = R̂XX [k]
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• Assume RXX [k] = 0 for |k| > L, where L is
some chosen constant, typically with L <<
N

• The Correlogram estimate for the power spec-
trum is obtained by taking the DTFT of the
sample autocorrelation function, R̂XX [k]:

ŜX(ejω) =

L∑
k=−L

R̂XX [k] e−jkω, L < N

• If the maximum correlation lag is taken to be:

L = N − 1

then the resulting estimate is:

ŜX(ejω) =

N−1∑
k=−(N−1)

R̂XX [k] e−jkω (7)

• When the biased estimator (5) is used for
R̂XX , this can be rewritten in terms of the
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DTFT of {x0, x1, ..., xN−1}:

ŜX(ejω) =
1

N
|Xw(ejω)|2

Xw(ejω) =

N−1∑
n=0

xn e
−jnω

(8)

which is known as the Periodogram.

22



• To prove (8), rewrite the biased estimate as:

R̂XX [k] =
1

N

N−1−k∑
n=0

xn xn+k

=
1

N

∞∑
n=−∞

vn vn+k

where vn = wnxn is a version of xn truncated
by multiplication with a rectangular window:

wn =

{
1, n = 0, 1, ..., N − 1

0, otherwise

Let n′ = −n and define the sequence un =
v−n, n = 0,±1,±2, . . .

R̂XX [k] =
1

N

∞∑
n′=−∞

v−n′ v(−n′+k)

=
1

N

∞∑
n′=−∞

un′ vk−n′ =
1

N
{u ∗ v}(k)

i.e. a standard discrete time convolution of
{un}n with {vn}n.
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• Taking the DTFT of both sides we get (by
the discrete time convolution theorem):

ŜX(ejω) =
1

N
U(ejω)V (ejω)

where:

V (ejω) =

+∞∑
n=−∞

vne
−jnω =

(N−1)∑
n=0

xne
−jnω

= Xw(ejω)

• and

U(ejω) =

+∞∑
n=−∞

une
−jnω =

+∞∑
n=−∞

v−ne
−jnω

=

0∑
n=−N+1

x−ne
−jnω =

N−1∑
n=0

xne
jnω

= X∗w(ejω)

where Xw is the DTFT of the windowed sig-
nal xnwn.
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• Hence

ŜX(ejω) =
1

N
U(ejω)V (ejω)

=
1

N
X∗w(ejω)Xw(ejω) =

1

N
|Xw(ejω)|2
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