
4F7 Adaptive Filters (and Spectrum Estimation)

Recursive Least Squares (RLS) Algorithm
Sumeetpal Singh

Engineering Department
Email : sss40@eng.cam.ac.uk

1



1 Aim

• The Wiener filter solved min J (h) where J (h) = E
{
e2 (n)

}
and

e (n) = d (n)− hTu (n)

• Then we derived the SD, LMS and NLMS to solve this same problem

• Today we will derive the Recursive Least Squares (RLS) to minimise
the following cost function at time n,

J (h,n) =

n∑
k=0

λn−ke2 (k)

• The minimiser hopt(n) will be our filter

•We will then derive a recursion for hopt(n), i.e., relating hopt(n + 1)
to hopt(n)

• The main point here is that the cost function is time varying and there
is no expectation in the cost function. A random cost function and
hopt(n) is as well random

2



2 Outline

•Derive RLS

• Initialising the RLS

• Simulation examples

3 The RLS algorithm

•Want to minimise the cost function

J (h,n) =

n∑
k=0

λn−ke2 (k)

where e (k) = d (k) − hTu (k) and, 0 < λ ≤ 1. λ is a called the
forgetting factor

• If λ = 1, one notices that

1

n + 1
J (h,n)|λ=1 =

1

n + 1

n∑
k=0

e2 (k)

3



• This is a sample average and should converge to E
{
e2 (k)

}
or J(h) in

the SD and LMS lectures.

• So, we can now argue that the RLS solution and the Wiener filter
coincide when λ = 1. Note that the RLS is solving for the minimiser
of J (h,n) at time n. Dividing this quantity by n+ 1 does not change
the minimizer. Since (n + 1)−1J (h,n) tends to the Wiener filter cost
function in the limit, the RLS solution should agree with the Wiener
filter in the limit

• For λ < 1, J (h,n) regards the past errors as less important since they
are weighted by λn−k

– the smaller λ is, the quicker the RLS will respond if the Wiener filter
is time varying (see simulations)

4



• Solve for the RLS solution by setting the derivative to zero:

J (h,n) =

n∑
k=0

λn−k
(
d(k)− hTu(k)

)2

∇J (h,n) = −2

n∑
k=0

λn−k
(
d(k)− hTu(k)

)
u(k)

Thus

hopt(n) =

 n∑
k=0

λn−ku (k) uT (k)

−1

×
n∑
k=0

λn−ku (k) d (k)

•Note that the RLS agrees with Wiener when λ = 1 since

hopt(n) =

 1

n + 1

n∑
k=0

u (k) uT (k)

−1

× 1

n + 1

n∑
k=0

u (k) d (k)

5



and under stationarity assumptions, 1

n + 1

n∑
k=0

u (k) uT (k)

−1

→ R−1,

1

n + 1

n∑
k=0

u (k) d (k)→ p,

and so lim
n→∞

hopt (n) is the Wiener filter

6



4 RLS update rule

• Firstly note that if

R(n) =

n∑
k=0

λn−ku (k) uT (k)

p (n) =

n∑
k=0

λn−ku (k) d (k)

then

R (n) = λR (n− 1) + u (n) uT (n) ,

p (n) = λp (n− 1) + u (n) d (n)

•At time n we are seeking the solution to R (n) h (n) = p (n), which has
a computational complexity of O

(
M3
)

because of the matrix inversion

•Applying a well known result in matrix algebra, called the matrix

7



inversion lemma yields

R−1 (n) = λ−1R−1 (n− 1)

− λ−2R−1 (n− 1) u (n) uT (n) R−1 (n− 1)

1 + λ−1uT (n) R−1 (n− 1) u (n)

• Let A and B be two symmetric positive definite matrices of dimension
M ×M and such that

A = B−1+CD−1CT

where D is a symmetric positive definite matrix of dimension L × L
and C is a matrix of dimension M × L. The inverse matrix is given
by (check it)

A−1= B−BC
(
D + CTBC

)−1
CTB.

For our problem, one sets

A = R (n) , B−1=λR (n− 1) , C = u (n) , D =1

• This helps because since there are only matrix multiplications involved,
the computational complexity is O

(
M2
)

8



• To get the RLS recursion, let S (n) = R−1 (n). We obtain,

α (n) = d (n)− uT (n) h (n− 1) (predicted error)

g (n) =
(
λ + uT (n) S (n− 1) u (n)

)−1
S (n− 1) u (n)

(the gain)

S (n) = λ−1
(
I− g (n) uT (n)

)
S (n− 1)

(inverse covariance)

h (n) = h (n− 1) + g (n)α (n)

= h (n− 1) + S (n) u (n)α (n) (update)

• Last line using g (n) = S (n) u(n). Computational complexity is
O
(
M2
)

while LMS was O (M)

• In the LMS, we had µ instead of S (n)

9



5 Initializing the RLS

• To initialize the RLS algorithm at time n = 0, we need h (−1) and
S (−1) = R−1 (−1)

•We could of course wait long enough until R (n) is invertible and then

initialize the algorithm with S (−1) = R (n)−1

and h (−1) = R (n)−1 p (n)

• This is called exact initialization

•Another way that doesn’t have to wait for samples is as follows. Choose
a small positive constant δ and set S (−1) = δ−1I, h (−1) = 0

• For large n, λnδ is small and

R (n) = λn+1δI+

n∑
k=0

λn−ku (k) uT (k)

≈
n∑
k=0

λn−ku (k) uT (k)

• h(n) 6= hopt(n) but is equal asymptotically

10



• Compare performance of RLS and LMS by running code on webpage.
Using λ < 1 has better tracking performance in a non-stationary envi-
ronment

LMS RLS
Free parameters M,µ M, λ, δ

Comp. complexity O (M) O
(
M2
)

Stationary environment h (n) 9 htrue h (n)→ htrue for λ = 1

E
{
u (k) uT (k)

}
sensitivity High Low

(where htrue is Wiener filter)

11


