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1 Alm

e The Wiener filter solved min J (h) where J (h) = E {62 (n)} and
e(n) =d(n) —hlu(n)
e Then we derived the SD, LMS and NLMS to solve this same problem

e Today we will derive the Recursive Least Squares (RLS) to minimise

the following cost function at time n,
n

J(hn) = A" (k)

k=0
e The minimiser hept(n) will be our filter

e We will then derive a recursion for hgpi(n), i.e., relating hopi(n + 1)

e The main point here is that the cost function is time varying and there
is no expectation in the cost function. A random cost function and
hpt(n) is as well random



2 Outline

e Derive RLS
e [nitialising the RLS

e Simulation examples

s The RLS algorithm

e Want to minimise the cost function
n

J(hn) = A" e (k)
k=0
where e (k) = d(k) —h'u(k) and, 0 < A < 1. X is a called the
forgetting factor

e [f A =1, one notices that

1 1 )
J (h = k
1 e n+1];)6 (k)
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e This is a sample average and should converge to E {62 (k)} or J(h) in
the SD and LMS lectures.

e S50, we can now argue that the RLS solution and the Wiener filter
coincide when A = 1. Note that the RLS is solving for the minimiser
of J (h,n) at time n. Dividing this quantity by n 4+ 1 does not change
the minimizer. Since (n + 1)71J (h,n) tends to the Wiener filter cost
function in the limit, the RLS solution should agree with the Wiener
filter in the limit

o For A < 1, J (h,n) regards the past errors as less important since they
are weighted by \?—F

— the smaller A is, the quicker the RLS will respond if the Wiener filter
is time varying (see simulations)



e Solve for the RLS solution by setting the derivative to zero:

n

J(hn) =Y Nvh (d(k) _ hTu(k))Q

k=0

VJ (hn) = —2 Zn: Ak (d(k) _ hTu(k)) u(k)
k=0

Thus

hopt(n) —

f: A" Fu (k) ul (k)
| k=0

—1
x > NMa (k) d (k)
k=0

e Note that the RLS agrees with Wiener when A = 1 since

hopt(n) —

1
n+ 1

> u(k)u' (k)

k=0




and under stationarity assumptions,

- 1 —1
1 < _
n+1Zu(k)uT(k) — R
k=0
i b l
—— > _u(k)d(k) - p,
k=0

and so lim hgpt (n) is the Wiener filter
n—aoo



1 RLS update rule

e FFirstly note that if

R(n)=> N u(k)u’ (k)
k=0

p(n) =) A"""u(k)d(k)
k=0

then

R(n)=AR(n—1)+u(n)u’ (n),
p(n)=Ap(n—1)+u(n)d(n)
e At time n we are seeking the solution to R (n) h (n) = p (n), which has

a computational complexity of O (M 3) because of the matrix inversion

e Applying a well known result in matrix algebra, called the matrix



inversion lemma yields
R '(n)=X""TR 1 n-1)
AR (n—Dum)u! ()R~ (n—1)
1+ X lul ()R-t (n—1)un)

e Let A and B be two symmetric positive definite matrices of dimension
M x M and such that

A=B"'+cD"'C!

where D is a symmetric positive definite matrix of dimension L X L
and C is a matrix of dimension M X L. The inverse matrix is given

by (check it)

—1
A"l=B - BC (D 4 CTBC) cTB.
For our problem, one sets
A=R(n), B'=AR(n—1), C=u(n), D=1

e This helps because since there are only matrix multiplications involved,
the computational complexity is O (M 2)
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e To get the RLS recursion, let S (n) = R~ (n). We obtain,
a(n)=dmn)—u' (n)h(n—1) (predicted error)

& (n) = ()\+uT(n)S(n— 1)u(n)) S(n—1)u(n)
(the gain)
S (n) = A~ (1 —g(n)ul (n>) S(n—1)
(inverse covariance)
h(n)=h(n—-1)+g(n)a(n)
=h(n—1)+S(n)u(n)a(n) (update)
e Last line using g(n) = S(n)u(n). Computational complexity is
O (MQ) while LMS was O (M)
e [n the LMS, we had p instead of S (n)



5 Initializing the RLS

e To initialize the RLS algorithm at time n = 0, we need h(—1) and
S(-1) =R (-1)

e We could of course wait long enough until R (n) is invertible and then
initialize the algorithm with S (—1) = R (n)~
and h(—1) =R (n)" ' p(n)

e This is called exact initialization

e Another way that doesn’t have to wait for samples is as follows. Choose
a small positive constant 6 and set S (—=1) =6, h(—1) = 0

e For large n, A" is small and

R (n) = AT+ zn: AR (k) a (k)
k=0

~ f: AR (k) ul (k)
k=0

o h(n) # hypt(n) but is equal asymptotically
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e Compare performance of RLS and LMS by running code on webpage.
Using A < 1 has better tracking performance in a non-stationary envi-
ronment

LMS RLS
Free parameters M, 1 M, X, o
Comp. complexity O (M) O (M 2)
Stationary environment h (n) =+ hijge | h (n) — hige for A =1
E {u (k)u’ (k)} sensitivity | High Low

(where hype is Wiener filter)
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