Axel Finke

On Extended State-Space Constructions for Monte Carlo Methods

Thesis submitted for the degree of Doctor of Philosophy

Department of Statistics
University of Warwick
July 2015
to my family
Summary

This thesis develops computationally efficient methodology in two areas. Firstly, we consider a particularly challenging class of discretely observed continuous-time point-process models. For these, we analyse and improve an existing filtering algorithm based on sequential Monte Carlo (SMC) methods. To estimate the static parameters in such models, we devise novel particle Gibbs samplers. One of these exploits a sophisticated non-centred parametrisation whose benefits in a Markov chain Monte Carlo (MCMC) context have previously been limited by the lack of block-wise updates for the latent point process. We apply this algorithm to a Lévy-driven stochastic volatility model. Secondly, we devise novel Monte Carlo methods – based around pseudo-marginal and conditional SMC approaches – for performing optimisation in latent-variable models and more generally. To ease the explanation of the wide range of techniques employed in this work, we describe a generic importance-sampling framework which admits virtually all Monte Carlo methods, including SMC and MCMC methods, as special cases. Indeed, hierarchical combinations of different Monte Carlo schemes such as SMC within MCMC or SMC within SMC can be justified as repeated applications of this framework.
Declaration

This thesis is the result of my own work and research, except where otherwise indicated. Chapter 4 is a condensed version of the published journal article

This thesis has not been submitted for examination to any other institution than the University of Warwick.

Axel Finke
Acknowledgements

There are many people without whom I could not have written this thesis or undertaken the research on which it is based.

First, I would like to thank my supervisors, Adam M. Johansen and Dario Spanò, for their patience, guidance, refreshing sarcasm, and constant support throughout the past three-and-a-half years. I consider myself extremely fortunate for the substantial amount of enthusiasm and intuition for Monte Carlo methods they have bestowed upon me.

For significantly improving the presentation of this thesis, in particular of Chapters 1, 3 and 6, I am indebted to my other proofreaders: Cyril Chimisov, Andreas L. Hetland, and Felipe Medina-Aguayo.

I have benefited immensely from stimulating discussions with my colleagues (in no particular order): Murray Pollock, Giacomo Zanella, and Kirsty Hey, for which I am deeply grateful. I would also like acknowledge all the other participants of the Feynman–Kac and Markov chain Monte Carlo reading groups, and the various other seminars on computational statistics at Warwick. By furthering my understanding of the topic, they have all, in some way, contributed to this thesis.

I would also like to thank Gareth O. Roberts and Nick Whiteley for taking the time to read and examine my thesis and for taking an interest in my research.

Furthermore, I wish to express my thanks to Professor Mark Trede for introducing me to computational statistics and for encouraging me to study in the UK.

This work was also generously supported by Engineering and Physical Sciences Research Council Doctoral Training Grant EP/J500586/1.

Finally, I would like to thank my family for encouragement and support, and in particular my brother Till, for invaluable typographical advice.
Contents

Introduction xix
 Context ... xix
Outline ... xx
Notation ... xxi

I Generic Monte Carlo Framework

1 Elementary Monte Carlo Tools 1
 1.1 Importance Sampling ... 1
 1.1.1 Motivation ... 1
 1.1.2 Change of Measure 2
 1.1.3 Sampling-Based Approximation 2
 1.1.4 Theoretical Properties 3
 1.2 Self-Normalised Importance Sampling 4
 1.2.1 Motivation ... 4
 1.2.2 Sampling-Based Approximation 5
 1.2.3 Theoretical Properties 5
 1.2.4 Effective Sample Size 6
 1.3 State-Space Extension and Reduction 7
 1.3.1 Enlarging the Space 7
 1.3.2 Importance Sampling on the Joint Space 8
 1.3.3 Rao–Blackwellisation 9
 1.3.4 Examples .. 10
 1.4 Marginalised One-Sample Importance Sampling 13
 1.4.1 Extended Target Measure 13
 1.4.2 Generic Estimator .. 15
 1.4.3 Pseudo-Marginal Interpretation 17
 1.4.4 Application to Standard Importance Sampling 19
 1.5 Summary .. 20

xi
2 Sequential Monte Carlo Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Motivation</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Particles and Parent Indices</td>
<td>25</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Resampling</td>
<td>26</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Generic Algorithm</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Interpretation as Importance Sampling</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Extended Proposal Distribution</td>
<td>29</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Extended Target Measure</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Importance Weights</td>
<td>33</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Rao–Blackwellisation</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Theoretical Results</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>Some Important SMC Algorithms</td>
<td>38</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Simple SIR Algorithm</td>
<td>38</td>
</tr>
<tr>
<td>2.3.2</td>
<td>SMC Samplers</td>
<td>41</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Re-Using All Particles</td>
<td>44</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Discrete Particle Filter</td>
<td>49</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Other SMC Algorithms</td>
<td>51</td>
</tr>
<tr>
<td>2.4</td>
<td>Sample Impoverishment and Remedies</td>
<td>52</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Particle-Path Coalescence</td>
<td>52</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Backward Smoothing</td>
<td>53</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Backward Sampling</td>
<td>57</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>57</td>
</tr>
</tbody>
</table>

3 Markov Chain Monte Carlo Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Motivation</td>
<td>59</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Note on Ergodicity</td>
<td>60</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Generic Algorithm</td>
<td>61</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Interpretation as Importance Sampling</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Generic MCMC Kernel</td>
<td>64</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Elementary Kernels</td>
<td>64</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Combinations of Kernels</td>
<td>65</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Generic MCMC Kernel</td>
<td>66</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Finite State-Space Kernels</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>General State-Space Kernels</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Barker, Forced-Move, Metropolis–Hastings</td>
<td>71</td>
</tr>
</tbody>
</table>
3.3.2 Reversible-Jump MCMC 75
3.3.3 Randomised MCMC 76
3.3.4 Pseudo-Marginal MCMC 79
3.3.5 Ensemble MCMC 82
3-4 Conditional SMC Kernels 87
 3.4.1 Iterated CSMC Kernel 87
 3.4.2 Variance-Reduction Techniques 89
 3.4.3 Duality of Backward and Ancestor Sampling ... 92
 3.4.4 Application to Particle Gibbs Samplers 95
3.5 Summary ... 98

II Some Novel Monte Carlo Schemes

4 Inference in Piecewise Deterministic Processes 103
 4.1 Introduction 103
 4.1.1 Motivation 103
 4.1.2 Contribution 104
 4.2 Piecewise Deterministic Processes 105
 4.2.1 Definition 105
 4.2.2 Elementary Change-Point Example 107
 4.2.3 Shot-Noise Cox-Process Example 108
 4.2.4 Object-Tracking Example 110
 4.3 Existing SMC Algorithms 111
 4.3.1 Variable-Rate Particle Filter 111
 4.3.2 SMC Filter for PDPs 114
 4.3.3 Theoretical Analysis 116
 4.4 Reformulation of the SMC Filter 121
 4.4.1 General Idea 121
 4.4.2 Extended Target Distribution 121
 4.4.3 Extended Proposal Distribution 124
 4.4.4 Distribution Over Birth-Move Locations ... 125
 4.4.5 Incremental and Backward-Sampling Weights 126
 4.4.6 The Algorithm 128
 4.5 Simulation study 130
 4.5.1 General Setup 130
 4.5.2 Elementary Change-Point Model 132

xiii
List of Figures

1.1 Relationship between various Monte Carlo schemes .. 23
1.2 Relationship between various SMC algorithms ... 58
3.1 Relationship between various MCMC kernels .. 99
4.1 Data simulated from the change-point model ... 108
4.2 Data simulated from the Cox-process model .. 110
4.3 Jump-size proposal distributions for PDPS ... 118
4.4 Static-parameter estimates for the change-point model 134
4.5 Traces for the simple change-point model .. 135
4.6 Static-parameter estimates for the Cox-process model 136
5.1 Parameter estimates in one-component Lévy-driven stochastic volatility models .. 156
5.2 Autocorrelation of the parameter estimates in one-component Lévy-driven stochastic volatility models .. 157
5.3 Parameter estimates in two-component Lévy-driven stochastic volatility models .. 159
5.4 Autocorrelation of the parameter estimates in two-component Lévy-driven stochastic volatility models .. 160
6.1 Loglikelihood in the Student-t toy model ... 176
6.2 Traces in the Student-t toy model ... 179
6.3 ML estimates for the Student-t toy model .. 180
6.4 Traces for the linear Gaussian HMM ... 183
6.5 ML estimates for the linear Gaussian HMM .. 184
6.6 Traces for the stochastic volatility model .. 185
Introduction

Context

Since its invention in the 1940s, the idea of approximating integrals by random samples, known as the Monte Carlo method, has served as a vital tool for scientific discovery in a wide range of disciplines such as biology (Wilkinson, 2011), econometrics (Greenberg, 2012; Durbin & Koopman, 2012), engineering (Cappé, Moulines & Rydén, 2005), epidemiology (Gibson & Renshaw, 1998; O’Neill & Roberts, 1999), operations research (Fishman, 1996), physics (Spanier & Gelbard, 1969; Sokal, 1997; Lapeyre, Pardoux & Sentis, 2003), and political science (Gelman et al., 2013).

In addition, the Monte Carlo method has spurred technological progress appreciable in everyday life. For instance, it now aids the tracking and positioning of mobile robots (Dellaert, Fox, Burgard & Thrun, 1999), produces weather forecasts (Epstein, 1969; Leith, 1974), predicts elections (‘FiveThirtyEight’, 2015), prices complicated financial instruments (Glasserman, 2004), and generates visual effects in blockbuster movies from animation studios such as Pixar (Veach & Guibas, 1995; Lokovic & Veach, 2008) – even leading to a Technical Oscar for Thomas Lokovic and Eric Veach (‘The 86th Scientific & Technical Awards’, 2014).

This thesis is largely concerned with developing sophisticated instances of the Monte Carlo method tailored to particular challenging real-world problems. To that end, we combine, extend, and improve a number of existing algorithms. As a by-product, we provide a unifying Monte Carlo framework which admits new insight into the relationship between the vast array of complex Monte Carlo algorithms that exist today.

Throughout, we view the Monte Carlo method as a technique for approximating measures and, by extension, as a technique for approximating integrals. Hence, we make heavy use of measure-theoretic notation. We hope that the reader is not discouraged by this presentation. In fact, this thesis only uses basic undergraduate-level mathematical techniques.
Introduction

Outline

This thesis is divided into two parts. Part I provides some background on various Monte Carlo algorithms. Novel methodology is mostly, but not exclusively, confined to Part II.

Part I. In the first part, we briefly review basic Monte Carlo methodology, such as importance sampling (IS), sequential Monte Carlo (SMC) methods, and Markov chain Monte Carlo (MCMC) methods. To provide the reader with a better intuition for such a plethora of techniques, we present a generic IS framework, best described as marginalised one-sample importance sampling (MOSIS) which admits essentially all instances of the Monte Carlo method, including those mentioned above, as special cases.

Chapter 1 reviews IS as a particularly useful interpretation of the Monte Carlo method. We also describe self-normalised IS as well as state-space extension and state-space reduction techniques. Combining these ideas, we then develop the generic MOSIS framework which forms the heart of any Monte Carlo algorithm. We also show that this framework can, for instance, be used to justify pseudo-marginal approaches.

Chapter 2 devises a generic SMC scheme and demonstrates that it admits essentially any SMC algorithm as a special case, including, for instance, the discrete particle filter which could hitherto not be viewed as a standard SMC algorithm. In turn, we show that the generic SMC algorithm is itself a special case of MOSIS. In addition, we generalise and improve existing schemes which approximate integrals by recycling all particles generated by an SMC sampler.

Chapter 3 shows that MCMC methods, too, can be viewed as MOSIS and that a repeated, hierarchical application of MOSIS forms the basis of all MCMC kernels, including pseudo-marginal, randomised, and ensemble MCMC kernels as well as multiple-proposal Metropolis–Hastings and conditional sequential Monte Carlo kernels. This circumvents the need for checking sufficient conditions such as detailed balance individually for each of these kernels. We also prove the hitherto unknown result that the variance-reduction techniques for conditional sequential Monte Carlo kernels: backward sampling and ancestor sampling share the same extended target distribution. Finally, we comment on the relationship between particle MCMC and ensemble MCMC methods which, to our knowledge, has also not been investigated in the literature.
Part II. In the second part, we develop novel Monte Carlo methodology for two problems. Firstly, we devise methods for filtering and static-parameter estimation in a class of discretely observed continuous-time piecewise deterministic processes. These may also be viewed as partially-observed point processes. Secondly, we construct efficient Monte Carlo algorithms for optimisation in latent-variable models and more generally.

Chapter 4 motivates the use of piecewise deterministic processes and reviews, analyses and improves an existing SMC-based filter for such models. Around it, we also devise a particle Gibbs sampler – with a novel auxiliary-variable rejuvenation step – to perform static-parameter estimation.

Chapter 5 considers static-parameter estimation in partially-observed piecewise deterministic processes driven by compound Poisson processes. To improve mixing of the particle Gibbs chain, we adopt a non-centred parametrisation. The resulting algorithm is applied to a particularly challenging Lévy-driven stochastic volatility model.

Chapter 6 develops a framework for performing optimisation, e.g. for maximum likelihood or maximum a-posteriori estimation in latent-variable models. Specifically, we devise generic SMC and MCMC optimisation schemes within which sophisticated Monte Carlo approaches such as pseudo-marginal methods or particle Gibbs samplers can be incorporated.

A detailed list of novel contributions can be found on Page 190.

Notation

It may be helpful to clarify some notational conventions used throughout this work although non-standard notation is also explained in the main text on the first use. For easy reference, we also provide a list of frequently used symbols on Page 201 along with a list of acronyms on Page 203.

Sets. We denote by $\mathbb{R} \supseteq \mathbb{Z} \supseteq \mathbb{N}$, respectively, the sets of real numbers, integers and positive integers. We often make use of the following subsets of the latter two: $\mathbb{Z}_{k,l} := \{ z \in \mathbb{Z} \mid k \leq z \leq l \}$ and $\mathbb{N}_l := \mathbb{Z}_{1,l}$. Furthermore, $#A$ denotes the cardinality of some countable set A. Finally, $A_{1:n} := X_{p=1}^n A_p := A_1 \times \cdots \times A_n$ represents the Cartesian product of sets A_1, \ldots, A_n.
Introduction

Vectors. We write \(x_i^1:N := (x_i^1, \ldots, x_i^N) \) and \(x_{i:T}^n := (x_i^n, \ldots, x_T^n) \). To avoid ambiguity, we often use the bold face notation \(\mathbf{x}_t := x_{1:T}^t \); \(\ldots ; x_{N:T}^t / \). To avoid ambiguity, we often use the bold face notation \(\mathbf{x}_t := x_{1:T}^t \) when both sub- and superscripts need to be vector valued. In this case, we often let \(\mathbf{x}_t^{-k} := (x_t^{1:k-1}, x_t^{k+1:N}) \) be the vector \(\mathbf{x} \) without its \(k \)th component. Finally, \(A^\top \) denotes the transpose of some matrix \(A \).

Measures. All measures considered in this work will be positive. We write \(\mathcal{M}_\sigma(X) \supseteq \mathcal{M}(X) \supseteq \mathcal{M}_1(X) \) for the sets of (positive) \(\sigma \)-finite, finite, and probability measures on some measurable space \((X, \mathcal{X}) \). Whenever possible, we take, \(\mathcal{X} =: \mathcal{B}(X) \), where \(\mathcal{B}(X) \) is the Borel \(\sigma \)-algebra on \(X \). In this case, we refer to elements of the above-mentioned sets as measures ‘on \(X \)’. In particular, \(\text{Leb} \in \mathcal{M}_\sigma(\mathbb{R}) \) denotes the Lebesgue measure on \(\mathbb{R} \). For \(\nu, \mu \in \mathcal{M}_\sigma(X) \), we write \(\nu \ll \mu \) if \(\nu \) absolutely continuous with respect to \(\mu \) and in this case, \(d\nu/d\mu \) denotes the corresponding Radon–Nikodym derivative, i.e. \(\nu = [d\nu/d\mu] \mu \). It is sometimes convenient to abuse the notation for Radon–Nikodym derivatives and to alternatively write \([d\nu/d\mu](x) =: \nu(dx)/\mu(dx) \).

Functions. For measurable spaces \((X, \mathcal{X}) \) and \((Y, \mathcal{Y}) \), endowed with suitable \(\sigma \)-algebras \(\mathcal{X} \) and \(\mathcal{Y} \), we define

\[
\mathcal{F}(X, Y) := \{ f : X \to Y \mid f \text{ is } \mathcal{X}/\mathcal{Y}\text{-measurable} \}.
\]

Furthermore, we let \(\text{id}_X \in \mathcal{F}(X, X) \) denote the identity function and let \(\mathbb{1}_B \in \mathcal{F}(X, \{0, 1\}) \) represent the indicator function of \(B \subseteq X \), i.e.

\[
\mathbb{1}_B(x) := \begin{cases} 1, & \text{if } x \in B, \\ 0, & \text{if } x \in X \setminus B. \end{cases}
\]

If \(B = X \), we set \(\mathbb{1}_X := \mathbb{1} \). For any function \(f : X \to Y \), and \(B \subseteq Y \), the preimage of \(B \) under \(f \) is denoted \(f^{-1}(B) := \{ x \in X \mid f(x) \in B \} \). For functions \(f \) and \(g \) with domain \(X \) and \(Y \), respectively, we use the tensor-product notation \([f \otimes g](x, y) := (f(x), g(y)) \), for \((x, y) \in X \times Y \). Furthermore, if \(X = Y \), we write \(fg(x) := f(x)g(x) \), for \(x \in X \), as usual.

Integrals. For any \(\mu \in \mathcal{M}_\sigma(X) \) and any \(p \in [0, \infty) \), we let

\[
\mathcal{L}^p(\mu) := \{ f \in \mathcal{F}(X, \mathbb{R}) \mid \mu(|f|^p) < \infty \}
\]

denote the set of \(p \)-times \(\mu \)-integrable real-valued functions with the convention that \(\mathcal{L}^1(\mu) =: \mathcal{L}(\mu) \), and with the following convenient shorthand for integrals: \(\mu(f) := \int_X f \, d\mu \).
Notation

Kernels. For measurable spaces \((X, \mathcal{X})\) and \((Y, \mathcal{Y})\), a (positive) \(\sigma\)-finite kernel is a function \(K : X \times Y \to [0, \infty)\) if it satisfies both the following properties:

\[
\forall A \in \mathcal{Y} : \quad K(\cdot, A) \in \mathcal{F}(X, [0, \infty)), \\
\forall x \in X : \quad K(x, \cdot) \in \mathcal{M}_\sigma(Y).
\]

We call \(K\), **finite** if \(K(x, \cdot) \in \mathcal{M}(Y)\), and **stochastic** if \(K(x, \cdot) \in \mathcal{M}_1(Y)\), for any \(x \in X\). We denote by \(\mathcal{K}_\sigma(X, Y) \supseteq \mathcal{K}(X, Y) \supseteq \mathcal{K}_1(X, Y)\) the sets of \(\sigma\)-finite, finite, and stochastic transition kernels from \((X, \mathcal{X})\) to \((Y, \mathcal{Y})\).

For suitable kernels \(K \in \mathcal{K}_\sigma(X, Y)\) and \(L \in \mathcal{K}_\sigma(Y, Z)\), we may define a kernel \(KL \in \mathcal{K}_\sigma(X, Z)\) by

\[
KL(x, B) := [K \otimes L](x, Y \times B),
\]

for all \((x, B) \in X \times Y \times Z\), and define a kernel \(KL \in \mathcal{K}_\sigma(X, Z)\) by

\[
KL(x, B) := [K \otimes L](x, Y \times B),
\]

for all \((x, B) \in X \times Z\).

By extension, we set \(K^{\otimes n} := \bigotimes_{p=1}^n K_p := K \otimes \cdots \otimes K_n\), for suitable kernels \(K_1, \ldots, K_n\). In particular, if \(K_1 = \cdots = K_n = K\), we use the shorthand \(K^{\otimes n} := K^{\otimes n}\).

The same conventions for (tensor)products apply to measures by viewing them as kernels which are constant in their first argument. Finally, especially in Part II, we write a stochastic kernel \(K \in \mathcal{K}_1(X, Y)\) as \(K(x, dY) = K(\cdot | x)\), for \(x \in X\). In particular, the distribution \(K(dY | x)\) is then sometimes implicitly defined to be the full conditional distribution of the second component under the probability measure \(K \in \mathcal{M}_1(X \times Y)\).

Distributions. We generally work with some underlying probability space \((\Omega, \mathcal{A}, \mathbb{P})\) and let \(\mathbb{E}_\mu, \mathbb{V}_\mu\) denote expectation and variance under some probability measure \(\mu\), with the convention that \(\mathbb{E}_\mathbb{P} = \mathbb{E}\) and \(\mathbb{V}_\mathbb{P} = \mathbb{V}\). Hence, for a **random variable** \(X \in \mathcal{F}(\Omega, \mathbb{R}^d)\) with distribution \(\mu := \mathbb{P} \circ X^{-1} \in \mathcal{M}_1(X)\), where \(X^{-1}(A)\) is the preimage of \(A\) under \(X\), and for \(f \in \mathcal{L}(\mu)\), we have the usual identity \(\mu(f) = \mathbb{E}_\mu[f] = \mathbb{E}[f(X)]\).

For this work, important probability measures are \(\mathbb{N}_\mu, \Sigma, \delta_x\), the normal distribution with mean \(\mu\) and covariance matrix \(\Sigma\), and \(\delta_x\), the Dirac measure or point mass centred at \(x\), defined by \(\delta_x(A) := 1_A(x)\). For a full list of standard distributions used in this work, see Page 201

xxiii
Part I

Generic Monte Carlo Framework
1 Elementary Monte Carlo Tools

1.1 Importance Sampling

1.1.1 Motivation

In this chapter, we describe tools that form the basis of all known Monte Carlo algorithms. In Sections 1.1 and 1.2, we justify importance sampling and self-normalised importance sampling. In Section 1.3, we describe state-space extension techniques and also ways of reducing the dimension of the state space (i.e. Rao–Blackwellisation). Finally, Section 1.4 combines the ideas from the preceding sections into a generic importance-sampling framework which admits essentially all known Monte Carlo schemes as a special case.

Let \((\Omega, \mathcal{A}, \mathbb{P})\) be some probability space and let \(\mathcal{M}(X)\) denote the set of finite positive measures on some measurable space \((X, \mathcal{B}(X))\). For \(\gamma \in \mathcal{M}(X)\), assume that we want to calculate integrals

\[
\gamma(f) := \int_X f \, d\gamma, \tag{1.1}
\]

for all test functions \(f \in F \subseteq L(\gamma) := \{ f : X \to \mathbb{R} \mid f \text{ is } \gamma\text{-integrable} \}\).

1.1 Remark. Let \(\mathcal{M}_\sigma(X)\) denote the set of \(\sigma\)-finite (positive) measures on \((X, \mathcal{B}(X))\). Note that any finite integral \(\tilde{\gamma}(f)\) with respect to \(\tilde{\gamma} \in \mathcal{M}_\sigma(X)\) may be written in the form of Equation (1.1) by applying the change of measure \(\gamma := \tilde{\gamma}\) (where \(\tilde{\gamma}(A) := \tilde{\gamma}(f 1_A)\), for \(A \in \mathcal{B}(X)\)), and setting \(f \equiv 1\).

Analytical computation of such integrals is often too costly or even impossible. Instead, numerical integration methods such as quadrature rules may be used. Unfortunately, the error of these methods is typically of order \(O(N^{-c/d})\), where \(d\) is the dimension of the state space \(X\), \(c > 0\), and \(N\) is the number of grid points. The need for \(N\) to be exponentially large in \(d\) is known as the curse of dimensionality (Bellman, 1957). It prohibits the use of standard numerical integration methods in higher dimensions.
1.1.2 Change of Measure

To apply the methods developed in this work, we need to turn $\gamma(f)$ into an integral with respect to some probability measure. This can always be achieved as follows. Let $\mathcal{M}_1(X)$ denote the set of probability measures on $(X, \mathcal{B}(X))$ and select $\psi \in \mathcal{M}_1(X)$ such that $\gamma \ll \psi$. In this case,

$$\gamma(f) = \psi(wf) = \mathbb{E}_\psi[wf],$$

where w denotes the Radon–Nikodým derivative $w := \frac{d\gamma}{d\psi}$.

1.2 Remark. It suffices that $f \gamma \ll \psi$. However, we make the stronger requirement: $\gamma \ll \psi$, here because it is independent of the particular test function and we are usually concerned with approximating $\gamma(f)$ for a large class of test functions, F.

1.1.3 Sampling-Based Approximation

Given a vector of independent and identically distributed (IID) draws $X := X^{1:N}$ from ψ, (a suitable version of) the Glivenko–Cantelli theorem (Billingsley, 2012, Theorem 20.6) justifies using the empirical measure of these samples to approximate the probability measure ψ.

$$\psi^{mc,N} := \frac{1}{N} \sum_{n=1}^{N} \delta_{X^n}.$$

Here, $\delta_x \in \mathcal{M}_1(X)$ is the point mass (or Dirac measure) located at $x \in X$. We may thus approximate the integral $\gamma(f) = \psi(wf) = \mathbb{E}_\psi[wf]$ by

$$\psi^{mc,N}(wf) = \int_X wf \, d\psi^{mc,N} = \frac{1}{N} \sum_{n=1}^{N} wf(X^n),$$

i.e. we estimate the expectation by the corresponding sample mean.

Approximating integrals with respect to some probability measure ψ in this way – usually by generating X on a computer using pseudo-random numbers – is known as the Monte Carlo method. It was developed during the 1940s by John Von Neumann, Stanislaw M. Ulam, Nicholas C. Metropolis and other mathematicians and physicists working on the Manhattan
1.1 Importance Sampling

Project at the Los Alamos Scientific Laboratory, New Mexico. Some of the earliest available references include Goertzel and Kahn (1949), Metropolis and Ulam (1949). Historical accounts can be found in Metropolis (1987), Eckhard (1987), Rota (2008).

Note that we may also view the Monte Carlo method as a procedure for approximating the measure γ by the following (random) unnormalised weighted empirical measure,

$$\gamma^{1s,N} := \frac{1}{N} \sum_{n=1}^{N} w(X^n) \delta_{X^n},$$

where $w(X^n)$ is known as an unnormalised importance weight.

1.3 Remark. Throughout this work, for simplicity, we refer to the unnormalised importance weights $w(X^n)$ simply as ‘weights’ or ‘importance weights’ and we refer to $\gamma^{1s,N}$ as a ‘weighted empirical measure’, even though $\sum_{n=1}^{N} w(X^n) \neq 1$, in general.

This view of the Monte Carlo method is known as importance sampling (Goertzel & Kahn, 1949). Though, initially, it was also referred to as quota sampling (Goertzel, 1949). Plugging in the test function, it clearly leads to the same estimator for $\gamma(f)$ as above, i.e. $\gamma^{1s,N}(f) = \psi^{MC,N}(wf)$. One of the goals of Part I of this work is to demonstrate that essentially every Monte Carlo algorithm can be seen as a special case of $\gamma^{1s,N}$ which, in turn, is merely a convenient re-interpretation of the Monte Carlo method.

The interpretation of the Monte Carlo method is useful because we are usually concerned with approximating $\gamma(f)$ for a large class of test functions, F, but without selecting and sampling from a different proposal distribution ψ for each $f \in F$ as this tends to be costly. The interpretation helps separating the influence of the test function f from the influence of the proposal distribution ψ on the estimator $\gamma^{1s,N}(f)$ through the oscillations of w.

1.1.4 Theoretical Properties

It is easy to see that $\gamma^{1s,N}(f)$ is an unbiased estimator for $\gamma(f)$ and the strong law of large numbers (SLLN) (Billingsley, 2012, Theorem 22.1) ensures that it converges almost surely to $\gamma(f)$, as $N \to \infty$. Define the
set \(\mathcal{L}^i(\psi) := \{ f : X \to \mathbb{R} \mid f^i \text{ is } \psi\text{-integrable} \} \). If \(wf \in \mathcal{L}^2(\psi) \), so that the asymptotic variance \(\sigma^2(f) := \mathbb{V}_\psi[f] \) exists, a simple \textit{central limit theorem (CLT)} (Billingsley, 2012 Theorem 27.1) guarantees that

\[
\sqrt{N} \left[\gamma^{1s,N}(f) - \gamma(f) \right] \xrightarrow{N \to \infty} Z \sim N_{0,\sigma^2(f)},
\]

in distribution. In particular, the Monte Carlo error \(|\gamma^{1s,N}(f) - \gamma(f)| \) vanishes at a rate \(\mathcal{O}_P(N^{-1/2}) \) which is independent of the dimension \(d \).

1.2 Self-Normalised Importance Sampling

1.2.1 Motivation

Assume that we wish to approximate \(\pi(f) \), for some probability measure \(\pi \in \mathcal{M}_1(X) \) and \(f \in \mathcal{L}(\pi) \). In many applications, the Radon–Nikodým derivative \(\tilde{w} := d\pi/d\psi \) can only be evaluated up to some unknown constant \(\tilde{z} > 0 \). That is, we can evaluate \(w := \tilde{z} \tilde{w} \) point-wise but not \(\tilde{w} \).

The intractability of \(\tilde{z} \) renders (standard) IS inapplicable because we can then only approximate the measure \(\gamma \in \mathcal{M}(X) \), defined by

\[
\gamma := w\psi = \tilde{z}\pi
\]

and \(\gamma \neq \pi \), except in the trivial case that \(\tilde{z} = 1 \). Self-normalised IS exploits fact that if \(\pi \) is a probability measure then \(\tilde{z} = \gamma(\mathbb{1}) \). Based on this identity, we may use standard IS to separately approximate the numerator and denominator in the identity \(\pi = \gamma/\tilde{z} \) as described in the next subsection.

We conclude this subsection by noting that the intractability of \(\tilde{z} \) usually arises because the target distribution \(\pi \) or the proposal distribution \(\psi \) are constructed via non-linear transformations of some other measures on \(X \). More precisely, for \(\nu \in \mathcal{M}_a(X) \) and \(g \in \mathcal{L}(\nu) \), define the \textit{Boltzmann–Gibbs transformation} of \(\nu \) under \(g \), \(\Psi_g \), by

\[
\Psi_g(\nu) := \frac{gv}{\nu(g)}.
\]

Assume that \(\pi \) is constructed via \(\pi = \Psi_g(\sigma) \) and \(\psi \) is constructed via \(\psi = \Psi_h(\eta) \), for some \(\sigma, \eta \in \mathcal{M}_a(X) \), \(g \in \mathcal{L}(\sigma) \), and \(h \in \mathcal{L}(\eta) \). In this case, we often have that \(\tilde{z} = \sigma(g)/\eta(h) \) and this ratio is usually intractable.
1.2 Self-Normalised Importance Sampling

1.4 Example (Bayesian posterior). In Bayesian statistics, \(\pi \) may be the posterior distribution given some prior distribution \(\varpi \) and some data \(y \) with associated likelihood \(\tilde{g} (\cdot, y) = g = L \), i.e. \(\pi = \Psi_L (\varpi) \). The ‘model evidence’ or ‘marginal likelihood’, \(\varpi (L) \), is then typically intractable.

1.2.2 Sampling-Based Approximation

The idea of self-normalised IS is to separately approximate the numerator and denominator on the right hand side in the identity \(\pi = \gamma / \hat{\gamma} \) via standard IS. That is, we approximate the measure \(\gamma \) by

\[
\gamma^{\text{IS},N} = \frac{1}{N} \sum_{n=1}^{N} w(X^n)\delta_{X^n}
\]

and the integral \(\hat{\gamma} = \gamma (1) \) by

\[
\hat{\gamma}^{\text{IS},N} := \gamma^{\text{IS},N} (1) = \frac{1}{N} \sum_{n=1}^{N} w(X^n).
\]

Let \(W^n (X) := w(X^n)/\hat{\gamma}^{\text{IS},N} \) denote the \(n \)th self-normalised importance weight. Combining the previous two approximations then defines the self-normalised IS approximation of \(\pi \),

\[
\pi^{\text{IS},N} = \frac{\gamma^{\text{IS},N}}{\hat{\gamma}^{\text{IS},N}} = \sum_{n=1}^{N} W^n (X)\delta_{X^n}.
\]

Again, we can approximate the integral \(\pi (f) \) by

\[
\pi^{\text{IS},N} (f) = \sum_{n=1}^{N} W^n (X) f (X^n).
\]

1.2.3 Theoretical Properties

The estimator \(\pi^{\text{IS},N} (f) \) is biased but strongly consistent, i.e. \(\pi^{\text{IS},N} (f) \) converges almost surely to \(\pi (f) \), as \(N \to \infty \). As shown by Geweke (1989), for instance, the estimator again satisfies a CLT, i.e.

\[
\sqrt{N} \left[\pi^{\text{IS},N} (f) - \pi (f) \right] \xrightarrow{N \to \infty} Z \sim N_0, \sigma^2 (f),
\]
in distribution, if we assume that \(w, w f \in L^2(\psi) \) to ensure that the asymptotic variance \(\sigma^2(f) := \pi(\w[f - \pi(f)]^2) \) exists. More precisely, Liu (2001, p. 35) proves that

\[
E[\pi^{15,N}(f)] = \pi(f) + \frac{\pi(\w[f - \pi(f)])}{N} + O(N^{-2}),
\]

\[
V[\pi^{15,N}(f)] = \frac{\pi(\w[f - \pi(f)]^2)}{N} + O(N^{-2}).
\]

In particular, \(\tilde{z}^{15,N} \) is again an IS estimate of \(\tilde{z} \) and thus unbiased.

Finally, even though \(\pi^{15,N}(f) \) is biased, its mean-square error can sometimes be smaller than that of a standard IS estimate \(\pi^{15,N}(f) \) (assuming that \(\w \) can be evaluated). Intuitively, the former can obtain variance reductions by exploiting the fact that \(\pi \) is a (random) probability measure. Indeed, \(\pi^{15,N} \) is a (random) probability measure but \(\pi \) is not, in general, because its weights do not sum to 1.

1.2.4 Effective Sample Size

From the expression for the asymptotic variance \(\sigma^2(f) \) above, it is clear that the performance of self-normalised IS is determined by how closely the target distribution \(\pi \) resembles the proposal distribution \(\psi \), at least if we neglect the contribution from the oscillations of \(f \).

Several criteria have been proposed to measure the efficiency of IS approximations, such as the effective sample size (ESS) defined by Kong, Liu and Wong (1994) as

\[
ESS := \frac{N}{V_\psi(\w) + 1} = \frac{N_{\tilde{z}}}{\pi(w)}, \tag{1.2}
\]

if \(w \) is \(\pi \)-integrable. The effective sample size takes values in \((0, N] \). If \(\psi = \pi \) then \(\w \equiv 1 \) so that \(ESS = N \). On the other hand, \(ESS \) decreases the more \(\psi \) and \(\pi \) differ.

Unfortunately, the ESS cannot be calculated analytically because the difficulty of computing integrals of the form \(\pi(w) \) is one of the reasons for turning to importance sampling in the first place. We thus have to resort to estimating it by

\[
ESS^N := \frac{N_{\tilde{z}}^{15,N}}{\pi^{15,N}(w)} = \frac{\sum_{n=1}^{N} w(X^n)^2}{\sum_{n=1}^{N} [w(X^n)]^2} = \frac{1}{\sum_{n=1}^{N} [W^n(X)]^2}. \tag{1.3}
\]
This estimate of the effective sample size ranges from 1 (all self-normalised importance weights are zero except one) to \(N\) (all importance weights are identical).

Care must be taken when interpreting this estimate. For finite \(N\), it is easy to construct examples in which the self-normalised estimator has a high variance despite it being very likely that all self-normalised importance weights are roughly identical. This is the case if the proposal distribution is likely to miss high-probability regions under \(\pi\).

1.3 State-Space Extension and Reduction

1.3.1 Enlarging the Space

Assume again that we are interested in approximating (integrals with respect to) a measure \(\gamma \in \mathcal{M}(X)\) by using some proposal distribution \(\psi \in \mathcal{M}_1(X)\) such that \(\gamma \ll \psi\). Sometimes, we cannot evaluate the Radon–Nikodym derivative \(w := \frac{d\gamma}{d\psi}\) point-wise – not even up to some unknown proportionality constant. Thus, direct approximations of \(\gamma\) and, by extension, self-normalised approximations of a probability measure \(\pi \propto \gamma\) are not available.

However, in some cases, the intractability of the importance weights can be circumvented by approximating a measure \(\tilde{\gamma}\) on an extended space which admits \(\gamma\) as a marginal. More precisely, assume that

1. there exists a measure \(\tilde{\gamma} \in \mathcal{M}(\tilde{X})\) on some space \(\tilde{X} := X \times Z\) which admits \(\gamma\) as a marginal, i.e. \(\gamma(A) = \tilde{\gamma}(A \times Z)\), for any \(A \in \mathcal{B}(X)\),
2. we can sample from a distribution \(\tilde{\psi} \in \mathcal{M}_1(\tilde{X})\) satisfying \(\tilde{\gamma} \ll \tilde{\psi}\),
3. we can evaluate \(\tilde{w} := \frac{d\tilde{\gamma}}{d\tilde{\psi}}\) point-wise.

In this case, we can simply construct an approximation \(\tilde{\gamma}^{\text{IS},N}\) of \(\tilde{\gamma}\). As shown below, the relevant marginal of \(\tilde{\gamma}^{\text{IS},N}\) then approximates \(\gamma\).

1.5 Example (Bayesian posterior, continued)

Many models are specified through extra latent (unobserved) parameters \(Z\) so that \(\pi\) is a marginal of the joint posterior distribution \(\tilde{\pi} := \Psi_t(\tilde{\Theta})\) associated with the joint prior \(\tilde{\Theta} \in \mathcal{M}((\tilde{X}))\) and the ‘joint’ likelihood for both parameters, \(\tilde{g}((x, z), y) =: \tilde{L}(x, z)\), on the marginal space \(X\) is then often impossible. In this case, we need to devise a suitable extended proposal distribution \(\tilde{\psi}\).
1 Elementary Monte Carlo Tools

1.6 Example (complex proposal distributions). Even if \(w = \frac{dy}{d\psi} \) can be evaluated, it can often be desirable to work on some extended space \(\tilde{X} \) on which a more efficient proposal distribution \(\tilde{\psi} \) can be constructed (and the additional auxiliary variables \(Z \) included in \(\tilde{\psi} \) cannot be integrated out). In this case, we need to devise a suitable extended measure \(\tilde{\gamma} \).

1.3.2 Importance Sampling on the Joint Space

In the setting described above, we can perform self-normalised IS on the joint space \(\tilde{X} \). Let \(\tilde{X}^n = (X^n, Z^n) \) where \(\tilde{X}^1, \ldots, \tilde{X}^N \) are IID samples distributed according to \(\tilde{\psi} \). Given an IS approximation
\[
\tilde{\gamma}^{IS,N} := \sum_{n=1}^{N} \tilde{w}(\tilde{X}^n)\delta_{\tilde{X}^n}
\]
of \(\tilde{\gamma} \), we then immediately obtain an approximation of the marginal measure \(\gamma \) in the form of
\[
\gamma^N := \sum_{n=1}^{N} \tilde{w}(\tilde{X}^n)\delta_{X^n}.
\]

The approximation \(\gamma^N \) of the marginal measure \(\gamma \) is sometimes referred to as random-weight IS (Fearnhead, Papaspiliopoulos, Roberts & Stuart, 2010). This is because the weights are still random even after conditioning on the sample points \(X^1, \ldots, X^N \) which determine the location of the point masses used in the construction of \(\gamma^N \). Special cases of this include IS-squared (Tran, Scharth, Pitt & Kohn, 2014), for instance.

Unfortunately, performing IS on an extended space \(\tilde{X} = X \times Z \) is generally less efficient than working directly on the (smaller) marginal space \(X \). However, the fact that working on the marginal space might be impossible (as in Example 1.5) or that we might be able to construct more efficient proposal distributions by working on an extended space (as in Example 1.6) often justifies this approach.

When working on an extended space, there is often a considerable degree of freedom in constructing \(\tilde{\gamma} \) and \(\tilde{\psi} \). Modern methodological research on Monte Carlo algorithms can be viewed as almost exclusively dealing with optimising the choice of these measures even though this is not always immediately obvious as the examples in Subsection 1.3.4 show.
1.3 State-Space Extension and Reduction

1.3.3 Rao–Blackwellisation

In the preceding subsections we mentioned the utility of performing IS on an extended space. However, approximating distributions on large spaces comes at a cost. Even though the order of the Monte Carlo convergence rate, \(\Theta_{\mathbb{P}}(N^{-1/2}) \), is independent of the dimension of the state space, the number of sample points, \(N \), usually needs to grow exponentially with its dimension in order to guarantee a constant Monte Carlo error.

As many components as possible (of the target measure \(\gamma \)) should therefore be integrated out analytically as advocated by Trotter and Tukey (1956). By performing Monte Carlo approximations only on a smaller space, substantial variance reductions can be attained.

More precisely, let \(\gamma \in \mathcal{M}(X) \) be some finite measure on \(X := \bar{X} \times Z \) and let \(f \in \mathcal{F}(X) \) be some test function with domain \(X \). Assume that \(\gamma^{1, N} \) is an IS approximation of \(\gamma \) based on IID samples \(X^1, \ldots, X^N \) which are drawn from some suitable proposal distribution and which can be decomposed as \(X^n = (\bar{X}^n, Z^n) \), where \(\bar{X}^n \) takes values in \(\bar{X} \) and \(Z^n \) takes values in \(Z \).

It is then preferable to use the Rao–Blackwellised estimator

\[
\mu_0(f) := \mathbb{E}[\gamma^{1, N}(f) | \bar{X}^{1:N}],
\]

(if we can calculate this integral) rather than \(\mu_1(f) := \gamma^{1, N}(f) \) itself. This is because by Jensen’s inequality, the former is dominated by the latter in the convex order, i.e. for any convex function \(\phi : \mathbb{R} \to \mathbb{R} \) such that the following integrals are well defined,

\[
\mathbb{E}[\phi(\mu_0(f))] \leq \mathbb{E}[\phi(\mu_1(f))].
\]

Note that this result implies \(\mathbb{V}[\mu_0(f)] \leq \mathbb{V}[\mu_1(f)] \) and the same ordering holds for the mean-square error since \(\mathbb{E}[\mu_0(f)] = \mathbb{E}[\mu_1(f)] \).

This result does not generally carry over to self-normalised IS approximations. That is, \(\mu_0(f)/\mu_0(1) \) is not necessarily dominated by \(\mu_1(f)/\mu_1(1) \) in the convex order (Liu, 2001, p. 38).

1.7 Remark. Note that \(\mu_0(f) \) is just a standard IS estimate of the integral \(\tilde{\gamma}(1) \), where \(\tilde{\gamma}(A) := \gamma(f 1_{A \times Z}) \), for \(A \in \mathcal{B}(X) \), is the target measure (which is lower-dimensional than \(\gamma \)). This justifies using the term ‘marginalisation’ as a synonym for ‘Rao–Blackwellisation’ in the next section.
1 Elementary Monte Carlo Tools

1.3.4 Examples

A main thread throughout this work is that most seemingly-complicated Monte Carlo algorithms can be viewed as special cases of IS on a suitably extended space (and thus as instances of the Monte Carlo method). For example, it is well known that sequential importance sampling (the idea of which dates at least as far back as (Hammersley & Morton, 1954, M. N. Rosenbluth & Rosenbluth, 1955) and special cases of it such as annealed importance sampling (Jarzynski, 1997b, 1997a; Neal, 2001) may be viewed as standard IS.

In this subsection, we show, by example, that this also applies to many other algorithms. First, as shown in Example 1.8 rejection sampling (also referred to as accept–reject method) first described in Kahn (1949), may be viewed as a special case of (self-normalised) IS on an extended space. This was pointed out in Y. Chen (2005), for instance.

1.8 Example (rejection sampling). Rejection sampling is usually viewed as generating a random number of IID samples from some distribution $\pi \in \mathcal{M}_1(X)$, as follows.

1. Propose IID samples X^1, \ldots, X^N from some distribution $\psi \in \mathcal{M}_1(X)$ satisfying $\pi \ll \psi$.

2. Assume there exists $\tilde{z} > 0$ such that $w := \tilde{z} d\pi / d\psi \leq 1$ and such that w can be evaluated.

3. For $n \in \mathbb{N}_N := \{ n \in \mathbb{N} \mid n \leq N \}$, independently ‘accept’ X^n with probability $w(X^n)$ and set $K := \{ n \in \mathbb{N}_N \mid X^n \text{ is ‘accepted’} \}$. Then marginally, $(X^n)_{n \in K}$ is an IID sample from π.

Rejection sampling thus entails generating IID samples $\tilde{X}^1, \ldots, \tilde{X}^N$ from an extended proposal distribution

$$\tilde{\psi} := \psi \otimes \text{Unif}_{[0,1]} \in \mathcal{M}_1(\tilde{X}),$$

where $\tilde{X} := X \times [0,1]$. These proposals are then used to form an IS approximation $\tilde{\gamma}^{IS,N}$ of the extended measure

$$\tilde{\gamma} := \psi \otimes L \in \mathcal{M}(\tilde{X}),$$

where $L(x, dz) := 1_{[0,w(x)]}(z) dz$. The importance weights are therefore defined by $\tilde{w}(\tilde{x}) := [d\tilde{\gamma} / d\tilde{\psi}](x, z) = 1_{[0,w(x)]}(z)$. The resulting marginal
self-normalised IS approximation of π can then easily be seen to be
\[\pi^N := (\#K)^{-1} \sum_{n \in K} \delta_{X^n}, \]
where $\#K$ denotes the cardinality of the set K. In particular, $\tilde{\gamma}^{15,N}(1)$ is an unbiased estimate of the marginal acceptance probability, $\tilde{\gamma}$.

Finally, a standard IS approximation of $\gamma = \tilde{\gamma} \pi$ on the marginal space X (with proposal distribution ψ) can be viewed as a Rao–Blackwellisation of the rejection-sampling approximation. That is,
\[\gamma^{15,N}(f) = \frac{1}{N} \sum_{n=1}^{N} w f(X^n) = \mathbb{E}[\tilde{\gamma}^{15,N}(f \otimes 1_{[0,1]}|X)]. \]

Note that we are fixing the number of proposed samples, N, in the rejection-sampling scheme. A Rao–Blackwellisation in the case where rejection sampling is performed until a certain number of accepted samples has been obtained was developed in Casella and Robert (1996).

Many other algorithms that seem to be generalisations of IS at a first glance, can actually also be viewed as standard IS on an extended space, as shown in Examples 1.9 and 1.10.

1.9 Example (generalised importance sampling). Let $\tilde{\Psi} \in \mathcal{K}_1(X, X)$ be some γ-invariant stochastic kernel, i.e. such that $\gamma \tilde{\Psi} = \gamma$. As shown in MacEachern, Clyde and Liu (1999, Theorem 6.1) it is possible to apply such a kernel to the weighted sample used to construct an IS approximation of γ without having to adjust the weights.

Even though this procedure is sometimes referred to as ‘generalised’ importance sampling (e.g. Robert & Casella, 2004, Section 14.2), as pointed out in Doucet and Johansen (2011) (see also Del Moral, Doucet & Jasra, 2006b), it may be viewed as standard importance sampling on the extended space $\tilde{X} := X^2$ (i.e. $Z = X$ in the notation of this section), with extended proposal distribution $\tilde{\psi} := \psi \otimes \psi$ and extended target measure $\tilde{\gamma} := \gamma \otimes \Pi$, where
\[\Pi(x', \text{dx}) := \frac{\text{d}\psi(x, \cdot)}{\text{d}\gamma}(x')\gamma(\text{dx}) = \frac{\text{d}\psi(x, \cdot)}{\text{d}\gamma}(x')\gamma(\text{dx}) \]
represents the time-reversal kernel of ψ associated with γ. Indeed writing $\tilde{X} = (X, X')$, the weights $\tilde{w}(\tilde{x}) = [\text{d}\gamma/\text{d}\tilde{\psi}](\tilde{x}) = [\text{d}\gamma/\text{d}\psi](x)$ do not depend on the second component.
1.10 Example (dynamic weighting). The dynamically weighted Monte Carlo-framework (Wong & Liang, 1997; Liu, Liang & Wong, 2001; Liang, 2002) designs an extended measure

$$\gamma(dx \times dv) := vg(dx, dv),$$
on $\mathcal{X} := X \times [0, \infty)$. Here, $g \in \mathcal{P}(\mathcal{X})$, $\mathcal{X} := X \times [0, \infty)$, is said to be correctly weighted with respect to γ if γ admits γ as a marginal, i.e. if $\gamma(A) = \gamma(A \times [0, \infty))$ for any $A \in \mathcal{B}(X)$.

In this case, an IID sample

$$\tilde{X}_1, \ldots, \tilde{X}_N \sim \psi := g,$$

where $\tilde{X}_n = (X^n, V^n)$, can be used to approximate γ by standard IS.

The method is called ‘dynamic’ importance sampling because the nth importance weight, $\tilde{w}(\tilde{X}_n) = V_n$, is not necessarily deterministic given X^n. It is also referred to as ‘generalised’ importance sampling in Liu (2001, pp. 36–37), Liang (2002) because taking

$$g(dx \times dv) := \psi(dx)\delta_{w(x)}(dv),$$

where $w := dy/d\psi$, leads back to a direct IS approximation of the marginal γ using ψ as a proposal distribution.

However, this approach is clearly no more than standard IS on an extended space. Indeed, let $\tilde{\gamma} \in \mathcal{M}(\mathcal{X})$ be some other extended measure on a space $X = X \times Z$ such that (1) $\tilde{\gamma}$ admits γ as a marginal, (2) $\tilde{\gamma}$ has a density \tilde{w} with respect to some probability measure $\tilde{\psi} \in \mathcal{M}_1(\mathcal{X})$. Using the proposal distribution $\tilde{\psi}$, we can then construct an IS approximation

$$\gamma^{IS,N} := \frac{1}{N} \sum_{n=1}^{N} \tilde{w}(\tilde{X}_n)\delta_{\tilde{x}_n}$$

of $\tilde{\gamma}$ and hence obtain an approximation γ^N of the marginal γ.

Note, however, that Z and thus $X = X \times Z$ is often a high-dimensional space which can render the preceding IS scheme inefficient. Since we are only interested in the marginal measure γ, the key insight here is that we can turn this IS scheme into an IS scheme on the potentially lower-dimensional space $\tilde{X} = X \times V$, with $V := [0, \infty)$, with extended target $\tilde{\gamma}$ and proposal $\tilde{\psi} = \tilde{g}$ as follows.
Define $\phi := \text{id}_X \otimes \tilde{w}$, $\tilde{\psi} = g := \tilde{\psi} \circ \phi^{-1}$, then we can see that the marginal approximations of γ based on performing IS using the pair $(\tilde{\gamma}, \tilde{\psi})$ and using the pair (γ, ψ) coincide, i.e.

$$
\gamma^N = \frac{1}{N} \sum_{n=1}^{N} \tilde{w} (\tilde{X}^n) \delta_{X^n} = \frac{1}{N} \sum_{n=1}^{N} \tilde{w} (\tilde{X}^n) \delta_{X^n} = \frac{1}{N} \sum_{n=1}^{N} V^n \delta_{X^n},
$$

where $\tilde{X}^n = (X^n, Z^n)$.

The transformation ϕ used in Example 1.10 to interpret the marginal of an IS approximation of a measure $\tilde{\gamma}$ on a potentially high-dimensional space $X \times Z$ as the marginal of an IS approximation of a measure γ on the potentially lower-dimensional space X is also the main justification of pseudo-marginal Monte Carlo approaches (Andrieu & Roberts, 2009) the general idea of which is described in Subsection 1.4.3.

1.4 Marginalised One-Sample Importance Sampling

1.4.1 Extended Target Measure

In this section, we present a generic extended measure which admits the target measure, γ, as a marginal. It is based on the IS framework introduced in Andrieu and Roberts (2009), Andrieu, Doucet and Holenstein (2010) which was also extensively analysed in Lee (2011).

As shown in the next two chapters, virtually all known Monte Carlo schemes, e.g. Markov chain Monte Carlo (MCMC) methods, sequential Monte Carlo (SMC) methods, and even generalisations of the latter such as Divide-&-Conquer SMC (Lindsten, Johansen et al., 2014), can be regarded as Rao–Blackwellised IS approximations – based on a single sample – targeting this measure (or as self-normalised versions thereof).

A repeated, hierarchical application of this framework justifies employing one such Monte Carlo scheme into another, e.g. using standard IS within standard IS (Tran et al., 2014), SMC within MCMC (Andrieu et al., 2010), MCMC within SMC (Gilks & Berzuini, 2001; Del Moral et al., 2006b), or SMC within SMC (Johansen, Whiteley & Doucet, 2012; Chopin, Jacob & Papaspiliopoulos, 2013, Vergé, Dubarry, Del Moral & Moulines, 2013).
As before, we want to approximate an integral \(\gamma(f) \), where \(\gamma \in \mathcal{M}(X) \) is some finite measure and \(f \in \mathcal{F} \) is some \(\gamma \)-integrable test function.

To that end, we define an extended target measure \(\tilde{\gamma} \in \mathcal{M}(\tilde{X}) \) and an extended proposal distribution \(\tilde{\psi} \in \mathcal{M}_1(\tilde{X}) \) such that \(\tilde{w} := d\tilde{\gamma}/d\tilde{\psi} \) exists and can be evaluated (point-wise). Here, \(\tilde{X} := X \times Z \) is an extended space such that if \(\tilde{X} = (X, \tilde{Z}) \sim \tilde{\psi} \), then \(\tilde{Z} \) can be decomposed as \(\tilde{Z} = (K, Z) = (K, X, Y) \), where

- \(K \) is some discrete index taking values in a finite space \(K \),
- \(X \) represents the elements of a ‘pool’ of candidates for each of the components of the vector \(X \sim \pi := \gamma/\gamma(1) \) such that the set of candidate components indexed by \(K \), denoted \(X^K \), takes values in \(X \) (see Remark 1.11 below for more details),
- \(Y \) is some set of other auxiliary variables taking values in a space \(Y \).

Remark 1.11. The definition of \(\tilde{X} = (X, K, Z) \) is left deliberately vague so that the framework covers a wide range of Monte Carlo schemes.

1. To simplify the notation and without loss of generality, we restrict our exposition in this section to the case: \(K = \mathbb{N}_N \) and \(X = X^N \), for some \(N \in \mathbb{N} \setminus \{1\} \). In other words, \(X^K \) is the \(K \)th element out of a pool of \(N \) candidates, \(X = X^{1:N} \), for \(X \).

2. More generally, let \(X = X_{1:t} \) have \(t \) components for each of which we have a pool of \(N' \) candidates. We could then consider an index vector \(K_{1:t} \) taking values in \((\mathbb{N}_{N'})^t \) such that \((X^K_{1}, \ldots, X^K_{t}) \) takes values in \(X \). This is the case in SMC algorithms outlined in the next chapter. However, by applying a suitable reparametrisation and by introducing some additional conditionally degenerate copies of the components in the pool, we can always reduce such a seemingly more complex setting to the case in which we only have a one-dimensional index \(K \) taking values in \(\mathbb{N}_N \), here \(N = (N')^t \).

3. We could also consider a random number of candidates, e.g. SMC algorithms with random numbers of particles (Crisan, Del Moral & Lyons, 1998). However, we refrain from doing so in order to work on a product space \(\tilde{X} = X \times K \times Z \) which greatly simplifies the notation.

We are now ready to define the extended target measure \(\tilde{\gamma} \). Take some stochastic kernel \(\tilde{\Pi} \in \mathcal{K}_1(X, \tilde{Z}) \). The distribution \(\tilde{\Pi}(x, \cdot) \) can then be
used to define the full conditional distribution of \(\bar{Z} \) under the extended target distribution \(\bar{\pi} := \bar{\gamma}/\bar{\psi}(1) \), where we call

\[
\bar{\gamma}(d\bar{x}) := \gamma(dx)\bar{\Pi}(x, d\bar{z})
\]

the extended target measure. Clearly, \(\bar{\gamma} \) admits \(\gamma \) as a marginal. In addition to admitting \(\gamma \) as a marginal, we make the following minimal assumption on this extended target measure.

1.12 Assumption. The stochastic kernel \(\bar{\Pi} \in \mathcal{K}_1(X, \bar{Z}) \) is such that

\[
\bar{X} \sim \bar{\pi} \quad \Rightarrow \quad X^K = X, \text{ almost everywhere.}
\]

Similarly, define an extended proposal distribution

\[
\bar{\psi}(d\bar{x}) := \psi(dz)\xi(z, dk)\delta_{x^k}(dx),
\]

where the probability measure \(\psi \in \mathcal{M}_1(Z) \) and the stochastic kernel \(\xi \in \mathcal{K}_1(Z, K) \) are chosen such that \(\bar{\gamma} \ll \psi \).

1.4.2 Generic Estimator

Let \(\bar{\omega} := d\bar{\pi}/d\bar{\psi} \). Using \(\bar{X} = (X, \bar{Z}) = (X, K, Z) \) drawn from \(\bar{\psi} \), we may approximate the extended measure \(\bar{\gamma} \) by \(\bar{\gamma}^{15,1} := \bar{\omega}(\bar{X})\delta_{\bar{X}} \). This represents an IS approximation of \(\bar{\gamma} \) based on a single sample. Define the \(k \)th ‘weight’

\[
w^{k}(Z) := \mathbb{E}\left[\bar{\omega}(\bar{X}) \mathbbm{1}_{\{k\}(K)} \mid Z \right],
\]

then we may analytically integrate out (‘marginalise out’) some subvector of \(\bar{X} \) which includes \((X, K)\) – for simplicity, we only integrate out \((X, K)\), here – to yield the following [MOSIS] approximation of the marginal measure \(\gamma \),

\[
\gamma^{\text{MOSIS}}_{\text{N}}(A) := \mathbb{E}\left[\gamma^{15,1}(A \times \bar{Z}) \mid Z \right] = \sum_{k \in K} \omega^{k}(Z) \delta_{x^k}(A),
\]
for any $A \in \mathcal{B}(X)$. If desired, a self-normalised approximation of π may then be constructed as

$$\pi_{\text{MOSIS}, N} := \gamma_{\text{MOSIS}, N} = \sum_{k \in K} W^k(Z) \delta_X^k,$$

where $W^k(Z) := w^k(Z)/\tilde{z}_{\text{MOSIS}, N}$ will be called the kth self-normalised weight and $\tilde{z}_{\text{MOSIS}, N} := \gamma_{\text{MOSIS}, N}(\mathbb{1})$ is a standard estimate of the normalising constant, \tilde{z}, and is therefore clearly unbiased.

The estimate of the normalising constant is a key quantity and its variance is strongly connected with the efficiency of the MOSIS scheme due to the following result.

1.13 Proposition. Let $\xi(z, \{n\}) = w^n(z)$, for any $(n, z) \in K \times Z$, then

$$\tilde{w}(\bar{x}) = \tilde{z}_{\text{MOSIS}, N}, \quad \text{for any } \bar{x} \in \bar{X}.$$

Proof. This follows immediately from the definition of $w^n(z)$. \hfill \Box

We stress that while this framework ensures unbiasedness, it does not necessarily ensure consistency because for any $N \in \mathbb{N}$, we are still performing MOSIS with only one sample point. The following trivial counter example demonstrates this problem.

1.14 Example. For some distribution $q \in \mathcal{M}_1(X)$ with $\gamma \ll q$, set

$$\tilde{\Pi}(x, dz) := \text{Unif}_K(dk) \delta_x(d^k \prod_{n \in K \setminus \{k\}} \delta_{X^n}(dx^n)), $$

$$\psi(dx) := q(dx^1) \prod_{n=2}^N \delta_{X^n}(dx^n),$$

and $\xi(z, dk) := \text{Unif}_K(dk)$. Then, writing $w := d\gamma/dq$, the estimator $\gamma_{\text{MOSIS}, N}(f)$ is almost surely equal to $w f(X^1)$, for any $N \in \mathbb{N}$. It is therefore unbiased but clearly not consistent.

Effective Sample Size. Finally, we may use this framework to obtain an approximation of the ESS, which, in this case, is defined according to Equation [1.2] as $\text{ESS} = N \tilde{z}^2 / \tilde{\gamma}(\tilde{w})$. An approximation of ESS is thus

$$\text{ESS}^N = \frac{N(\mathbb{E}[\tilde{\gamma}_{1,1}^{1,1}(\mathbb{1})|Z])^2}{\mathbb{E}[\tilde{\gamma}_{1,1}^{1,1}(\tilde{w})|Z]} = \frac{N[\sum_{k \in K} w^k(Z)]^2}{\sum_{k \in K}[w^k(Z)]^2 / \xi(Z, \{k\})}.$$
1.4 Marginalised One-Sample Importance Sampling

If \(\xi(z, \cdot) = \text{Unif}_{\mathcal{N}_N} \), for any \(z \in \mathcal{Z} \), then this reduces to

\[
\text{ESS}^N = \frac{1}{\sum_{k \in \mathcal{K}} |W^k(\mathcal{Z})|^2}.
\]

1.4.3 Pseudo-Marginal Interpretation

Assume now that the target measure, extended target measure and extended proposal distribution depend on some parameter \(\theta \in \Theta \). We indicate this by writing them as suitable kernels, i.e. by writing \(\gamma(\theta, \cdot), \tilde{\gamma}(\theta, \cdot), \psi(\theta, \cdot) \) and \(d\tilde{\gamma}(\theta, \cdot)/d\psi(\theta, \cdot) = \bar{w}^{\theta} \). Furthermore, let \(\varpi \in \mathcal{M}(\Theta) \) be some finite measure.

Suppose that we want to approximate the following ‘marginal’ measure under the measure \(\varpi \otimes \gamma \), defined by

\[
\gamma^*(A) := \varpi(1_A \psi(\cdot, 1)) = [\varpi \otimes \gamma](A \times X),
\]

for all \(A \in \mathcal{B}(\Theta) \). Unfortunately, the function \(\gamma(\cdot, 1) \) is often intractable. We must therefore resort to approximating it via MOSIS (often within some other Monte Carlo scheme). More precisely, we use some other Monte Carlo scheme to target the extended measure \(\varpi \otimes \tilde{\gamma} \) (which admits \(\gamma^* \) as a marginal) or a normalised version thereof.

1.15 Example (Bayesian posterior, continued).

If \(\pi \) is the (marginal) posterior distribution of some parameter \(\Theta \), then \(L(\theta) = \gamma(\theta, 1) \) is its (marginal) likelihood. This is often intractable if the model is specified through additional latent variables, \(X \), which need to be integrated out to obtain \(\gamma(\theta, 1) \). However, in order to approximate \(\pi = \Psi_L(\varpi) = L \varpi / \varpi(L) \) it usually suffices to approximate the (unnormalised) measure \(L \varpi = \gamma^* \).

This approximation suffices for a self-normalised MCMC approximation of \(\pi \). Or, within MCMC schemes, the normalising constant \(\varpi(L) = \gamma^*(1) \) cancels out in the ‘acceptance probabilities’ (see Chapter 3).

Write \(\tilde{\psi}(\theta, \cdot) := \tilde{\psi}(\theta, \cdot) \circ (\bar{w}^{\theta})^{-1}, \) where \((\bar{w}^{\theta})^{-1}\) denotes the preimage under \(\bar{w}^{\theta} \), then, for all \(A \in \mathcal{B}(\Theta) \), we have the identity

\[
\gamma^*(A) = [\varpi \otimes \tilde{\gamma}](A \times \tilde{X})
= [\varpi \otimes \tilde{T}](1_A \otimes \text{id}_{[0, \infty)})
\]

17
where $V \sim \tilde{T}(\theta, \cdot)$ and $V := [0, \infty)$. Note that for any $\theta \in \Theta$, the random variable V is an (unbiased) IS estimate of $\gamma(\theta, 1)$ and hence

$$
\mathbb{E} \left[\frac{V}{\gamma(\theta, 1)} \right] = 1.
$$

We may thus use some other Monte Carlo scheme to approximate $\sigma \otimes \tilde{\gamma}$ (or its normalised version), based on the proposal distribution $q \otimes \tilde{\psi}$ for some $q \in \mathcal{M}_1(\Theta)$ satisfying $\gamma^* \ll q$. Ideally, we would like work on the marginal space and approximate the marginal γ^* using samples from q. However, this is impossible here because the 'marginal' Radon–Nikodým derivative $d\gamma^*/dq(\theta)$ involves $\gamma(\theta, 1)$ and is therefore intractable.

Instead, we work on the extended space $\Theta \times \bar{X}$ and target $\sigma \otimes \tilde{\gamma}$. Then any realisation (θ, \bar{x}) of $(\Theta, \bar{X}) \sim q \otimes \tilde{\psi}$ implies a corresponding realisation $v = \bar{w}^\theta(\bar{x})$ of $V \sim \tilde{T}(\theta, \cdot)$. As a result,

$$
\frac{d\sigma}{dq}(\theta)\bar{w}^\theta(\bar{x}) = \frac{d\gamma^*}{dq}(\theta)\frac{v}{\gamma(\theta, 1)}
$$

can be viewed as a ‘noisy’ but often tractable (because \bar{w}^θ is tractable) evaluation of the intractable Radon–Nikodým derivative $d\gamma^*/dq(\theta)$.

The interpretation as a noisy evaluation of an intractable marginal density has led to such constructions being termed pseudo-marginal methods. They were introduced by Beaumont (2003), Andrieu and Roberts (2009), extended by Andrieu et al. (2010) and are usually applied within MCMC methods. However, the pseudo-marginal target measure $\sigma \otimes \tilde{\gamma}$ can be approximated by other types of MOSIS schemes, too. For instance, some pseudo-marginal SMC algorithms are mentioned in Subsection 2.3.5.

As mentioned in Example 1.10, an approximation of the marginal measure γ^* obtained from performing IS on the potentially high-dimensional space $\Theta \times \bar{X}$ (with proposal distribution $q \otimes \tilde{\psi}$) can be interpreted as an approximation obtained from performing IS on the potentially lower-dimensional space $\Theta \times V$.

18
1.4.4 Application to Standard Importance Sampling

By construction, [MOSIS] is obviously a special case of (Rao–Blackwellised) [IS] on the extended space \tilde{X}. However, to demonstrate the power of this approach, this subsection shows that [MOSIS] may also be viewed as a generalisation of [IS] on the original space, X.

Let $N \in \mathbb{N}, K = \mathbb{N}_N, X = X^N$, and write $\tilde{Z} = (K, X)$ with the pool of candidates $X = X^{1:N}$. That is, we do not use further auxiliary variables, Y, here. Take

$$\bar{\Pi}(x, d\tilde{z}) := \Lambda(dk)\delta_X(dx^k)q^{\otimes(N-1)}(dx^{-k}).$$

where $X^{-n} := (X^{1:n-1}, X^{n+1:N})$ denotes the pool of candidates from which the nth element has been removed, and set $\Lambda := \text{Unif}_K$. For $\gamma < q \in \mathcal{M}_1(X)$, define the extended proposal distribution via $\psi := q^{\otimes N}$ and $\xi(z, \cdot) := \text{Unif}_K$, for any $z \in Z$.

The importance weight is then given by $\bar{w}(\tilde{x}) = [dy/dq](x) =: w(x)$. Thus $\tilde{y}^{1s,1} := \bar{w}(\tilde{x})\delta_{\tilde{X}}$ represents an [IS] approximation of \tilde{y} based on a single sample point $\tilde{X} \sim \psi$. However, we are only interested in approximating the marginal measure γ. Noting that $w^k(z) = w(x^k)/N$, we may analytically integrate out (X, K) to obtain a Rao–Blackwellised estimator, for any $A \in \mathcal{B}(X)$ defined by

$$\gamma^{\text{MOSIS}, N}(A) = \mathbb{E}\left[\tilde{y}^{1s,1}(A \times Z)\bigg| Z\right] = \sum_{k \in K} w^k(Z)\delta_{X^k}(A)
= \frac{1}{N}\sum_{n=1}^{N} w(X^n)\delta_{X^n}(A)
= \gamma^{1s, N}(A).$$

Hence, [IS] can be viewed as a special case of [MOSIS]. In particular, the approximation of [ESS] reduces to the expression in Equation 1.3:

$$\text{ESS}^N = \frac{\sum_{k \in K} w^k(Z)^2}{\sum_{k \in K}[w^k(Z)]^2} = \frac{\sum_{n=1}^{N} w(X^n)^2}{\sum_{m=1}^{N}[w(X^m)]^2}$$

19
1 Elementary Monte Carlo Tools

1.5 Summary

Of course, the MOSIS framework presented in this chapter is not necessary for justifying a standard IS approximation as that given above.

Its power resides in the fact that it still guarantees unbiased estimates of $\gamma(f)$ when ‘generalising’ standard IS to settings in which

1. the candidates X^1, \ldots, X^N are not necessarily independently or identically proposed, i.e. $\psi \neq q^\otimes N$ for any distribution q,

2. we can evaluate $\tilde{w} = d\tilde{\gamma}/d\tilde{\psi}$ but not necessarily the Radon–Nikodým derivative of γ with respect to a suitable marginal under the joint proposal distribution ψ.

1.16 Remark. Equation [1.4] shows that in the example considered in this subsection, the extended target measure, $\tilde{\gamma}$, is constructed by extending the actual target measure, γ, using the full conditional distribution of the $N - 1$ candidates X^{-k} under the joint proposal distribution ψ. The importance weights therefore force us to evaluate (densities with respect to) the marginal distribution of the kth candidate under ψ. This makes it difficult to use complex joint proposal distributions, e.g. joint proposal distributions under which the candidates are dependent.

The major innovation due to Andrieu and Roberts (2009) – which has received surprisingly little attention and is rarely exploited outside of particle MCMC methods – is the realisation that the extended target measure can also be constructed by extending γ differently. This permits a much more flexible choice of joint proposal distribution. More precisely, following Andrieu and Roberts (2009), we can construct $\tilde{\gamma}$ in such a way that the importance weights only require us to evaluate (densities with respect to) the conditional distribution of the kth candidate under ψ.

Combined with the introduction of the auxiliary variable Y in Andrieu et al. (2010), this realisation turns the MOSIS approach into an extremely powerful instance of the Monte Carlo method.

Other instances of the MOSIS framework – more complicated than the standard IS approximation described in the previous subsection – will be described in the next two chapters. In particular, we show that SMC (Chapter 2) and MCMC (Chapter 3) methods may be viewed as special cases of MOSIS. One possible way of viewing the relationship between IS MOSIS and their special cases is outlined in Figure 1.1.
Figure 1.1 Relationship between various instances of the Monte Carlo method mentioned in Chapters 2 and 3.
2 Sequential Monte Carlo Methods

2.1 Introduction

2.1.1 Motivation

In this chapter, we describe sequential Monte Carlo methods. Section 2.1 outlines a generic sequential Monte Carlo algorithm which admits essentially all known sequential Monte Carlo algorithms as a special case. In Section 2.2, we show that this generic algorithm can itself be viewed as a special case of the marginalised one-sample importance sampling framework introduced in Chapter 1 and thus as importance sampling. This was already established in Andrieu et al. (2010) and extended to non-exchangeable resampling schemes in Lee, Murray and Johansen (in prep.). We extend the latter construction to also allow for biased resampling schemes. In Section 2.3, we interpret a number of sequential Monte Carlo algorithms, such as the discrete particle filter, as special cases of this framework. In Subsection 2.3.3, we generalise and improve existing schemes for re-using all particles to approximate integrals. Finally, in Section 2.4, we show that forward filtering–backward smoothing, too, is a special case of importance sampling.

Sequential Monte Carlo (SMC) methods are a class of Monte Carlo schemes suitable for approximating a sequence of related measures. Dating at least as far back as Stewart and McCarty Jr (1992), Gordon, Salmond and Smith (1993), Del Moral (1995), SMC methods were originally developed to approximate the optimal filtering problem in discrete-time target tracking applications, e.g. in non-linear or non-Gaussian (general state-space) hidden Markov models (HMMs) (sometimes called state-space models). In this particular setting, they are often called ‘particle filters’.

Today, it is well known – and has been formalised in Del Moral et al. (2006b) – that SMC methods are more widely applicable. They have been used for estimating (ratios of) normalising constants (Neal, 2001), for inference in ‘static’ models (Chopin, 2002), for rare-event estimation.
(Cérou, LeGland, Del Moral & Lezaud, 2005), for inference in continuous-
time models (Fearnhead et al., 2010), for optimisation (Johansen, Doucet &
Davy, 2008), for model selection (Peters, 2005; Jasra, Doucet, Stephens &
Holmes, 2008; Yan Zhou, Johansen & Aston, 2013), and for approximately
solving inverse problems (Kantas, Beskos & Jasra, 2014).

A tutorial-style introduction to the area can be found in Doucet and
HMMs can be found in Cappé et al. (2005). A comprehensive theoretical framework
was developed in the monographs Del Moral (2004, 2013) – see also, Del
Moral and Doucet (2014) for a gentle introduction to this framework in
the case of finite state spaces.

Various kinds of SMC algorithms have been developed, each tailored to
individual problems. We detail some of these in Section 2.3. Essentially
any such algorithm can be viewed as special cases of the generic SMC al-
gorithm presented in the next subsection. In turn, as shown in Section 2.2,
the generic SMC algorithm can itself be viewed as no more than a special
case of the marginalised one-sample importance sampling (MOSIS) scheme
described in Chapter 1.

The basic idea of SMC methods is as follows. Assume that we want to
approximate (integrals with respect to) a family of positive finite measures
\((\tilde{\gamma}_t)_{t \in \mathbb{T}}\); usually, \(T = \mathbb{N}_T\), for \(T \in \mathbb{N}\) or \(T = \mathbb{N}\). In this case, we can define
a sequence of extended measures \((\gamma_t)_{t \in \mathbb{T}}\), where \(\gamma_t \in \mathcal{M}(\mathbb{X}_{1:t})\), such that
\(\gamma_t\) admits \(\tilde{\gamma}_t\) as a marginal. As described in Section 1.3 in the previous
chapter, working on such a product space \(\mathbb{X}_{1:t} := \mathbb{X}_t \times \mathbb{X}_{1:t}\), which typically
includes all random variables generated over the course of the algorithm,
is usually necessary to circumvent the calculation of intractable integrals
related to the importance weights.

At Step \(t - 1\), the algorithm approximates \(\gamma_{t-1}\), and thus \(\tilde{\gamma}_{t-1}\), by
weighted samples. To obtain an approximation of \(\gamma_t\), and thus \(\tilde{\gamma}_t\), SMC
methods can be thought of as extending and re-weighting an existing
collection of sample points, often called ‘particles’.

2.1 Remark. To reduce the notational burden, we assume here that the
number of particles generated at Step \(t\), \(N_t \in \mathbb{T}\), is deterministic. However,
all developments in this chapter still hold if it was made a (non-degenerate)
random variable as, for instance, in Crisan et al. (1998); Jasra, Lee, Yau and
Zhang (2013); Lee, Andrieu and Doucet (in prep.).
Here, we have used the following notation.

Let $X_t := X_t^{1:N_t}$ denote the collection of N_t particles which takes values in $\mathbb{X}_t := \mathbb{X}_t^{N_t}$. These are generated at Step t of an SMC algorithm targeting a measure $\gamma_t \in \mathcal{M}(\mathbb{X}_t^{N_t})$, where $\mathbb{X}_t^{\omega} := \mathbb{X}_{s=1}^{\omega} \mathbb{X}_t$. The nth particle at Step s, X_s^n, will be considered as the offspring of the A_t^n th particle generated at Step $t - 1$. We therefore call A_t^n the nth parent index sampled at Step t. For simplicity, we collect the parent indices in vectors $A_{t-1} := A_{t-1}^{1:N_t}$ taking values in $\mathbb{A}_{t-1} := K_{t-1}^{N_t}$, where $K_t := N_t$.

To simplify the notation, we collect all random variables generated by the SMC algorithm at Step t in a vector Z_t. That is, we write $Z_1 := X_1$ and $Z_t := (O_{t-1}, A_{t-1}, X_t)$, for $t > 1$. These take values in the spaces $Z_1 := \mathbb{X}_1$ and $Z_t := O_{t-1} \times A_{t-1} \times \mathbb{X}_t$, for $t > 1$. Here, O_{t-1} is an auxiliary variable taking values in some space O_{t-1}. It will parametrise the proposal and resampling kernels and hence allow us to formalise adaptive resampling schemes, for instance.

After Step $t - 1$, we have already sampled $Z_{1:t-1}$ based on which we have constructed an approximation of γ_{t-1} given by the weighted empirical measure

$$\gamma_{t-1}^{\text{SMC},N_{1:t-1}} := \sum_{n=1}^{N_{t-1}} w_{t-1}^n(Z_{1:t-1}) \delta_{X_{1:t-1}^n}.$$

Here, we have used the following notation.

- $X_{1:t}^{b_{1:t}} = (X_{1}^{b_{1}}, \ldots, X_{t}^{b_{t}})$ denotes the particle path or trajectory associated with some particle indices $b_{1:t}$.
- $B_{1:t|t}^n = (B_{1|1}^n, \ldots, B_{t|t}^n)$ represents the particle indices formed by tracing back the nth ancestral lineage at Step t (as determined by the parent indices $A_{1:t-1} = (A_1, \ldots, A_{t-1})$), i.e. $B_{t|t}^n = n$ and

$$B_{s|t}^n = A_{s} B_{s+1|t}^n, \quad \text{for } s < t.$$

- $w_{t-1}^n(z_{1:t-1}) \in [0, \infty)$ is a weight associated with the nth particle path at Step t. As before, we use this terminology even though these ‘weights’ do not sum to 1, in general. The corresponding self-normalised weights are denoted $W_{t-1}^n(z_{1:t-1}) := w_{t-1}^n(z_{1:t-1}) / \left[\sum_{n=1}^{N_{t-1}} w_{t-1}^n(z_{1:t-1}) \right]$.

2.1.2 Particles and Parent Indices

Let $X_t := X_t^{1:N_t}$ denote the collection of N_t particles which takes values in $\mathbb{X}_t := \mathbb{X}_t^{N_t}$. These are generated at Step t of an SMC algorithm targeting a measure $\gamma_t \in \mathcal{M}(\mathbb{X}_t^{N_t})$, where $\mathbb{X}_t^{\omega} := \mathbb{X}_{s=1}^{\omega} \mathbb{X}_t$. The nth particle at Step s, X_s^n, will be considered as the offspring of the A_t^n th particle generated at Step $t - 1$. We therefore call A_t^n the nth parent index sampled at Step t. For simplicity, we collect the parent indices in vectors $A_{t-1} := A_{t-1}^{1:N_t}$ taking values in $\mathbb{A}_{t-1} := K_{t-1}^{N_t}$, where $K_t := N_t$.

To simplify the notation, we collect all random variables generated by the SMC algorithm at Step t in a vector Z_t. That is, we write $Z_1 := X_1$ and $Z_t := (O_{t-1}, A_{t-1}, X_t)$, for $t > 1$. These take values in the spaces $Z_1 := \mathbb{X}_1$ and $Z_t := O_{t-1} \times A_{t-1} \times \mathbb{X}_t$, for $t > 1$. Here, O_{t-1} is an auxiliary variable taking values in some space O_{t-1}. It will parametrise the proposal and resampling kernels and hence allow us to formalise adaptive resampling schemes, for instance.

After Step $t - 1$, we have already sampled $Z_{1:t-1}$ based on which we have constructed an approximation of γ_{t-1} given by the weighted empirical measure

$$\gamma_{t-1}^{\text{SMC},N_{1:t-1}} := \sum_{n=1}^{N_{t-1}} w_{t-1}^n(Z_{1:t-1}) \delta_{X_{1:t-1}^n}.$$

Here, we have used the following notation.

- $X_{1:t}^{b_{1:t}} = (X_{1}^{b_{1}}, \ldots, X_{t}^{b_{t}})$ denotes the particle path or trajectory associated with some particle indices $b_{1:t}$.
- $B_{1:t|t}^n = (B_{1|1}^n, \ldots, B_{t|t}^n)$ represents the particle indices formed by tracing back the nth ancestral lineage at Step t (as determined by the parent indices $A_{1:t-1} = (A_1, \ldots, A_{t-1})$), i.e. $B_{t|t}^n = n$ and

$$B_{s|t}^n = A_{s} B_{s+1|t}^n, \quad \text{for } s < t.$$

- $w_{t-1}^n(z_{1:t-1}) \in [0, \infty)$ is a weight associated with the nth particle path at Step t. As before, we use this terminology even though these ‘weights’ do not sum to 1, in general. The corresponding self-normalised weights are denoted $W_{t-1}^n(z_{1:t-1}) := w_{t-1}^n(z_{1:t-1}) / \left[\sum_{n=1}^{N_{t-1}} w_{t-1}^n(z_{1:t-1}) \right]$.

25
2 Sequential Monte Carlo Methods

At Step t, to obtain an approximation of y_t,

$$y_t^{SMC, N_{t-1}} := \sum_{n=1}^{N_t} w^n_t(Z_{1:t}) \delta_{X^n_{1:t} | Y^n_{1:t}}.$$

SMC algorithms sample additional particles, parent indices and potentially other auxiliary random variables, all collected in the ordered set Z_t, from a particular stochastic kernel $\Psi_t \in \mathcal{K}_1(Z_{1:t-1}^X, Z_t)$ defined below. The extended set of samples $Z_{1:t}$ is then used to construct a new collection of weights, $(w^n_t(z_{1:t}))_{n \in K_t}$. In many cases, the computational cost of sampling the additional random variables and of computing the new weights is constant in t. This constant cost per step makes SMC methods particularly beneficial in settings in which sequences of measures need to be approximated under computational constraints, e.g. in real-time object-tracking applications.

The conditional distribution of the random variables generated at Step t is then given by the stochastic kernel

$$\Psi_t(z_{1:t-1}, dz_t) := S_{t-1}(z_{1:t-1}, d\omega_{t-1}) R_{t-1}(z_{1:t-1}, o_{t-1}, da_{t-1}) \times Q_t((z_{1:t-1}, o_{t-1}, a_{t-1}), dx_t).$$

The individual components of this kernel are as follows. Some examples of these quantities are discussed in Section 2.3:

- $R_{t-1} \in \mathcal{K}_1(Z_{1:t-1}^X \times O_{t-1}, A_{t-1})$ generates the parent indices A_{t-1}, a process usually known as resampling (see Remark 2.2 in the next subsection for a more precise explanation of the terminology).
- $Q_t \in \mathcal{K}_1(Z_{1:t-1}^X \times O_{t-1} \times A_{t-1}, X_t)$, for $t > 1$, generates new particles at Step t. It is commonly referred to as the (particle) proposal kernel. At Step 1, X_1 is sampled from some suitable proposal distribution $q_1 \in M_1(X_1)$.
- $S_{t-1} \in \mathcal{K}_1(Z_{1:t-1}^X, O_{t-1})$ generates an auxiliary variable O_{t-1} which governs the type of resampling or proposal kernel chosen at Step t.

2.1.3 Resampling

2.2 Remark. We use the convention that ‘not resampling’ at Step $(s+1)$ of an SMC algorithm refers to the case that $R_s((z_{1:s}, o_s), \cdot) = \delta_{(1, \ldots, N_s)}$.
(assuming that $N_s = N_{s+1}$). Otherwise, the non-degenerate distribution $R_s(z_{1:s}, \cdot)$ from which the parent indices A_s are sampled will be called a resampling scheme. The latter could also depend on the auxiliary variable O_s but we do not make this explicit to keep the notation concise.

Some common resampling schemes, such as multinomial, stratified, and systematic resampling, are outlined in Appendix A and Cappé, Godsill and Moulines (2007) provide an overview. The following definition are given by (e.g. Andrieu et al., 2010, Equations 23 and 24).

2.3 Definition. Let $A_s \sim \bar{R}_s(Z_{1:s}, \cdot)$.

(1) The resampling scheme \bar{R}_s is called unbiased if

$$\mathbb{E}\left[\sum_{n=1}^{N_{s+1}} 1_{(m)}(A^n_s) \mid Z_{1:s}, O_s\right] = N_{s+1} W^m_s(Z_{1:s}).$$

for all $m \in K_s$.

(2) The resampling scheme \bar{R}_s is called exchangeable if

$$\mathbb{E}\left[1_{(m)}(A^n_s) \mid Z_{1:s}, O_s\right] = \mathbb{E}\left[1_{(m)}(A^k_s) \mid Z_{1:s}, O_s\right],$$

for all $(m, n, k) \in K_s \times K^2_s$.

2.4 Remark. Informally, unbiased resampling schemes yield a new set of samples which still target the same measure as before but whose weights are all equal. In contrast, in our terminology, ‘biased’ resampling schemes do not lead to equally weighted samples. We stress that using ‘biased’ resampling schemes does not jeopardise the unbiasedness of SMC-based estimates of integrals of the form $\gamma_t(f)$ (as long as the post-resampling weights take the resampling scheme into account).

Although unbiased resampling schemes are common in practice, the generic framework developed in this chapter shows that neither unbiasedness nor exchangeability is actually needed for valid SMC algorithms, i.e. needed for SMC algorithms that yield unbiased estimates of integrals of the form $\gamma_t(f)$. Indeed, unbiasedness may not even be desirable, as the following examples show.
2 Sequential Monte Carlo Methods

2.5 Example (‘biased’ resampling schemes). In the some situations, it can be beneficial to use biased resampling schemes (as stressed in Remark 2.4 their use does not introduce any bias into SMC-based estimates).

1. The discrete particle filter from Fearnhead (1998) described in Subsection 2.3.4 employs a biased resampling scheme which is optimal for finite state spaces.

2. A biased resampling scheme called ‘chopthin’ resampling was introduced in Gandy and Lau (2015) and is related to that of Fearnhead (1998). It appears to empirically outperform ‘unbiased’ resampling schemes such as systematic resampling in simple state-space models. Intuitively, the ‘unbiasedness’ property (i.e. yielding evenly-weighted samples) may be stronger than what is actually needed to ensure stability of the algorithm and may require the introduction of too much Monte Carlo error. Further theoretical investigation of this issue is clearly needed.

3. Assume the number of particles is constant, i.e. \(N_t = N \) for some \(N \in \mathbb{N} \). If the weights at the end of Step \(t \) do not depend on \(Z_t \), then it can be beneficial to use a resampling scheme which is biased, in the sense that it is based on the particle weights from the current step, \(W^n_t(Z^n_t) \), rather than those from the previous step, \(W^n_{t-1}(Z^n_{t-1}) \), e.g. a resampling scheme such that for any \(m \in \mathcal{K}_s \),

\[
\mathbb{E} \left[\sum_{n=1}^{N} 1_{\{m\}}(A^n_{t-1}) \left| Z^n_{1:t-1}, O_{t-1} \right. \right] = NW^n_t(Z^n_t).
\]

This is often viewed as ‘switching the order’ of sampling and resampling.

4. More generally, biased resampling schemes permit incorporating ‘future information’ into the particle system (Wang, Chen & Guo, 2002; Lin, Chen & Liu, 2013). Other potential benefits are mentioned in Liu (2001, p. 73).

2.1.4 Generic Algorithm

Let \(F_t \) be a collection of \(\gamma_t \)-integrable test functions and assume that we want to approximate \(\gamma_t(f_t) \). In this subsection, in Algorithm 2.6, we summarise the generic SMC scheme developed above. As already mentioned, essentially any SMC algorithm can be viewed as a special case
of this algorithm. The next section shows that this algorithm can itself be viewed as a special case of the MOSIS scheme from the previous chapter.

2.6 Algorithm (sequential Monte Carlo). At Step \(t \in \mathbb{N} \),

1. sample \(Z_t \sim \Psi_t(z_{1:t-1}, \cdot) \),
2. calculate the (updated) weights \((w^n_t(Z_{1:t}))_{n \in \mathbb{N}} \),
3. approximate \(\gamma_t(f_t) \) by \(\gamma_{t, N_{1:t}}^{\text{SMC}}(f_t) \), for \(f_t \in F_t \).

As in the previous chapter, the usual SMC approximation of the probability measure \(\pi_t = \gamma_t / \gamma_t(\mathbb{1}) \) results from taking the self-normalised version of \(\gamma_{t, N_{1:t}}^{\text{SMC}} \) and hence approximating \(\pi_t \) by

\[
\pi_t^{\text{SMC}, N_{1:t}} := \gamma_{t, N_{1:t}}^{\text{SMC}} / \gamma_t^{\text{SMC}, N_{1:t}}(1) = \sum_{n=1}^{N_t} w^n_t(Z_{1:t}) \delta^n_{X_{t+1:t+1}},
\]

recalling that \(w^n_t(z_{1:t}) = w^n_t(z_{1:t}) / \tilde{\gamma}_{t, N_{1:t}}^{\text{SMC}} \) is the \(n \)th self-normalised Step-\(t \) particle weight. Furthermore,

\[
\tilde{\gamma}_{t, N_{1:t}}^{\text{SMC}} := \gamma_{t, N_{1:t}}^{\text{SMC}}(1) = \sum_{n=1}^{N_t} w^n_t(Z_{1:t})
\]

is the usual SMC estimate of the normalising constant. This estimate is unbiased – a famous result first proved by Del Moral (1996) using martingale techniques. However, this result also follows trivially from the interpretation of SMC as IS described in the next section.

In the remainder of this chapter, we show that a number of well-known SMC algorithms can be viewed as special cases of the generic algorithm presented in this section. First, however, we show that the generic SMC algorithm is itself a special case of MOSIS

2.2 Interpretation as Marginalised One-Sample Importance Sampling

2.2.1 Extended Proposal Distribution

In this section, we introduce SMC methods as a special case of the MOSIS framework described in Chapter 3. Given a target measure \(\gamma_t \in \mathcal{M}(X_{1:t}^\infty) \),
we construct an extended target measure \(\tilde{\gamma}_t \in \mathcal{M}(\tilde{X}_t) \) and extended proposal distributions \(\tilde{\psi}_t \in \mathcal{M}_1(\tilde{X}_t) \) such that

- \(\tilde{\gamma}_t \) admits \(\gamma_t \) (and hence \(\tilde{\gamma}_t \)) as a marginal,
- we can sample from \(\tilde{\psi}_t \),
- \(\bar{w}_t := d\tilde{\gamma}_t/d\tilde{\psi}_t \) exists and can be evaluated point-wise.

The usual SMC approximation of \(\gamma_t, \gamma_t^{\text{SMC}, N_{t:t}} \), can then be obtained by Rao–Blackwellising \(\tilde{\gamma}_t^{\text{S}, 1} \), where the latter is an IS approximation of \(\tilde{\gamma}_t \) based on a single sample point \(\tilde{X}_t \sim \tilde{\psi}_t \).

This interpretation of SMC methods as a special case of MOSIS was developed – though not stated explicitly – in the seminal work by Andrieu et al. (2010). The explicit construction here closely follows Lee, Murray and Johansen (in prep.) whose work allows for adaptive resampling schemes and removes the need for resampling schemes to be exchangeable. Here, we take an even more general approach which also abolishes the need for resampling schemes to be unbiased. For instance, this was suggested as a desirable extension by R. Chen (2010). We show that the approach preserves exactness of the algorithm in the sense of unbiasedly estimating integrals with respect to the unnormalised target distribution, i.e. integrals of the form \(\int f_t / \tilde{\psi}_t \). We first note that the distribution of all random variables generated by an SMC algorithm up to Step \(t \) is given by \(\psi_t := q_t \in \mathcal{M}_1(\mathcal{Z}_t) \), if \(t = 1 \), and, for \(t > 1 \),

\[
\psi_t := \psi_{t-1} \otimes \psi_t = \psi_1 \otimes \psi_{2:t} \in \mathcal{M}_1(\mathcal{Z}_{1:t}).
\] (2.1)
The extended proposal distribution can then be defined as
\[
\tilde{\psi}_t := \psi_t \otimes \mathcal{E}_t \in \mathcal{M}_1(\tilde{X}_t).
\]
Here, \(\mathcal{E}_t \in \mathcal{K}_t(Z_{1:t}, X_{1:t} \times K_{1:t}^\times) \) is a stochastic kernel given by
\[
\mathcal{E}_t(z_{1:t}, du_{1:t} \times db_{1:t}) := \xi_{t|t}(z_{1:t}, db_t) \left[\prod_{s=1}^{t-1} \delta_{a_s b_{s+1}}(db_s) \right] \delta_{x_{1:t}^\times}(du_{1:t}), \tag{2.2}
\]
where \(\xi_{t|t} \in \mathcal{K}_t(Z_{1:t}, K_t) \) is some stochastic kernel used for sampling the Step-\(t \) particle index, \(B_t \).

As shown later in this section, the SMC approximation of \(\gamma_t \) is obtained through a Rao–Blackwellisation step which analytically integrates out \((B_{1:t}, U_{1:t})\) given \(Z_{1:t} \). Hence, by Equation 2.1.1 we therefore actually only need to sample \(Z_t \sim \tilde{\psi}_t(z_{1:t-1}, \cdot) \) at Step \(t \) and this typically has computational complexity \(\mathcal{O}(N_{t-1} \lor N_t) \).

2.2.2 Extended Target Measure

In this subsection, we define an extended measure \(\tilde{\gamma}_t \) under a normalised version of which a collection of random variables \(U_{1:t} \) — which coincides with the particle path with indices \(B_{1:t} \) at Step \(t \) — is marginally distributed according to \(\pi_t = \gamma_t / \gamma_t(1) \). Write \(\tilde{Z}_t := (B_{1:t}, Z_{1:t}) \). With some abuse of notation pertaining to the order of the components of \(\tilde{X}_t \), the extended target measure is
\[
\tilde{\gamma}_t(d\tilde{x}_t) = \gamma_t(du_{1:t})\tilde{\Pi}^{\text{CSMC}}_t(u_{1:t}, d\tilde{z}_t), \tag{2.3}
\]
where the stochastic kernel \(\tilde{\Pi}^{\text{CSMC}}_t \in \mathcal{K}_t(X_{1:t}^\times, \tilde{Z}_t) \), for \(\tilde{Z}_t := K_{1:t}^\times \times Z_{1:t}^\times \), is given by
\[
\tilde{\Pi}^{\text{CSMC}}_t(u_{1:t}, d\tilde{z}_t) := \tilde{\Pi}^{\text{CSMC}}_{1|t}(u_{1:t}, db_1 \times dz_1)
\times \prod_{s=2}^{t} \tilde{\Pi}^{\text{CSMC}}_{s|t}((u_{1:t}, b_{1:s-1}, z_{1:s-1}), db_s \times dz_s), \tag{2.4}
\]
2 Sequential Monte Carlo Methods

with

\[\tilde{\Pi}_{i|t}^{\text{CSMC}}(u_{1:t}, \, \db_1 \times \, \db_1) := A_1(u_1, \, \db_1) \delta_{U_1}(\, dx_1^{b_1}) q_1^c((b_1, \, x_1^{b_1}), \, dx_1^{-b_1}) \]

and

\[\tilde{\Pi}_{s|t}^{\text{CSMC}}((u_{1:t}, \, b_{1:s-1}, \, z_{1:s-1}), \, \db_s \times \, \db_s) := S_{s-1}(z_{1:s-1}, \, \db_{s-1}) \delta_{b_{s-1}}(\, da_{s-1}^{b_s}) \delta_{u_s}(\, dx_s^{b_s}) \times A_s((u_{1:s}, \, z_{1:s-1}, \, o_{s-1}, \, a_{s-1}^{b_s}), \, \db_s) \times R_{s-1}^c((z_{1:s-1}, \, o_{s-1}, \, b_s, \, a_{s-1}^{b_s}), \, da_{s-1}^{b_s}) \times Q_{s}^c((z_{1:s-1}, \, o_{s-1}, \, a_{s-1}, \, b_s, \, x_s^{b_s}), \, dx_s^{-b_s}). \]

Here, we have defined the following quantities.

- \(\Lambda_S \in \mathcal{K}_1(\mathbf{X}_{1:s}^{n} \times \mathbf{Z}_{1:s-1}^{n} \times O_{s-1} \times A_{s-1}, K_s) \) induce a distribution over the particle indices \(B_{1:t} \). A common, valid choice for these kernels is given in Assumption 2.9 in the next subsection.

- \(R_{s-1}^c((z_{1:s-1}, \, o_{s-1}, \, n, \, a_{n-1}^{s-1}), \cdot) \) is the conditional distribution of the parent indices \(A_{s-1}^{-n} := (A_{s-1}^{1:n-1}, A_{s-1}^{n+1:N_s}) \) under \(R_{s-1}((z_{1:s-1}, \, o_{s-1}), \cdot) \) given that the \(n \)th parent index equals \(a_{s-1}^{n} \).

- \(Q_{s}^c((z_{1:s-1}, \, o_{s-1}, \, a_{s-1}, \, n, \, x_{s}^{n}), \cdot) \) is the conditional distribution of the particles \(X_{s}^{-n} := (X_{s}^{1:n-1}, X_{s}^{n+1:N_s}) \) under \(Q_{s}((z_{1:s-1}, \, o_{s-1}, \, a_{s-1}), \cdot) \) given that the \(n \)th particle is equal to \(x_{s}^{n} \). The conditional distribution \(q_1^c \) is similarly defined.

2.7 Remark. The kernel \(\tilde{\Pi}_{i|t}^{\text{CSMC}} \) is a so-called conditional sequential Monte Carlo (CSMC) kernel introduced by Andrieu et al. (2010). Though, despite this name, neither \(\tilde{\Pi}_{i|t}^{\text{CSMC}}(u_{1:t}, \cdot) \) nor any of its marginals are usually conditional distributions relative to \(\psi_t \). Using this kernel frees us from having to evaluate (a density with respect to) the marginal proposal distribution of a single particle path – which is usually intractable – when evaluating the importance weights in the next subsection (see Remark 1.16).

Sampling according to the kernel \(\tilde{\Pi}_{i|t}^{\text{CSMC}} \) is necessary within particle Gibbs samplers described in Section 3.4. More importantly, though, Equation 2.3 demonstrates that \(\tilde{\Pi}_{i|t}^{\text{CSMC}} \) is a crucial ingredient in the particular justification of SMC algorithms which we have presented here.
2.2 Interpretation as Importance Sampling

2.2.3 Importance Weights

For the moment, our aim is to approximate \(\hat{\gamma}_t \) via [IS] using the proposal distribution \(\hat{\psi}_t \). The Rao–Blackwellisation described in the next subsection then leads to the usual SMC approximation of \(\gamma_t \). We must therefore ensure that the Radon–Nikodým derivative

\[
\bar{w}_t(\tilde{x}_t) := \frac{d\hat{\gamma}_t}{d\hat{\psi}_t}(\tilde{x}_t)
\]

\[
= \mathbb{1}_{\{u_{l,t}\}}(x_{1:t}^{b_{l:t}}) \frac{\gamma_1(du_1) A_1(u_1, \{b_1\})}{\xi_{1:t}(z_{1:t}, \{b_1\}) q_1^a(b_1, du_1)} \times \prod_{s=2}^t A_s((u_{1:s}, z_{1:s-1}, o_{s-1}, b_{s-1}), \{b_s\}) \mathbb{1}_{\{b_{s-1}\}}(a_{s-1}^{b_{s-1}}) \frac{R_{s-1}^m((z_{1:s-1}, o_{s-1}, b_1), \{b_{s-1}\})}{\Gamma_s(u_{1:s-1}, du_s)} \times \frac{Q_s^m((z_{1:s-1}, o_{s-1}, a_{s-1}, b_s), du_s)}{Q_s^m((z_{1:s-1}, o_{s-1}, a_{s-1}, b_s), du_s)}
\]

(2.5)

is well defined. Here, we have slightly abused notation by writing Radon–Nikodým derivatives as \(\mu(dx)/\nu(dx) := [d\mu/d\nu](x) \), for any two measures \(\mu \ll \nu \), and where we have defined the following quantities.

- \(\Gamma_s \in \mathcal{K}(X_{1:s-1}^s, X_s) \) is a kernel which extends the Step-(s − 1) target measure to the Step-s target measure, i.e. it satisfies \(\gamma_{s-1} \otimes \Gamma_s = \gamma_s \).
- \(R_{s-1}^m((z_{1:s-1}, o_{s-1}, n), \cdot) \) denotes the ‘marginal’ distribution of the \(n \)th parent index under \(R_{s-1}((z_{1:s-1}, o_{s-1}), \cdot) \).
- \(Q_s^m((z_{1:s-1}, o_{s-1}, a_{s-1}, n), \cdot) \) denotes the ‘marginal’ distribution of the \(n \)th particle under \(Q_s((z_{1:s-1}, o_{s-1}, a_{s-1}), \cdot) \). The marginal Step-1 proposal distribution \(q_1^a(b_1, \cdot) \) is similarly defined.

2.8 Remark. The kernels \(R_{s-1}^m \) and \(Q_s^m \) induce marginal distributions only in the sense that they do not condition on the other parent indices or particles generated at Step \(s \). They generally still depend on all the auxiliary variables, parent indices and particles sampled at previous steps. Indeed, this is why the ‘conditional’ SMC kernel does not represent a (full) conditional distribution under the distribution induced by the SMC algorithm as pointed out in Remark 2.7 (see also Remark 1.16).

We will comment on particular choices for the kernels and measures guaranteeing the existence of the above importance weight in Section 2.3.
Distribution Over Particle Indices. The kernels Λ_s introduced in the previous subsection need to be chosen carefully to preserve absolute continuity, especially if a non-exchangeable resampling scheme is used.

A generally applicable choice considered in Lee, Murray and Johansen (in prep.), which is also implicitly used by most SMC algorithms, is to let Λ_s be a time-reversal kernel of some stochastic kernel $\kappa_s \in \mathcal{K}_1(\mathbb{X}_1^t, \mathbb{K}_s)$ (which defines a distribution over B_t) under R_{s-1}^m, as defined in Assumption 2.9.

2.9 Assumption. $A_1 := \kappa_1$ and, for $s > 1$,

$$A_s((u_{1:s}, z_{1:s-1}, o_{s-1}, a_{s-1}^{b_{s-1}}), \{b_s\}) = \frac{R_{s-1}^m((z_{1:s-1}, o_{s-1}, b_s), \{a_{s-1}^{b_s}\})\kappa_s(u_{1:s}, \{b_s\})}{\sum_{n=1}^{N_s} \kappa_s(u_{1:s}, \{n\})R_{s-1}^m((z_{1:s-1}, o_{s-1}, n), \{a_{s-1}^{n}\})}, \quad (2.6)$$

It often suffices to let $\kappa_s(u_{1:s}, \cdot) \equiv \text{Unif}_{K_s}$. However, more complex kernels are sometimes needed to ensure absolute continuity in Equation 2.5. For instance, a more complex kernel κ_s is needed in the discrete particle filter summarised in Subsection 2.3.4. The main advantage of the time-reversal kernel is that the importance weight in Equation 2.5 depends on the resampling distribution only through the denominator in Equation 2.6. Hence, it is usually not necessary to require the resampling scheme to be exchangeable – even if we cannot evaluate the distribution implied by R_{s-1}^m. For instance, if we use an unbiased resampling scheme and if $\kappa_s(u_{1:s}, \cdot) := \text{Unif}_{K_s}$, then R_{s-1}^m drops out in the importance weights from Equation 2.5 because

$$\frac{A_s((u_{1:s}, z_{1:s-1}, o_{s-1}, b_{s-1}), \{b_s\})}{R_{s-1}^m((z_{1:s-1}, o_{s-1}, b_s), \{b_{s-1}\})} = \begin{cases} 1/W_{s-1}^{b_{s-1}}(z_{1:s-1}), & \text{if we resample at Step } s, \\ \mathbb{1}_{\{b_{s-1}\}}(b_s), & \text{otherwise.} \end{cases}$$

However, note that sampling according to A_s (which depends on R_{s-1}^m) and R_{s-1}^c is still required when sampling from the CSMC kernel. For various common resampling schemes, R_{s-1}^m and R_{s-1}^c are derived in Lee, Murray and Johansen (in prep.) and for completeness, they are also stated in Appendix A of this work.
2.2 Interpretation as Importance Sampling

2.2.4 Rao–Blackwellisation

Let \(\gamma_t^{1s,1} := \tilde{w}_t(X) \delta_{X_t} \) be an IS approximation of the extended target measure \(\gamma_t \) based on a single sample \(X_t = (U_{1:t}, B_{1:t}, Z_{1:t}) \sim \tilde{\psi}_t \).

Of course, we are only interested in approximating the marginal \(\gamma_t \) of \(\gamma_t^{1s,1} \). The usual SMC approximation of this marginal measure, \(\gamma_t^{SMC,N_{t:1}} \), can be obtained by Rao–Blackwellising \(\gamma_t^{1s,1} \) as described in Lee, Murray and Johansen (in prep.).

More precisely, note that

\[
 w_{b_{1:t}}^n (Z_{1:t}) := \mathbb{E}[\tilde{w}_t(X) \mathbbm{1}_{(b_{1:t},B_{1:t}]}(B_{1:t}) | Z_{1:t}]
\]

is non-zero only if \(b_{1:t} \) coincides with a particle lineage under the SMC algorithm, i.e. if \(b_{1:t} = B_{1:t}^n \), for some \(n \in K_t \). We can therefore identify \(N_t \) (unnormalised) Step-\(t \) particle weights, for \(n \in K_t \), as

\[
 w^n_t (Z_{1:t}) := w_{b_{1:t}}^n (Z_{1:t}).
\]

For any \(A \in \mathcal{B}([X_{1:t}]_d) \), a MOSIS approximation of \(\gamma_t(A) \) is thus given by

\[
 \gamma_t^{MOSIS,N_{t:1}} (A) = \mathbb{E} [\gamma_t^{1s,1} (A \times Z_t) | Z_{1:t}]
 = \sum_{b_{1:t} \in K_{1:t}} u_{b_{1:t}}^t (Z_{1:t}) \delta_{X_{1:t}}^{b_{1:t}} (A)
 = \sum_{n=1}^{N_t} w^n_t (Z_{1:t}) \delta_{X_{1:t}}^{b_{1:t}} (A)
 = \gamma_t^{SMC,N_{t:1}} (A).
\]

The above construction immediately implies that the SMC estimate of the normalising constant, \(\gamma_t^{SMC,N_{t:1}} = \gamma_t^{SMC,N_{t:1}} (1) = \gamma_t^{1s,1} (1) \), is a (one-sample) IS estimate and is therefore unbiased. Nonetheless, we stress again that the unbiasedness property alone does not ensure estimates that are useful in practice, i.e. estimates whose error can be controlled. Conditions under which this is guaranteed are summarised in Subsection 2.2.5.

Finally, recall that \(\tilde{w}_t = d\gamma_t / d\tilde{\psi}_t \). For later reference, we state the following slight generalisation of Andrieu et al. (2010, Theorem 2) (but which is really just a special case of Proposition 1.13).
2 Sequential Monte Carlo Methods

2.10 Proposition. Assume that
\[\xi_t(z_{1:t}, \{n\}) = W_t^n(z_{1:t}), \]
for any \((n, z_{1:t}) \in K_t \times Z_t^\infty\), then
\[\bar{w}_t(\tilde{x}_t) = \bar{z}_t^{SMC,N_{1:t}}, \quad \text{for any } \tilde{x}_t \in \tilde{X}_t. \]

Proof. This follows immediately from the definition of \(w_t^n(z_{1:t})\). \qed

2.2.5 Theoretical Results

In this subsection, we briefly summarise some of the available theoretical results for estimates obtained from SMC algorithms. Throughout, we assume that \(N_1 = N_2 = \ldots = N\), for simplicity.

Specific Test Function. SMC methods are particularly suited to approximating integrals of the form \(\pi_t(f_t)\), where \(\pi_t := \gamma_t/\gamma_t(1)\) and
\[f_t := 1_{X_{t,t-1}} \otimes f_{t,t}. \]
Here, \(f_{t,t}\) is some suitable real-valued test function with domain \(X_t\). For such a test function (and for suitably ergodic kernels \(\Gamma_s\)) we are essentially performing IS on a space of constant dimension (if \(X_s = X_t\), for \(s, t \in T\)). We assume such a test function in our statements of the theoretical results below. Most of these results can be readily generalised to vector-valued functions, e.g. by Cramér–Wold type arguments.

Non-Asymptotic Error Bounds. For instance, for such test functions, and for various SMC algorithms, non-asymptotic (in \(N\)) uniform-in-\(t\) \(L_p\) error bounds have been established, i.e. if \(f_{t,t}\) is bounded (and under further ‘strong mixing assumptions’ on the kernels \(\Gamma_s\)) Del Moral and Miclo (2000) and Del Moral (2004) Theorem 7.4.4) show that
\[\sup_{t \in T} E\left[\left(\pi_t^{SMC,N_{1:t}}(f_t) - \pi_t(f_t) \right)^p \right]^{1/p} \leq \frac{c(p)}{N}, \]
where \(c(p) > 0\) is some finite constant which does not depend on \(N\).
2.2 Interpretation as Importance Sampling

Central Limit Theorems. Del Moral and Guionnet (1999), as well as Del Moral (2004, Section 9.4.2) and also Chopin (2004), Künsch (2005) establish CLTs for the asymptotic behaviour (as \(N \to \infty \)) of the error at Step \(t \), i.e. they show that

\[
\sqrt{N} \left[\pi_t^{\text{SMC}, N_{1:t}} (f_t) - \pi_t(f_t) \right] \xrightarrow{N \to \infty} Z \sim \mathcal{N}_0, \sigma_t(f_t),
\]

in distribution, again under certain regularity conditions. They also provide explicit analytical expressions for the asymptotic variance, \(\sigma_t(f_t) \).

In particular, Del Moral and Guionnet (2001), Chopin (2004), Douc and Moulines (2008) obtain uniform-in-\(t \) bounds on \(\sigma_t(f_t) \). Finally, Beskos, Jasra and Thiéry (2014) extend such CLTs to a more general class of adaptive SMC algorithms.

Normalising-Constant Estimates. As indicated by Proposition 2.10, the properties of the SMC-based estimate of the normalising constant \(\tilde{\gamma}_t \), \(\tilde{\gamma}_t^{\text{SMC}, N_{1:t}} \), are strongly related to the performance of SMC methods. In particular, it is important to obtain precise estimates of the normalising constant when using SMC methods as part of a pseudo-marginal approach, e.g. when using one of the pseudo-marginal SMC methods mentioned in Subsection 3.3.5 or when employing the particle marginal Metropolis–Hastings algorithm mentioned in Subsection 3.3.4.

Again under strong mixing assumptions, Cérou, Del Moral and Guyader (2011) show that the non-asymptotic (in \(N \)) relative variance of the SMC-based estimate of normalising constant, i.e. the variance of \(\tilde{\gamma}_t^{\text{SMC}, N_{1:t}} / \tilde{\gamma}_t \), grows linearly in the step number. More formally, Cérou et al. (2011) Theorem 5.1 shows that

\[
N > c(t) \quad \Rightarrow \quad \mathbb{V} \left[\frac{\tilde{\gamma}_t^{\text{SMC}, N_{1:t}}}{\tilde{\gamma}_t} \right] = \mathbb{E} \left[\left(\frac{\tilde{\gamma}_t^{\text{SMC}, N_{1:t}}}{\tilde{\gamma}_t} - 1 \right)^2 \right] \leq \frac{c(t)}{N},
\]

where \(c(t) > 0 \) is a constant which depends on the kernels \(\Gamma_\delta \) and which, in many settings, can be shown to grow linearly in \(t \).

Relaxed Assumptions. Most of the above-mentioned results are obtained under strong mixing assumptions which essentially require the state space \(X_t \) to be compact. Much research has recently been devoted to relaxing this assumption. See, for instance, Jasra and Doucet (2008), Whiteley (2012), Douc, Moulines and Olsson (2014), Whiteley (2013).
Extension to General Test Functions. For more general test functions than \(f_t \) defined above, CLTs typically still hold. This can easily be seen by working on the path space. However, uniform-in-\(t \) error bounds non-asymptotic error bounds or uniform-in-\(t \) bounds on the asymptotic variance can almost never be established unless the test function is constant in all but a uniformly bounded history of the spaces \(X_1, \ldots, X_t \).

2.3 Some Important SMC Algorithms

2.3.1 Simple SIR Algorithm

In this section, we discuss various standard algorithms which can be obtained as special cases of Algorithm \(\text{Algorithm 2.6} \). First, in this subsection, we define a simple algorithm which we call sequential importance resampling for the purpose of this work. Many widely used algorithms – some of which are outlined in this section – are variants of this algorithm as pointed out in Doucet and Johansen (2011). However, there are also some algorithms, such as the discrete particle filter described in Section \(\text{Section 2.3.4} \), which are not.

2.11 Definition (sequential importance resampling). An instance of the generic algorithm is called sequential importance resampling (SIR) if for all \(s \in T, z_{1:s} \in Z_{1:s}^\infty \), the following holds.

1. The auxiliary variable \(O_s \) takes values in \(O_s := \{0, 1\} \) and

\[
S_s(z_{1:s}, \text{do}_s)
\]

\[
:= \left[1_{D_s}(h_{s-1}(z_{1:s-1}))\delta_0 + 1_{\mathbb{R}\setminus D_s}(h_{s-1}(z_{1:s-1}))\delta_1 \right](\text{do}_s),
\]

for some suitable \(h_{s-1} : Z_{1:s-1}^\infty \rightarrow \mathbb{R} \) and \(D_s \subseteq \mathbb{R} \).

2. If \(o_s = 0 \) then \(N_{s+1} = N_s \) (otherwise, the number of particles is allowed to change between SMC steps); \(\kappa_s(u_{1:s}, \cdot) := \text{Unif}_{K_s} \), for \(u_{1:s} \in X_{1:s}^\infty \), and

\[
R_s((z_{1:s}, o_s), \text{da}_s)
\]

\[
:= 1_{\{0\}}(o_s)\delta_{1,...,N_s}(\text{da}_s) + 1_{\{1\}}(o_s)\tilde{R}_s(z_{1:s}, \text{da}_s),
\]

where \(\tilde{R}_s(z_{1:s}, \cdot) \) is an unbiased resampling scheme.
2.3 Some Important SMC Algorithms

(3) The marginal proposal kernels only depend on the history of the current particle path, i.e.

\[Q_{s}(\{z_{1:s-1, o_{s-1}, a_{s-1}}\}, dx_{s}) = \prod_{n=1}^{N_{s}} P_{s}(x_{1:s-1}^n, dx_{s}^n), \]

for some suitable stochastic kernel \(P_{s} \in \mathcal{K}(X_{1:s-1}^{\infty}, X_{s})\), for \(s > 1\), and with \(P_{1} \in \mathcal{M}(X_{1})\) being some suitable proposal distribution at Step 1.

As discussed in Example 2.13, the quantity \(h_{s-1}(z_{1:s-1})\) in Item 1 of Definition 2.11 is usually taken to be the ESS associated with the particle weights from the previous SMC step, commonly employed to obtain adaptive resampling schemes, i.e. to not necessarily resample at every SMC step.

The particle weights for SIR algorithms simplify as follows. Write

\[\tilde{O}_{t} := \{ s \in \mathbb{N}_{t-1} \mid o_{s} = 1 \}, \]
\[\tilde{l}_{s} := \sup \{ l \in \tilde{O}_{t} \cup \{0\} \mid l < s \} + 1. \]

then if – as we assume throughout this work – the kernels \(A_{s}\) are taken to be the time-reversal kernels given in Assumption 2.9, the \(n\)th particle weight at Step \(t\) is given by

\[
\begin{align*}
 w_{t}^{n}(z_{1:t}) &= \left[\prod_{s \in \tilde{O}_{t}} \frac{1}{N_{s}} \sum_{m=1}^{N_{s}} \prod_{t=1}^{s} G_{t}(x_{1:t}^{m, b_{t}^{n, b_{t-1}^{n}}}) \right] \prod_{t=l}^{t} G_{t}(x_{1:t}^{b_{t}^{n, b_{t-1}^{n}}}) \\
 &= \begin{cases}
 G_{t}(x_{1:t}^{b_{t}^{n, b_{t-1}^{n}}}) w_{t-1}^{n}(z_{1:t-1}), & \text{if } o_{t-1} = 0, \\
 G_{t}(x_{1:t}^{b_{t}^{n, b_{t-1}^{n}}}) \frac{1}{N_{t-1}} \sum_{m=1}^{N_{t-1}} w_{t-1}^{m}(z_{1:t-1}), & \text{if } o_{t-1} = 1.
 \end{cases}
\end{align*}
\]

Here, the quantity \(G_{t}(x_{1:t})\), for any \(x_{1:t} \in X_{1:t}^{\infty}\) defined by

\[
G_{s}(x_{1:s}) := \frac{dG_{s}(x_{1:s-1}, \cdot)}{dP_{s}(x_{1:s-1}, \cdot)}(x_{s}),
\]

is sometimes referred to as the \(n\)th ‘incremental importance weight’ at Step \(t\) because, conditional on \(Z_{1:t-1}\), the \(n\)th self-normalised particle weight \(W_{t}^{n}(Z_{1:t})\) used for constructing an approximation of \(\pi_{t} = \gamma_{t}/\gamma_{t}(\mathbb{1})\) only depends on \((G_{t}(X_{1:t}))_{n \in \mathbb{K}_{t}}\).
2 Sequential Monte Carlo Methods

The SIR estimate of the normalising constant takes the usual form

\[z_{t}^{\text{SMC},N_{t}} = \sum_{n=1}^{N_{t}} w_{t}^{n}(z_{1:t}) = \prod_{s \in \Omega_{t}} \frac{1}{N_{s}} \sum_{n=1}^{N_{s}} G_{t}(x_{1:t}^{n}), \]

2.12 Example (bootstrap particle filter). If we resample at every step of the SIR algorithm, i.e. if \(O_{s} \equiv 1 \), and if \(\tilde{R}_{s}(z_{1:s}, \cdot) \) represents multinomial resampling, then the SIR algorithm reduces to the simple bootstrap particle filter introduced in Stewart and McCarty Jr. (1992), Gordon et al. (1993).

2.13 Example (adaptive resampling). It is well known that resampling, i.e. sampling the parent indices from some non-degenerate distribution – see Remark 2.2 – is wasteful and should only be performed when necessary. A common approach, known as adaptive resampling which is theoretically justified in Del Moral, Doucet and Jasra (2012), is to only resample whenever the following estimate of the ESS \(\text{ESS}_{s} = \frac{N_{s} z_{s}^{2}}{\tilde{y}_{s}(\tilde{w}_{s})} \), given by

\[\text{ESS}_{s}^{N_{1:s}} := \frac{N_{s} \left(\mathbb{E} \left[y_{s}^{1:s,1}(1) | Z_{1:s} \right] \right)^{2}}{\mathbb{E} \left[y_{s}^{1:s,1}(\tilde{w}_{s}) | Z_{1:s} \right]^{2}} = \frac{N_{s} \left(\sum_{n=1}^{N_{s}} w_{s}^{n}(Z_{1:s}) \right)^{2}}{\sum_{m=1}^{N_{s}} [w_{s}^{m}(Z_{1:s})](Z_{1:s}, \{m\})^{2}}, \]

falls below a threshold \(\varepsilon N_{s} \) for some \(\varepsilon \in (0, 1) \). This can be reconciled with Definition 2.11 by setting \(h_{s}(Z_{1:s}) := \text{ESS}_{s}^{N_{1:s}} \) and \(D_{s} := (\varepsilon N_{s}, N_{s}) \).

2.14 Example (sequential importance sampling). If we do not resample in the SIR algorithm, i.e. if \(O_{s} \equiv 0 \), and \(N_{s} = N \in \mathbb{N} \) for any \(s \in T \),

\[w_{t}^{n}(z_{1:t}) = \frac{1}{N} \prod_{s=1}^{t} G_{s}(x_{1:s}^{n}) = \frac{1}{N} \frac{d\gamma_{t}}{dP_{t}^{o}}(x_{1:t}^{n}), \]

is the \(n \)th step weight obtained from standard \(N \)-sample 'sequential' IS.

Other special cases of sequential IS e.g. annealed importance sampling (Jarzynski, 1995b, 1997d, Neal, 2001) can thus also be viewed as special cases of SIR and hence as special cases of SMC algorithms.
2.3 Some Important SMC Algorithms

2.3.2 SMC Samplers

We now deal with the situation in which the target measures, now denoted \(\tilde{\gamma}_t \), are defined on a sequence of arbitrary spaces \(\tilde{X}_t \). Hence, the SMC scheme introduced above is not applicable – not directly, at least. To approximate \(\tilde{\gamma}_t \), we can use an SMC scheme targeting an artificially extended target measure \(\gamma_t \) on \(X^\times_{t:t'} \), where \(X_t := \tilde{X}_t \) which admits \(\tilde{\gamma}_t \) as a marginal. By working on the product space \(X^\times_{t:t'} \), we circumvent the need for calculating certain integrals, e.g. marginal proposal densities, which would be required for evaluating the importance weights.

As a generic way of constructing \(\gamma_t \), Del Moral et al. (2006b, 2007) (see also Peters, 2005) introduce a sequence of ‘backward’ Markov kernels \(L_t \in \mathcal{K}_t(X_{t+1:t}, X_t) \) and set

\[
\gamma_t := \tilde{\gamma}_t \otimes L_{t-1:t}^o \in \mathcal{M}(X^\times_{t:t'}).
\]

The SMC samplers from Del Moral et al. (2006b) are then simply SMC algorithms targeting this particular sequence of measures. To simplify the expressions for the importance weights, we assume in the following that the SMC algorithm is a SIR algorithm as specified in Definition 2.11 and that the marginal proposal kernel, \(P_t \), is Markov. However, neither of these assumptions is strictly necessary.

Clearly, \(\gamma_t \) admits \(\tilde{\gamma}_t \) as a marginal. Assuming that the backward Markov kernels are such that \(\tilde{\gamma}_t \otimes L_{t-1} \ll \tilde{\gamma}_{t-1} \otimes P_t \) (with some abuse of the tensor-product notation pertaining to the order of the components), the following incremental weights are well defined:

\[
G_t(x_{1:t}) = \frac{d[\tilde{\gamma}_t \otimes L_{t-1:t}^o]}{d[\tilde{\gamma}_{t-1} \otimes L_{t-2:t}^o \otimes P_t]}(x_{1:t})
= \frac{d[\tilde{\gamma}_t \otimes L_{t-2}]}{d[\tilde{\gamma}_{t-1} \otimes P_t]}(x_{t-1}, x_t).
\]

Optimal Backward Kernels. Equation 2.7 shows that the efficiency of SMC samplers crucially depends on the choice of backward Markov kernels. As shown in Del Moral et al. (2006b), the optimal backward kernel in the sense of minimising the conditional variance of the incremental importance weights is given by

\[
L_{t-1}^{opt}(x_t, dx_{t-1}) := \frac{dP_t(x_{t-1}, \cdot)}{d\tilde{\gamma}_{t-1} P_t}(x_t) \tilde{\gamma}_{t-1} (dx_{t-1}).
\]
That is, L_{t-1}^{OPT} is the reversal kernel associated with $\tilde{\gamma}_{t-1}$ and P_t. Employing this kernel effectively takes us back to performing IS on the marginal space, \tilde{X}_t, because it yields the following expression for the incremental importance weights:

$$G_t(x_{1:t}) = \frac{d[\tilde{\gamma}_t \otimes L_{t-1}^{\text{OPT}}]}{d[\tilde{\gamma}_{t-1} \otimes P_t]}(x_{t-1}, x_t)$$

$$= \frac{d[\tilde{\gamma}_t \otimes \tilde{\gamma}_{t-1}]}{d[\tilde{\gamma}_{t-1} \otimes P_t]}(x_{t-1}, x_t) \frac{dP_t(x_{t-1}, \cdot)}{d\tilde{\gamma}_{t-1} P_t}(x_t)$$

$$= \frac{d\tilde{\gamma}_t}{d\tilde{\gamma}_{t-1} P_t}(x_t),$$

(2.9)

where we have used the definition of L_{t-1}^{OPT} in the second step; in the third step, we have replaced $\tilde{\gamma}_t \otimes \tilde{\gamma}_{t-1}$ by $\tilde{\gamma}_{t-1} \otimes \tilde{\gamma}_t$ by to correct for some abuse of the tensor-product notation regarding the order of the components.

In practice, the optimal backward kernel is usually intractable because evaluating (densities with respect to the) measure $\tilde{\gamma}_{t-1} P_t$ is infeasible. Instead, Del Moral et al. (2006b) stress that it is extremely important to select L_t to be some (tractable) approximation of L_{t-1}^{OPT}. A common choice, albeit one which introduces finite-sample bias, is to replace $\tilde{\gamma}_{t-1} P_t(\text{d}x_t)$ by $\tilde{\gamma}_{t-1}^{\text{SMC},N_{t-1}}(1_{X_{t-1}} \otimes P_t(\cdot, \text{d}x_t))$ in the denominator in Equation 2.9. This backward kernel is used in population Monte Carlo methods (Cappe, Guillin, Marin & Robert, 2004), for instance.

2.15 Example (MCMC kernels). The kernel P_t is often taken to be $\tilde{\gamma}_t$-invariant. The construction of such $\tilde{\gamma}_t$-invariant kernels, called MCMC kernels, is the subject of Chapter 3.

If $\tilde{\gamma}_t$ is similar to $\tilde{\gamma}_{t-1}$ in some suitable sense, so that $\tilde{\gamma}_t$ is reasonably close to $\tilde{\gamma}_{t-1} P_t$, then Equation 2.8 suggests approximating $L_{t-1}^{\text{OPT}}(x_t, \text{d}x_{t-1})$ by the time-reversal kernel of $\tilde{\gamma}_t$ under P_t, given by

$$L_{t-1}(x_t, \text{d}x_{t-1}) := \frac{dP_t(x_{t-1}, \cdot)}{d\tilde{\gamma}_t}(x_t)\tilde{\gamma}_t(\text{d}x_{t-1}).$$

Using this backward kernel leads to the following simple expression for the incremental importance weights.

$$G_t(x_{1:t}) = \frac{d\tilde{\gamma}_t}{d\tilde{\gamma}_{t-1} P_t}(x_{t-1}).$$
Note that the incremental importance weights at Step t do not depend on Z_t. As mentioned in Example 2.5, it can therefore be beneficial to 'switch the order' of sampling and resampling.

Mixture Kernels. The SMC-sampler framework also allows the use of a mixture of forward kernels by including the index of the Step-t mixture component, M_t, into X_t and instead targeting an even further extended measure γ_t on $X_t^s := \prod_{s=1}^t X_s$. Here, $X_s := \tilde{X}_s \times M_s$, where M_s is the countable set of all mixture component indices. Writing $X_s = (\tilde{X}_s, M_s)$, the unnormalised version of this further extended distribution is

$$
\gamma_t(\text{d}x_{1:t}) := \tilde{\gamma}_t(\text{d}\tilde{x}_t) \beta_0(\tilde{x}_1, \text{d}m_1) \prod_{s=1}^{t-1} L_s(\tilde{x}_{s+1}, \text{d}\tilde{x}_s \times \text{d}m_{s+1}). \quad (2.10)
$$

We need to employ backward mixture kernels

$$
L_s(\tilde{x}_{s+1}, \text{d}\tilde{x}_s \times \text{d}m_{s+1}) = \beta_s(\tilde{x}_{s+1}, \text{d}m_{s+1}) \tilde{L}_s((m_{s+1}, \tilde{x}_{s+1}), \text{d}\tilde{x}_s),
$$

if the (forward) proposal kernels are mixture kernels of the form

$$
P_s(\text{d}x_{s-1}, \text{d}x_s) = \alpha_s(\tilde{x}_{s-1}, \text{d}m_s) \tilde{P}_s((m_s, \tilde{x}_{s-1}), \text{d}\tilde{x}_s).
$$

Here, the stochastic kernels $\alpha_s \in \mathcal{K}_1(\tilde{X}_{s-1}, M_s)$ and $\beta_{s-1} \in \mathcal{K}_1(\tilde{X}_s, M_s)$ define forward and backward kernel mixture weights at Step s. At Step 1, it is common not to sample from a mixture so that $\beta_0(\text{d}\tilde{x}_1, \text{d}m_1) = \delta_{m_1}(\text{d}m_1)$ and $M_1 = \{m\}$.

With the above-mentioned abuse of notation, the incremental importance weights then simplify to

$$
G_t(x_{1:t}) = \frac{\text{d}[\tilde{\gamma}_t \otimes \tilde{L}_{t-1} \otimes \beta_{t-1}]}{\text{d}[\tilde{\gamma}_{t-1} \otimes \alpha_t \otimes \tilde{P}_t]}(x_{t-1}, x_t).
$$

These are only well defined if $\tilde{\gamma}_t \otimes \tilde{L}_{t-1} \otimes \beta_{t-1} \ll \tilde{\gamma}_{t-1} \otimes \alpha_t \otimes \tilde{P}_t$. In particular, the backward mixture kernel weights β_s need to be chosen carefully if some forward mixture kernel components do not cover the entire support of $\tilde{\gamma}_s$. That is, if there exists a set A in the support of $\tilde{\gamma}_s$ and a mixture component index $m_s \in M_s$ with $\tilde{\gamma}_s(\alpha_s(\cdot, \{m_s\})) > 0$ such that $\tilde{\gamma}_{s-1}(\tilde{P}_s((m_s, \cdot), A)) = 0$. An algorithm for which this is a concern is considered in Chapter 4.
Examples. In this subsection, we have introduced SMC samplers as a special case of the SIR algorithm. In turn, many well-known SMC algorithms may be viewed as special cases of SMC samplers.

For instance, as pointed out in Del Moral et al. (2006b, 2007) and as already mentioned above, population Monte Carlo methods (Iba, 2000; Cappé et al., 2004) can be viewed as special cases of this framework. The same is true for block sampling (Doucet, Briers & Sénécal, 2006), for the resample–move algorithm Gilks and Berzuini (2001), and for various special cases of the latter such as the SMC algorithm for ‘static’ models (Chopin, 2002), and also SMC-squared (Chopin et al., 2013).

By working on the path space and employing forward and backward kernels that are mostly degenerate, we can actually also view any SMC algorithm as an SMC sampler. Though we will not pursue this interpretation further in this work.

2.3.3 Re-Using All Particles

Motivation. Assume that $X_1 = \cdots = X_T = X$. Usually, the SMC sampler from the previous subsection is run for $T \in \mathbb{N}$ steps and we are actually only interested in calculating integrals with respect to the final marginal measure, $\tilde{\gamma} := \tilde{\gamma}_T$, i.e. integrals of the form $\tilde{\gamma}_T(\tilde{f})$, where $\tilde{f} : X \to \mathbb{R}$ is some integrable test function. The target measures $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_{T-1}$ are then only employed to interpolate between some easy-to-approximate initial target measure, $\tilde{\gamma}_1$, and the measure that is actually of interest, $\tilde{\gamma}$. Throughout this subsection, we assume that $\tilde{\gamma} \ll \tilde{\gamma}_t$, for any $t \in T$. The standard SMC approximation of the integral $\tilde{\gamma}(\tilde{f})$ is only based on the particles generated at the Tth step. This is wasteful, especially if $\tilde{\gamma}_t$ is similar (in some suitable sense) to $\tilde{\gamma}$, for some $t < T$, as is usually the case in SMC samplers. It is wasteful because some of the remaining samples could be exploited to achieve variance reductions.

In this subsection, we describe a way of re-using all the particles to approximate integrals of the form $\tilde{\gamma}(\tilde{f})$. To that end, we slightly generalise the importance tempering approach from Gramacy, Samworth and King (2010). The resulting estimator is a (doubly) Rao–Blackwellised version of the estimator from Nguyen, Septier, Peters and Delignon (2014). Alternative approaches for combining IS estimates are discussed in Veach and Guibas (1995), Madras and Piccioni (1999), Owen and Zhou (2000).
2.3 Some Important SMC Algorithms

Algorithm. Our proposed combination scheme is summarised in Algorithm 2.16. In the remainder of this subsection, we present formal
(MOSIS-type) extended state-space justification of this scheme and comment further on its relationship with the approaches from and Gramacy et al. (2010) Nguyen et al. (2014).

2.16 Algorithm. For each \(t \in T \), let \((X^n_t, w^n_t(Z_{1:t}))_{n \in K_t}\) be a set of (not necessarily IID) samples weighted to target the measure \(\tilde{\gamma}_t \). Then, setting \(\bar{v}_t := d\tilde{\gamma}/d\gamma_t \), we may approximate \(\tilde{\gamma}(\tilde{f}) \) by
\[
\sum_{t \in T} \eta_T(\{t\}) \sum_{n \in K_t} \bar{v}_t(x^n_t)w^n_t(Z_{1:t}) \tilde{f}(X^n_t),
\]
where \(\eta_T \) is a probability measure on \(T \) such that \(\eta_T(\{t\}) \) is proportional to
\[
\frac{N_t[\sum_{n \in K_t} \bar{v}_t(X^n_t)W^n_t(Z_{1:t})]^2}{\sum_{m \in K_t} \bar{v}_t(X^n_m)W^n_t(Z_{1:t})}.
\]

Extended Target Measure. To justify our novel estimator, we devise a slightly different instance of the generic MOSIS target measure from Section 1.4 (compared to that of SMC methods). Writing \(\tilde{X}'_t := (X, K, Z_{1:T}) \), where \(X = (U, U_{1:t}) \) and \(K = (\tau, B_{1:t}) \), this target measure is given by
\[
\tilde{\gamma}'_t(d\tilde{X}'_t) := \eta_T(\{t\})\tilde{\gamma}(du)\delta_u(du)\mathcal{L}^\otimes_{t-\tau-1}(u, du_{t-1} \times \cdots \times du_1)
\times \Pi_{\tau}^{csmc}(u_{1:t}, dz_{1:T}; \Psi_{t+1:T}^{\otimes}(z_{1:t}, dz_{t+1:T}),
\]
where \(\eta_T \in \mathcal{M}_1(T) \) with \(T := \mathbb{N}_T \). The extended measure is defined on the space \(\tilde{X}'_t := X \times C \times Z'^{\otimes}_{1:T} \), where \(C := \bigcup_{t \in T}(\{t\} \times X') \times K_{1:t}^{\otimes} \).

In other words, to sample from the normalised version of this extended measure, we would first sample the random variable \(\tau \) which indexes a particular generation (or step) of the SMC algorithm. We then sample a single particle \(U_t := U \) from the actual target distribution, \(\tilde{\gamma}/\tilde{\gamma}(1) \), sample \(U_{1:t-1} \) according to the backward kernels and draw \(Z_t = (K, Z_{1:t}) \) from the standard csmc kernel (up to Step \(\tau \)). We then sample additional variables \(Z_{t+1:T} \) via Steps \(\tau + 1 \) to \(T \) of the SMC sampler. Note that under the normalised version of this extended measure, \(X_{B_{t}} \sim \tilde{\gamma}/\tilde{\gamma}(1) \).

Extended Proposal Distribution. The associated extended proposal distribution can be defined as
\[
\tilde{\psi}'_t(d\tilde{X}'_t) := \psi_t(dz_{1:T}) \text{Unif}_t(du) \mathcal{S}_t(z_{1:t}, du_{1:t} \times db_{1:t}) \delta_{u_t}(du),
\]
where \(\mathcal{S}_t \) is as defined in Equation 2.2
Importance Weights. Having defined the Radon–Nikodým derivatives \(\bar{w}_t := d\bar{\psi}_T / d\bar{\psi}_T \) and \(\bar{v}_t := d\bar{\psi}_T / d\bar{\psi}_T \), we can calculate ‘weights’

\[
\bar{w}_t^n(Z_{1:T}) := \mathbb{E}[\bar{w}_T(\bar{X}_T^n) \mathbbm{1}_{\{t,n\}}(\tau, B_t) | Z_{1:T}] = \eta_T(\{t\}) \bar{v}_t(x^n_t) w^n_t(Z_{1:T}),
\]

where \(w^n_t(Z_{1:T}) \) is the usual \(n \)-th Step-\(t \) weight from the SMC algorithm. A one-sample approximation of the extended target measure is given by \(\tilde{\psi}^{1:t+1}_T := \bar{w}_T(\tilde{X}_T^n) \delta_{\tilde{X}_T^n} \), where \(\tilde{X}_T^n = (U, U_{1:T}, \tau, B_{1:T}, Z_{1:T}) \sim \psi_T^\circ.

One-Sample Interpretation. Let \(A \in \mathcal{B}(X) \). With a Rao–Blackwellisation as in Section 1.4, an approximation of \(\tilde{\psi}(A) \) which makes use of all particles generated over the course of the SMC sampler is then given by

\[
\tilde{\psi}^{\text{MOSIS},N:1:T}(A) := \mathbb{E}[\tilde{\psi}^{1:t+1}_T(A \times C \times Z_{1:T}^n)|Z_{1:T}] = \sum_{t \in T} \sum_{k_t \in K_t} \bar{w}_t^{k_t}(Z_{1:T}) \delta_{\tilde{X}_T^{k_t}}(A) = \sum_{t \in T} \eta_T(\{t\}) \tilde{\psi}_t^n(A),
\]

where we have defined the following unbiased estimate of \(\tilde{\psi}(A) \), which is based on the particles generated at the \(t \)-th step of the SMC sampler:

\[
\tilde{\psi}_t^n(A) := \sum_{n \in K_t} \bar{v}_t(x^n_t) w^n_t(Z_{1:T}) \delta_{\tilde{X}_T^n}(A).
\]

The approximation from Equation 2.12 is a Rao–Blackwellised version of the following estimator used by Nguyen et al. (2014) within the estimator

\[
\tilde{\psi}^{\text{MOSIS},N:1:T}(A) = \sum_{t \in T} \eta_T(\{t\}) \tilde{\psi}_t^n(A):
\]

\[
\tilde{\psi}_t^n(A) := \sum_{m \in M_t} \bar{v}_t(\tilde{X}_T^m) \left[\sum_{n \in K_t} w^n_t(Z_{1:T}) \right] \delta_{\tilde{X}_T^n}(A),
\]

Here, \(M_t := N_{M_t} \) and \(\tilde{X}_t^{1:M_t} \) is obtained by choosing \(M_t \) elements from among \(\tilde{X}_t^{1:N_t} \) via multinomial resampling according to the standard self-normalised SMC weights \((W^n_t(Z_{1:T}))_{n \in K_t} \). In other words, Nguyen et al. (2014) first resample the particles from each step of the SMC sampler so that \(\tilde{X}_t^{1:M_t} \) is a set of unweighted particles whose empirical measure approximates \(\tilde{\pi}_t \sim \tilde{\psi}_t^n \). They then weight these (now unweighted) particles so that their weighted empirical measure approximates \(\tilde{\pi} \sim \tilde{\psi}_t^n \).
2.3 Some Important SMC Algorithms

Approximately Optimal Weighting Scheme. Note that the choice of the distribution \(\eta_T \) is critical in both estimators. On the one hand, taking \(\eta = \delta_T \) takes us back to only using the Step-\(T \) particles to approximate \(\tilde{y}(\tilde{f}) \). On the other hand, taking \(\eta = \text{Unif}_T \) assigns equal weights to the individual estimators \(\tilde{y}_t^*(\tilde{f}) \) associated with different SMC steps. As pointed out in Gramacy et al. (2010), this usually leads to a high variance of the estimator from Equation 2.11 because \(\tilde{y}_t^*(\tilde{f}), \ldots, \tilde{y}_T^*(\tilde{f}) \) have different variances. Ideally, we would weight each of these estimators inversely proportional to its variance, i.e. we would like to set

\[
\eta_T(\{t\}) = \frac{1}{\sum_{t \in T} 1/\text{Var}[\tilde{y}_t^*(\tilde{f})]}.
\]

Unfortunately, these variances are usually intractable and furthermore, we are often interested in a large class of test functions.

Instead, we generalise the approach from Gramacy et al. (2010) and take \(\eta_T := \varepsilon / \sum_{t \in T} \varepsilon(t) \) where \(\varepsilon(\{t\}) \) is the following proxy for the inverse variance in Equation 2.13 for \(\tilde{X}_T = (U, U_{1:t}, \tau, B_{1:t}, Z_{1:T}) \sim \tilde{\psi}_T \),

\[
\varepsilon(\{t\}) := \frac{N_t(\text{E}[\tilde{v}_t(U) | Z_{1:T}, \tau = t])^2}{\text{E}[\tilde{v}_t^2(U) | Z_{1:T}, \tau = t]} = \frac{N_t[\sum_{m \in K_t} \tilde{v}_t(X_t^m)\tilde{W}_t^m(Z_{1:T})]^2}{\sum_{m \in K_t} \tilde{v}_t^2(X_t^m)\tilde{W}_t^m(Z_{1:T})}.
\]

This is an approximation of \(\text{ESS}_t := N_t \tilde{z}_t^2 / \tilde{z}_t \tilde{v}_t^2 \) and can be seen as the conditional \(\text{ESS} \) associated with the self-normalised version of \(\tilde{y}_t^* \).

Here, we have set \(\tilde{z}_t := \tilde{z}_T / \tilde{z}_t \). The conditional \(\text{ESS} \) was introduced in Yan Zhou et al. (2013) (albeit in a different context). Note that using the same set of samples to construct the estimators \(\tilde{y}_t^*(\tilde{f}) \) and to determine \(\varepsilon \) introduces a slight bias. Of course, if it is necessary to obtain unbiased estimates, this particular bias can be avoided by using two different sets of samples, i.e. by basing the construction of \(\varepsilon \) on samples generated in some pilot run.

Note that Equation 2.14 does not take into account the particular form of the test function. This is sensible whenever (1) we are interested in a large class of test functions and want to avoid the cost of re-calculation of \(\eta_T \) for each test function, (2) the oscillations of \(\tilde{f} \) have little effect on the
two.fitted Sequential Monte Carlo Methods

integral \(\tilde{y}(\tilde{f}) \). However, in some instances, it might be desirable to take the form of a particular test function into account. For instance, this is the case when performing rare-event estimation, i.e. when \(\tilde{f} := 1_A \), where \(A \in \mathcal{B}(X) \) is such that \(\tilde{y}(A) \) is very small compared to \(\tilde{y}(X) \). In this case, we can easily incorporate the test function into the above framework if we replace the pair \((\tilde{y}, \tilde{f})\) by the pair \((\tilde{f} \tilde{y}, 1)\).

Finally, we note that we have presented our approach in the context of SMC samplers. However, it can be used in any other case in which we have sets of samples \(X_t^{1:N_t} \) weighted to target a distribution \(Q_t \), for \(t \in T \).

Relationship With Previous Approaches

We conclude this subsection by summarising the relationship between our estimator and those in Gramacy et al. (2010) and Nguyen et al. (2014).

Our estimator can be seen as a generalisation of the approach from Gramacy et al. (2010). Indeed, our estimator reduces to that of Gramacy et al. (2010) in the case that \(w_t^n(Z_{1:t}) = w_t^m(Z_{1:t}) = 1/N_t \), for any \((n,m) \in K^2_t\) and any \(t \in T \) and \(n_t \in K_t \). This special case occurs when the ‘particles’ \(X_t^{1:N_t} \) are unweighted draws from the distribution proportional to \(\tilde{y}_t \). For instance, in Gramacy et al. (2010), all the samples are unweighted because they are obtained from simulated tempering so that \(X_t^{1:N_t} \) represent the samples associated with the \(t \)th temperature.

The approach from Nguyen et al. (2014) obtains such unweighted draws via the additional resampling step described above. Our construction shows that this extra resampling step is not necessary – neither for constructing the estimators \(\tilde{y}_t^* (A) \) nor for designing \(\varepsilon \) (and hence \(\eta_T \)). Indeed, the extra resampling step introduces additional Monte Carlo variance and increases the computational cost. This insight is in the spirit of Johansen and Doucet (2008) who showed the redundancy of the second resampling step in the auxiliary particle filter from Pitt and Shephard (1999).

Indeed, our choice of the (random) measure \(\varepsilon \) in Equation 2.14 is obtained by Rao–Blackwellising the numerator and denominator of the following random measure employed by Nguyen et al. (2014):

\[
\varepsilon(\{\hat{t}\}) := \frac{\sum_{n \in M_{\hat{t}}} \tilde{v}_t^1(\hat{X}_t^n)^2}{\sum_{m \in M_{\hat{t}}} \tilde{v}_t^2(\hat{X}_t^m)}.
\]

Hence, our approximation can be interpreted as a twice Rao–Blackwellised version of the estimator from Nguyen et al. (2014).
2.3 Some Important SMC Algorithms

2.3.4 Discrete Particle Filter

If the number of elements in X_t is finite (and sufficiently small), SIR algorithms are wasteful because there is usually a positive probability that two available particle paths at Step t are identical, i.e. for any $m, n \in \mathcal{K}_t$,

$$\mathbb{P}\left[\{X_{1:t|t}^m = X_{1:t|t}^n\}\right] > 0. \quad (2.15)$$

The discrete particle filter (DPF) introduced by (Fearnhead, 1998; Fearnhead & Clifford, 2003) tackles this problem by propagating particles in a way that reduces the probability on the left hand side in Equation 2.15 to zero. This is done by extending each available particle trajectory once in every possible direction at Step t. To keep the computational cost from growing exponentially in t, the resulting trajectories are then stochastically pruned in a way that is optimal in the sense that it minimises the variance of the sum of the self-normalised importance weights.

In this subsection, we show that by using particular choices of the kernels S_{t-1}, R_{t-1}, Q_t, and κ_t, the DPF can be viewed as a special case of the generic SMC algorithm. To our knowledge, this is a new result. It immediately implies the validity of CSMC algorithms, backward sampling, or ancestor sampling (see Section 3.4 in the next chapter), as described in Whiteley, Andrieu and Doucet (2010). However, the DPF cannot be viewed as a special case of SIR due to the dependence in the proposal kernels and the use of a biased resampling scheme. Here, we recall that in the terminology of Definition 2.3, a resampling scheme is termed ‘biased’ if it does not lead to an evenly weighted (i.e. unweighted) set of particles after resampling. We reiterate that any estimates of integrals of the form $\gamma_t(f_t)$ will still be unbiased as long as the resampled particles are suitably weighted.

Without loss of generality, assume a finite state space $X_t = \mathbb{N}_K$, for any $t \in \mathbb{T}$ for some (usually not too large) $K \in \mathbb{N}$. At the tth step of the algorithm, we have $N_t := MK \wedge K^t$ particles, where $M \in \mathbb{N}$ can be chosen to control the computational cost of the algorithm. As described below, at Step t, we select $M_t := N_t/K$ particle trajectories from the previous step and extend each of them in all K possible directions.

Resampling Scheme. In this case, we do not make use of the auxiliary variables O_{t-1} and therefore drop them from the notation along with the
2 Sequential Monte Carlo Methods

kernels S_s. The kernel $R_{s-1} = \tilde{R}_{s-1}$ is then given by

$$
\tilde{R}_{s-1}(z_{1:s-1}, da_{s-1}) = \tilde{R}^*_s(z_{1:s-1}, da_{s-1}^{1:M_s}) \prod_{n=2}^K \delta_{a_{s-1}^{1:M_s}}(da_{s-1}^{(n-1)M_s+1:nM_s}),
$$

where $\tilde{R}^*_s(z_{1:s-1}, da_{s-1}^{1:M_s})$ denotes the resampling scheme (for M_s offspring) developed in Fearnhead (1998) which summarised in the following.

A more formal description of the entire kernel \tilde{R}_{s-1} can be found in Section A.5 of the appendix, for completeness.

At Step s, we use Fearnhead (1998, Algorithm 5.2) to solve

$$
\sum_{n=1}^{N_{s-1}} [1 \land C_{s-1} W^n_{s-1}(z_{1:s-1})] = M_s,
$$

for $C_{s-1} > 0$. The idea is that particles whose self-normalised weights exceed the threshold $1/C_{s-1}$ get exactly one offspring. The remaining particles have at most one offspring.

Collect the indices of the former particles in the set

$$
L_s := \# \{ n \in K_{s-1} \mid W^n_{s-1}(z_{1:s-1}) > 1/C_{s-1} \}
$$

and let $l_s: \{1, \ldots, \#L_s \} \to L_s$ be the function which maps n to the nth largest element in L_s. We then set the first $\#L_s$ parent indices deterministically via $A_{s-1}^{1:L_s} := (l_s(1), \ldots, l_s(\#L_s))$. The remaining $M_s - \#L_s$ parent indices take values in $K_{s-1} \setminus L_s$. They are generated using systematic resampling based on the weights $(W^n_{s-1}(z_{1:s-1}))_{n \in K_{s-1} \setminus L_s}$, after these have been re-normalised to sum to 1.

Note that $M_s = N_{s-1}$ implies $C_{s-1} \geq 1/\max_{n \in K_{s-1}} W^n_{s-1}(z_{1:s-1})$ and thus $L_s = \mathbb{N}_{M_s}$, i.e. in this case, we propagate all existing particle paths without any pruning.

Proposal Kernel. The proposal kernels are completely deterministic, i.e. $q_1(dx) = \delta_{(1,\ldots,K)}(dx)$, and

$$
Q_s((z_{1:s-1}, a_{s-1}), dx_s) = \delta_{(1:M_s, 2:M_s, \ldots, K_{M_s})}(dx_s),
$$

where a_m denotes an m-component vector of 1s. In other words, each of the M_s particle trajectories chosen as parents by the resampling distribution has exactly K offspring – one for each element of X_s.

50
2.3 Some Important SMC Algorithms

Importance Weights. To ensure that the Radon–Nikodým derivative \(\bar{w}_t \) exists, let \(\kappa_1(u_1, \cdot) := \delta_u \) and, for \(s > 1 \), let \(\kappa_s(u_{1:s}, \cdot) \) be the uniform distribution on \(\mathbb{Z} (u_{s-1}) M_{s-1, u_{s}, M_s} =: D_{s}^{u_{s}} \). If \(A_s \) is the time-reversal kernel from Assumption 2.8, then by the properties of the resampling scheme employed here (see Section A.5 of the appendix),

\[
A_s ((u_{1:s}, z_{1:s-1}, b_{s-1}), \{b_s\}) \delta_{b_{s-1}}(\{a_{s-1}^b\}) = \frac{R_{s-1}^M (z_{1:s-1}, b_s, \{a_{s-1}^b\})}{1 \wedge C_{s-1} W_{s-1} b_{s-1} (z_{1:s-1})} 1_{\{w_{s-1}^n\}} (b_{s-1}) 1_{D_{s}^{u_{s}}} (b_s).
\]

Hence, the \(n \)th Step-\(t \) particle weight, \(w^n_t (z_{1:t}) \), can be written as

\[
w^n_t (z_{1:t}) = \frac{y_t (x_{1:t}^{b^n_{t-1:n}})}{\prod_{s=2}^t [1 \wedge C_{s-1} W_{s-1} b_{s-1} (z_{1:s-1})]} = w_{t-1}^{b_{t-1:n}} (z_{1:t-1}) \frac{1 \wedge C_{t-1} W_{t-1} b_{t-1:n} (z_{1:t-1})}{1 \wedge C_{s-1} W_{s-1} b_{s-1} (z_{1:s-1})},
\]

for any \(z_{1:t} \) in the support of \(\tilde{\psi}_t \) and \(w^n_t (z_{1:t}) = 0 \), otherwise.

2.3.5 Other SMC Algorithms

In this subsection, we briefly mention how other well-known SMC algorithms fit into the framework developed in this chapter.

Look-Ahead Algorithms. As pointed out in Heine (2005), Johansen and Doucet (2008), *auxiliary particle filters* (Pitt & Shephard, 1999) can be viewed as a special case of the SIR algorithm targeting a slightly altered sequence of measures. *Block sampling* (Doucet et al., 2006), *piloting* (Wang et al., 2002; Zhang & Liu, 2002) and the other look-ahead strategies surveyed in Lin et al. (2013) can also be seen as standard SIR algorithms on suitably extended spaces. *Twisted particle filters* (Whiteley & Lee, 2014) propose one particle at each step from a different proposal kernel than the others. They can therefore not be seen as SIR algorithms but remain a special case of the generic SMC framework introduced in this chapter.
Hierarchical Algorithms. The framework developed in this chapter can also be applied hierarchically. That is, the target measure γ_t can itself be an extended target measure of a 'lower-level' SMC algorithm (i.e. it is of the form given in Equation 2.3).

Using this construction, we can justify a wide range of hierarchical SMC algorithms such as exactly-approximated Rao–Blackwellised particle filters (Johansen et al., 2012), island particle filters (Vergé et al., 2013), SMC-squared (Chopin et al., 2013) and other interacting SMC algorithms by Jasra et al. (2008), Beskos, Crisan, Jasra, Kamatani and Zhou (2014). Finally, Johansen and Doucet (in prep.) use SMC algorithms at the lower level to mimic the behaviour of the intractable optimal block sampling strategy from Doucet et al. (2006).

These algorithms are also pseudo-marginal SMC algorithms because in the sense of Subsection 1.4.3, they (exactly) approximate a usually intractable marginal SMC algorithm. On the marginal space, their behaviour approaches that of the marginal algorithm as the number of particles in the lower-level SMC algorithm tends to infinity. More generally, at the lower level, we may target the extended measure associated with any MOSTS scheme. This justifies other pseudo-marginal SMC algorithms such as random-weight particle filters (Fearnhead et al., 2010). Indeed, the IS-squared approach later developed by Tran et al. (2014) is a simple special case this hierarchical idea. Alternatively, it may also be justified as a simple case of (random-weight) IS.

2.4 Sample Impoverishment and Remedies

2.4.1 Particle-Path Coalescence

In this section, we discuss the sample-impoverishment ‘problem’ and a partial remedy in the form of forward filtering–backward smoothing as well as the sampling-approximation of the latter known as forward filtering–backward sampling.

As noted in Subsection 2.2.5, SMC methods are particularly suited (often only suited) to approximating integrals with respect to the final marginal of π_t, i.e. integrals with respect to $\pi_{t,t}$ given by $\pi_t(A) := \pi_t(X^c_{t,t-1} \times A)$, for $A \in B(X_t)$. Fundamentally, this is due to the fact that for sufficiently ergodic models, such estimators behave approximately as IS estimators.
on a much smaller space.

However, this does not hold for more general test functions, i.e. test functions which are not constant on $X_{1:t-1}$. For the latter, the error associated with SMC estimates tends to grow in t. This is unsurprising because we are estimating integrals with respect to π_t and are thus performing IS on an ever increasing space.

In practice, this manifests itself in the sample-impoverishment problem, i.e. in the fact that all particle trajectories share a common ancestor if t is sufficiently large. More formally, let

$$\tau_t := \sup \{ s \in \mathbb{N}_t \mid B^1_{1:s|t} = \cdots = B^{N_t}_{1:s|t} \}$$

be the step number associated with the most recent common ancestor of all Step-t particles. Jacob, Murray and Rubenthaler (2013) show that the expected ‘time’ to the most recent common ancestor satisfies

$$t - \mathbb{E}[\tau_t] = \mathcal{O}(N \log(N)),$$

assuming that $N_1 = N_2 = \ldots = N$. However, as stressed by Doucet and Johansen (2011), while this coalescence is a result of performing resampling within an SMC algorithm, resampling is not fundamentally causing the error associated with SMC estimates to grow with t (for general test functions). Rather, the need for resampling is merely another symptom of the fact that we are performing IS on an ever increasing space. In fact, resampling is actually the crucial ingredient for guaranteeing uniform-in-t error bounds and other stability properties of estimates of integrals with respect to $\pi_{t,t}$.

2.4.2 Forward Filtering–Backward Smoothing

In order to still obtain estimates of path integrals $\pi_t(f_t)$ (i.e. for more general test functions), it has been suggested to make use of all the particles generated throughout the SMC algorithm (and not just those that form part of the N_t particle lineages at Step t. This procedure, known as $\text{forward filtering–backward smoothing}$ (FFBS), leads to a different kind of MOSIS approximation based on a further extended measure which we describe in this subsection.
2 Sequential Monte Carlo Methods

Up to now, the MOSIS interpretation of SMC methods was based around effectively taking the index K to be one of the particle lineages, i.e. loosely speaking, we have $K = B_{1:t|t}^n$, for some $n \in K_t$. The aim of the further extended measure constructed in this subsection is to let $K = C_{1:t}$, where $C_{1:t}$ are particle indices which need not coincide with any particle lineage generated under the SMC algorithm. A normalised version of this measure is also at the heart of iterated conditional sequential Monte Carlo algorithms which use backward sampling or ancestor sampling and which are discussed in Section 3.4.

Backward Sampling Weights. Hereafter, we assume some fixed ‘time’ horizon, $T \in \mathbb{N}$ and set $\tau := \mathbb{N}_T$. Before defining the further extended target measure, we need some additional notation.

For $t \in \tau$, define the following kernels in $\mathcal{K}(\mathcal{Z}_{1:t}^X \times X_{t+1:T}^X, K_t)$, termed backward sampling weights,

$$w_{i|T}^k(z_{1:t}, v_{t+1:T}) := w_i^k(z_{1:t}) \frac{d\Gamma_{t+1:T}^\otimes(x_{t+1:T}^{b_{i|T}}, \cdot)}{d\lambda_{t+1:T}^\otimes(x_{t+1:T}^{b_{i|T}}, \cdot)},$$

for $k \in K_t$, where the kernels $\lambda_t \in \mathcal{K}(X_{t+1:T-1}^X, X_t)$ define some suitable dominating measure. We also define the self-normalised versions

$$W_{i|T}^k(z_{1:t}, v_{t+1:T}) := \frac{w_{i|T}^k(z_{1:t}, v_{t+1:T})}{\sum_{n=1}^{N_t} w_{i|T}^n(z_{1:t}, v_{t+1:T})}.$$

Note that $w_{i|T}^k(z_{1:T}) = w_T^k(z_{1:T})$.

Further Extended Target Measure. We now construct the further extended target measure, $\tilde{\gamma}_T$. To that end, we include an additional set of particles, $V_{1:T}$, and particle indices, $C_{1:T}$, into the state space. Both of these will be such that $V_{1:T}$ coincides with the particles with indices $C_{1:T}$ generated under the SMC algorithm, i.e. $V_{1:T} = X_{1:T}^{C_{1:T}}$. However, we may have $C_{1:T} \neq B_{1:T|T}^n$, for all $n \in K_T$.

Write $\tilde{X}_T := (\tilde{X}_T, V_{1:T}, C_{1:T})$, then the further extended measure on the extended space $\tilde{X}_T := \tilde{X}_T \times X_{1:T}^X \times K_{1:T}$ is defined as

$$\tilde{\gamma}_T(d\tilde{x}_T) := \tilde{\gamma}_T(d\tilde{x}_T) \propto^{bs} \tilde{\gamma}_T(z_{1:T}, dv_{1:T} \times dc_{1:T}).$$
where \(\mathcal{E}^{bs}_T \in \mathcal{K}_1(Z_{1:T}^X, X_{1:T}^X \times \mathcal{K}_1) \) is a stochastic kernel given by
\[
\mathcal{E}^{bs}_T(z_{1:T}, dv_{1:T} \times dc_{1:T}) := \prod_{t=1}^{T} \xi_t(z_{1:t}, v_{t+1:T}, c_{t+1:T}, dc_t) \delta_{x_t}^c (dv_t).
\]
For \(t < T \), we have defined the backward sampling/smoothing kernels
\[
\xi_t(z_{1:t}, v_{t+1:T}, c_{t+1:T}, dc_t) := \begin{cases}
\delta_{x_{t+1}}^c (dc_t), & \text{if } \varrho_t(o_t) = 0, \\
W_t(z_{1:t}, v_{t+1:T}), & \text{if } \varrho_t(o_t) = 1,
\end{cases}
\]
Here, \(\varrho_t : \Omega_t \to \{0, 1\} \) are suitable functions for interpolating between 'full' backward smoothing (\(\varrho_1 = \cdots = \varrho_T = 1 \)) and no backward smoothing (\(\varrho_1 = \cdots = \varrho_T = 0 \)). This may be desirable for reducing the computational cost of calculating the backward smoothing weights.

Further Extended Proposal Distribution. To obtain a further extended proposal distribution, \(\tilde{\psi}_T \), with respect to which \(\tilde{\psi}_T \) is absolutely continuous, we simply extend the usual SMC proposal distribution by the same kernel, i.e.
\[
\tilde{\psi}_T := \tilde{\psi}_T \otimes \mathcal{E}^{bs}_T.
\]

Importance Weights. Since \(\mathcal{E}^{bs}_T \) extends both the target measure and proposal distribution, we have \(\bar{w}_T(\tilde{x}_T) = \frac{d\tilde{\psi}_T}{d\tilde{\psi}_T}(\tilde{x}_T) = \bar{w}_T(\tilde{x}_T) \). Assuming that \(\xi_T(z_{1:T}, \{k\}) = W_T(z_{1:T}) \), Proposition 2.10 then implies the following weight for the particles indexed by \(c_{1:T} \),
\[
\bar{w}_T^{c_{1:T}}(Z_{1:T}) := \mathbb{E}\left[\bar{w}_T(\tilde{X}_T) 1_{\{c_{1:T}\}}(C_{1:T}) \mid Z_{1:T}\right] = \mathcal{E}^{bs}_T(Z_{1:T}, X_{1:T}^X \times \{c_{1:T}\}) \sum_{n=1}^{N_1} w_T^n(Z_{1:T}). \tag{2.16}
\]

Rao–Blackwellisation. Let \(\tilde{X}_T = (\tilde{X}_T, V_{1:T}, C_{1:T}) \sim \tilde{\psi}_T \), then a one-sample standard SIS approximation of \(\tilde{\psi}_T \) is given by \(\gamma_T^{1s,1} := \bar{w}_T(\tilde{X}_T) \delta_{\tilde{X}_T} \).

The FFBBS approximation of \(\gamma_T \) is then obtained in the usual manner by integrating out the indices \(K = C_{1:T} \) and the set of particles \(X = V_{1:T} \).
along with the quantities \((U_{1:T}, B_{1:T}) \). In contrast to the standard interpretation of SMC methods, the latter quantities are now considered to be auxiliary variables which are part of \(Y \), along with the parent indices \(A_{1:T-1} \) and \(O_{1:T} \). For any \(A \in \mathcal{B}(X_{1:T}^\infty) \), by Equation 2.16

\[
\gamma_{T}^{\text{MOSIS},N_{1:T}}(A) = \mathbb{E}\left[\tilde{\gamma}_{T}^{\text{MOSIS}}(\tilde{X}_{T} \times A \times K_{1:T}^{X}) | Z_{1:T} \right] = \sum_{c_{1:T} \in K_{1:T}^{X}} \tilde{w}_{T}^{c_{1:T}}(Z_{1:T}) \delta_{X_{1:T}^{c_{1:T}}}(A) =: \gamma_{T}^{\text{FFBS},N_{1:T}}(A).
\]

Note that we have not yet shown that \(\tilde{\gamma}_{T} \) admits \(\gamma_{T} \) as a marginal in the \(v_{1:T} \)-component, i.e. that

\[
\tilde{\gamma}_{T}(\tilde{X}_{T} \times A \times K_{1:T}^{X}) = \gamma_{T}(A), \tag{2.17}
\]

for any \(A \in \mathcal{B}(X_{1:T}^\infty) \). Hence, it is not obvious that the FFBS approximation \(\gamma_{T}^{\text{FFBS},N_{1:T}}(f_{T}) \) should be an unbiased estimate of \(\gamma_{T}(f_{T}) \). We postpone the proof of Equation 2.17 until Subsection 3.4.3. As shown therein, Equation 2.17 is essentially equivalent to showing that conditional sequential Monte Carlo kernels with backward sampling and ancestor sampling both share the same extended target distribution.

Finally, note that by Equation 2.16, FFBS cannot lead to any improvement over the standard SMC approximation if \(f_{T} = \text{constant} \) because

\[
\tilde{w}_{T}^{c_{1:T}}(Z_{1:T}) = \sum_{n=1}^{N_{T}} w_{T}^{t_{n}}(Z_{1:T}) =: \tilde{\gamma}_{T}^{\text{SMC},N_{1:T}}.
\]

Thus, in particular, FFBS does not improve estimates of the normalising constant compared to the usual SMC estimate.

Additive Functionals. Using the FFBS approximation tends to be infeasible, in practice, because the cost of evaluating \(\tilde{w}_{T}^{c_{1:T}}(Z_{1:T}) \) is \(O(N_{T}) \) if we assume, for simplicity, that \(N_{1} = N_{2} = \ldots = N_{T} = N \). However, the computational cost can be brought down to \(O(TN_{T}^{2}) \) via standard forward–backward recursions (Rauch, Striebel & Tung, 1965; Baum, Petrie, Soules & Weiss, 1970) if the test function admits the following additive
decomposition

\[f_T(x_{1:T}) = f_{i,T}(x_i) + \sum_{t=2}^{T} f_{t,T}(x_{t-1}, x_t), \tag{2.18} \]

where \(f_{i,T} : X_i^{\times} \rightarrow \mathbb{R} \) are suitable functions. In particular, the \(\text{FFBS} \) approximation of the integral \(\gamma_T(f_T) \) can then be calculated \textit{without} an explicit backward recursion. This is known as \textit{forward smoothing} (Del Moral, Doucet & Singh, 2010).

2.4.3 Forward Filtering–Backward Sampling

Instead of analytically integrating out \((V_{i:T}, C_{1:T}) \), Doucet, Godsill and West (2000), Godsill, Doucet and West (2004) propose to sample \(M \) 'backward trajectories' \((V_{i:T}^m, C_{1:T}^m)_{m \in \mathbb{N}_M} \) (conditionally) independently from the distribution \(\mathcal{E}_{T}^{bs}(Z_{1:T}, \cdot) \), given the variables \(Z_{1:T} \sim \psi_T \) which have been generated by a single run of the \(\text{SMC} \) algorithm. This has been termed \textit{forward filtering–backward sampling}.

The backward-sampling idea represents a simple sampling-based approximation of \(\text{FFBS} \) (conditional on \(Z_{1:T} \)) and compared to the latter, it reduces the computational cost to the more manageable \(O(MTN) \). This rate can formally be further improved by rejection-sampling ideas (Douc, Garivier, Moulines & Olsson, 2011) under some additional conditions on the target measure \(\psi_T \). Again, forward filtering–backward sampling does not improve estimates of the normalising constant, as noted, for instance, in Olsson and Rydén (2011).

Finally, in the case that the test function \(f_T \) admits an additive decomposition as in Equation 2.18, a sampling-based approximation of the above-mentioned forward-smoothing recursions has been developed by Olsson and Westerborn (2014).

2.5 Summary

In this chapter, we have described a generic \(\text{SMC} \) algorithm and have shown that it can be viewed as a special case of the \(\text{MOSIS} \) scheme described in the previous chapter. One way of interpreting the relationship between some well-known \(\text{SMC} \) algorithms mentioned in this chapter is outlined in Figure 2.1.
2 Sequential Monte Carlo Methods

Figure 2.1 Some instances of the generic \texttt{SMC} algorithm mentioned in this chapter.
3 Markov Chain Monte Carlo Methods

3.1 Introduction

3.1.1 Motivation

In this chapter, we introduce Markov chain Monte Carlo methods. Section 3.1 outlines the main idea behind this class of Monte Carlo schemes and shows that they can be viewed as (an approximation to) a special case of the marginalised one-sample importance sampling scheme presented in Chapter 1. Using the same ideas again at a lower level, we construct a generic kernel which admits essentially every known Markov chain Monte Carlo kernel as a special case. This is done in Section 3.2. In Section 3.3, we demonstrate that multiple-proposal and ‘randomised’ Metropolis–Hastings kernels, pseudomarginal kernels, and ensemble Markov chain Monte Carlo kernels can all be viewed as instances of the generic kernel. Other special cases, conditional sequential Monte Carlo kernels, which play a major rôle in Part I of this work, are detailed in Section 3.4. In particular, we show that the variance-reduction techniques: backward sampling and ancestor sampling share the same extended target distribution. To our knowledge, this is a new result.

In this chapter, we specifically assume that the measure with respect to which we want to calculate integrals is a probability measure. That is, throughout, we assume that we want to calculate integrals of the form \(\int_X f \, d\pi \) for some probability measure \(\pi \in \mathcal{M}_1(X) \) and some test function \(f \in F \subseteq \mathcal{L}(\pi) \).

3.1 Remark. Even though the methods described in this chapter only approximate probability measures, it is still generally possible to use these methods in the presence of intractable normalising constants, i.e. if \(\pi = \gamma / \tilde{Z} \) with some unknown normalising constant \(\tilde{Z} = \gamma(\mathbb{1}) \).
The main idea of Markov Chain Monte Carlo (MCMC) methods is to approximate the measure π by a collection of samples $X = X^1:N$ which are marginally (approximately) distributed according to π.

However, taking X to be independent (and thus IID) samples is impossible in realistic problems. Instead, MCMC methods generate dependent samples by iteratively sampling from some Markov kernel $P \in \mathcal{K}(X, X)$ which is π-invariant, i.e. which satisfies

$$\pi P = \pi. \quad (3.1)$$

Assume for the moment that $X = x \sim \pi$. Then by Equation 3.1, any draw $Y \sim P(x, \cdot)$ is also distributed according to π. The samples X and Y are usually dependent but the main advantage of this idea is that sampling from $P(x, \cdot)$ is often feasible in situations in which generating IID samples from π is not.

The first MCMC algorithm, known as the Metropolis algorithm, was developed in the seminal work by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953). In Hastings (1970), it was improved and generalised to a framework which includes the Metropolis–Hastings kernel as well as another MCMC kernel due to Barker (1965). Work by Peskun (1973) (and later extensions by Tierney (1998), Mira (1995)) showed that the Metropolis kernel dominates Barker’s kernel in terms of resulting in a lower asymptotic variance.

The scope of MCMC methods was further expanded in the works by S. Geman and Geman (1984), Tanner and Wong (1987) and finally brought in to the mainstream of statistical computing by Gelfand and Smith (1990), Tierney (1994), Chib and Greenberg (1995). A thorough summary as well as further references may be found in Roberts and Rosenthal (2004), Robert and Casella (2004).

3.1.2 Note on Ergodicity

The estimator discussed in this chapter is ‘valid’ – in the sense of yielding unbiased estimates of integrals of the form $\pi(f)$ – as soon as (1) P is π-invariant, (2) the Markov chain $(X^n)_{n \in \mathbb{N}}$ has initial distribution π.

However, as in the previous chapters, further conditions are needed to obtain consistent estimators. Even worse, initialising the Markov chain from π is generally impossible.
In order to obtain consistent estimates – and, as described in the next subsection, to permit non-stationary initial distributions \(\mu \neq \pi \) – we require \(P \) to also be suitably ergodic. That is, we at least need

\[
\mu P^N (f) \xrightarrow{N \to \infty} \pi (f),
\]

for all \((\mu, f) \in \mathcal{P}(X) \times \mathcal{L}(\pi)\), where \(\mathcal{P}(X)\) is some appropriate class of initial distributions – ideally, \(\mathcal{P}(X) = M_1(X)\) is the set of all probability measures on \(X\).

A discussion of various (stronger) notions of ergodicity and associated convergence rates is beyond the scope of this work. We refer the reader to Roberts and Rosenthal (2004), for an overview, and Meyn and Tweedie (2000), for a thorough theoretical treatment.

3.1.3 Generic Algorithm

Let \(\mu \) be some probability measure on \(X \) from which we can sample and which will be the initial distribution of a Markov chain \((X^n)_{n \in \mathbb{N}} \).

The remainder of this section is concerned with constructing the following \textit{MCMC} approximation of the probability measure \(\pi \),

\[
\pi^\text{MCMC.N}_{\mu} := \sum_{n=1}^{N} w^n(Z) \delta_{X^n}.
\]

Here, as in the previous chapters, \(Z = X = X^{1:N} \) is a set of samples while \((w^n(Z))_{n \in K}\), for \(K := N_N \), is a collection of non-negative weights. However, in contrast to the previous chapters, the \(n \)th weight will only depend on \(n \) (and possibly on \(X^n \)). This notation may seem unnecessarily complicated. However, in the next Subsection, it helps interpreting \textit{MCMC} methods as a special case of the \textit{MOSIS} approximation from Section 1.4.

As discussed below, the weights \((w^n(Z))_{n \in K}\) play an important rôle in discounting the effect of initialising the Markov chain from some distribution \(\mu \) with \(\mu \neq \pi \) but they may also be used for thinning.

A generic \textit{MCMC} algorithm is outlined in Algorithm 3.2.

3.2 Algorithm (Markov chain Monte Carlo)

\(X^1 \sim \mu \).

- For \(n \in \mathbb{Z}_{2,N} \), sample \(X^n \sim P(x^{n-1}, \cdot) \).
- Approximate \(\pi (f) \) by \(\pi^\text{MCMC.N}_{\mu} (f) \).
Clearly, \(\pi_{\mu}^{\text{MCMC},N}(f) \) can only be an unbiased estimate of \(\pi(f) \) if the Markov chain \(\{X_n\}_{n \in \mathbb{N}} \) is initialised from the target distribution. Unfortunately, taking \(\mu = \pi \) is impossible in realistic problems.

Instead, by appealing to the ergodicity properties of \(P \), we can construct the weights \(w(Z) \) in a way that largely removes the effect of sampling \(X^1 \sim \mu \neq \pi \) from the estimator. This is commonly done by making sure that \(w^n(Z) = 0 \), for any \(n \) in the burn-in period comprising the first \(R < N \) iterations. The length of this period, \(R \), needs to be large enough such that \(\| \mu P^R - \pi \| \) is sufficiently small and hence that

\[
\| \pi_{\mu}^{\text{MCMC},N} - \pi_{\pi}^{\text{MCMC},N} \| \tag{3.2}
\]

is sufficiently small, where \(\| \cdot \| \) denotes some suitable norm.

3.3 Remark. For the rest of this chapter, we assume that \(\mu = \pi \) and write \(\pi_{\pi}^{\text{MCMC},N} =: \pi_{\pi}^{\text{MCMC},N} \), for simplicity. However, we stress that this is an unrealistic assumption and that in practice the kernel \(P \) needs to be sufficiently ergodic and the weights constructed in such a way that the distance in Equation [3.2] is sufficiently small.

More complicated weights can also be used to accommodate thinning, i.e. for some suitable \(M \in \mathbb{N} \), we may specify the weights in such a way that \(w^{m}(Z) = 0 \), for any \(m \) satisfying \(m \mod M \neq 0 \). If \(X^n \) and \(X^{n+m} \) are highly correlated for all \(m \in \mathbb{N}_{M-1} \), then this choice has little effect on the variance of the estimate \(\pi_{\pi}^{\text{MCMC},N}(f) \) but it dramatically reduces the memory cost because only every \(M \)th value of the chain has to be stored. Valid ways of constructing the weights are implied by the interpretation of MCMC methods which is detailed in the next subsection.

3.1.4 Interpretation as Marginalised One-Sample Importance Sampling

In this subsection, we show that MCMC methods can be viewed as a special case of the MOSIS framework introduced in Chapter [3]. To that end, we again introduce an extended proposal distribution, \(\psi \in \mathcal{M}_1(\mathcal{X}) \), and an extended target distribution \(\tilde{\pi} \in \mathcal{M}_1(\tilde{\mathcal{X}}) \) such that (1) \(\tilde{\pi} \) admits \(\pi \) as a marginal, (2) we can sample from \(\tilde{\psi} \), (3) \(\tilde{w} := d\tilde{\pi}/d\tilde{\psi} \) exists and can be evaluated point-wise. We then show that the usual MCMC approximation of \(\pi, \pi_{\pi}^{\text{MCMC},N} \), coincides with a Rao–Blackwellised IS approximation of \(\tilde{\pi} \), based on a single sample.
Introduction

Extended Proposal Distribution. As before, we include an index K into the state space which takes values in some finite space $K := \mathbb{N}_N$. The collection of random variables generated by the MCMC algorithm, $Z = X = X^{1:N}$, takes values in the product space $Z := X := X^N$. Finally, we let $\tilde{X} := X \times K \times Z$ be the space on which we define the extended proposal distribution and accordingly write $\tilde{X} := (X, K, Z)$ for a random vector drawn from this distribution.

Assuming that we initialise the Markov chain from (see Remark 3), the extended proposal distribution may be given by

\[
\tilde{\psi}(d\tilde{x}) := \pi(dx^1)P^{\otimes(N-1)}(x^1, dx^{2:N})\xi(x, dk)\delta_{x^k}(dx^k),
\]

where the kernel $\xi \in \mathcal{K}_1(X, K)$ defines a distribution over the index K.

Extended Target Distribution. A corresponding extended target distribution can be constructed as

\[
\tilde{\pi}(d\tilde{x}) := \pi(dx)\Lambda(x, dx^k)P^{\otimes(N-k)}(x^k, dx^{k+1:N})
\times L^{\otimes(k-1)}(x^k, dx^{k-1} \times \cdots \times dx^1).
\]

Above, the stochastic kernel $\Lambda \in \mathcal{K}_1(X, K)$ defines a distribution over K and $L \in \mathcal{K}_1(X, X)$ is the time-reversal kernel of π under P, i.e. L is defined by $L(x', dx) = [dP(x', \cdot)/d\pi](x')\pi(dx)$.

Rao–Blackwellisation. Assuming that $\tilde{\xi}$ is chosen such that $\tilde{\pi} \ll \tilde{\psi}$,

\[
\tilde{\psi}(d\tilde{x}) = \frac{d\tilde{\pi}}{d\tilde{\psi}}(\tilde{x}) = \frac{\Lambda(x^k, \{k\})}{\tilde{\xi}(x, \{k\})} \mathbb{1}_{\{x^k\}}(x).
\]

Given $\tilde{X} \sim \tilde{\psi}$, a one-sample approximation of $\tilde{\pi}$ is given by the random measure $\tilde{\pi}^{1:1} := \tilde{\psi}(\tilde{X})\delta_{\tilde{X}}$. If we write

\[
w^k(Z) := \mathbb{E}\left[\tilde{w}(\tilde{X})\mathbb{1}_{\{k\}}(K)\big| Z\right] = \Lambda(x^k, \{k\}),
\]

then for any $A \in \mathcal{B}(X)$, Rao–Blackwellising the estimate $\tilde{\pi}^{1:1}(A \times K \times Z)$, shows that the usual MCMC approximation of $\pi(A)$ is an instance of the MOSIS approximation, i.e.

\[
\pi_{\text{MCMC}, N}(A) = \mathbb{E}\left[\tilde{\pi}^{1:1}(A \times K \times Z)\big| Z\right]
= \sum_{n=1}^{N} w^n(Z)\delta_{X^n}(A)
= \pi_{\text{MCMC}, N}(A).
\]
Hence, the approximation of π can be seen as a special case of more precisely as a special case of the construction from Chapter 1. Note that this immediately implies that may be viewed as a special case of the Monte Carlo method. We recognise that this is somewhat at odds with the often-held view that the Monte Carlo method is a special case of (Geyer, 2011, p. 6).

Rôle of Time-Reversal Kernels. Using the time-reversal kernel to incorporate a corresponding π-invariant kernel into an IS scheme is a common approach employed, for instance, in the generalised IS approach (MacEachern et al., 1999) as described in Example 1.9 in SMC samplers (Del Moral et al., 2006b) as described in Example 2.15 as well as in Storvik (2011). Indeed, it is often the only feasible way of using the kernels described in the next section within IS. Differently constructed extended target distributions lead to intractable Radon–Nikodým derivatives as stressed by (Del Moral, Doucet & Jasra, 2006a).

The drawback, however, is that this way of simplifying the Radon–Nikodým derivative in Equation 3.3 requires the chain to be initialised from π (though, in practice, this can be relaxed the number of burn-in samples, R is sufficiently large). Ideally, we would like to initialise the chain from some other distribution, $\mu \neq \pi$ and use the Radon–Nikodým derivative to compensate for the fact that samples are not drawn (marginally) from π. Unfortunately, this is generally infeasible.

3.2 Generic MCMC Kernel

3.2.1 Elementary Kernels

In this section, we construct a generic kernel which admits essentially all known kernels as a special case. Its construction is based around the framework from Andrieu and Roberts (2009), Andrieu et al. (2010) and is thus closely linked to the extended measure from the MOSIS approach in Chapter 1. However, instead of obtaining an approximation of (a normalised version of) this measure by averaging over all candidates $X = X^i: N$, we sample one of these candidates, X^K, which is then marginally distributed according to π.

64
3.2 Generic MCMC Kernel

Related generic MCMC frameworks have appeared in Tjelmeland (2004), Storvik (2011) though without exploiting the fundamental insight from Andrieu and Roberts (2009) as described in Remark 1.16 and without using the extra auxiliary variables required for more sophisticated MCMC kernels. Our framework is similar to that of Lee (2011) around which Lee, Andrieu and Doucet (in prep.) also develop a number of novel extensions.

In particular in this subsection, we describe an elementary MCMC kernel. Essentially all MCMC kernels can be decomposed into repeated application of such kernels to an extended target distribution which is constructed in such a way that sampling from the elementary kernels is possible. In an MCMC context, such extended state-space constructions are often called data augmentation (Tanner & Wong, 1987).

Assume that the state space can be decomposed as \(X = X_0 \times X_1 \) and let \(X = (X_0, X_1) \sim \pi \). Let \(\Pi \in \mathcal{K}_1(X_0, X_1) \) be the stochastic kernel defining the full conditional distribution of \(X_1 \) under \(\pi \) then the elementary kernel

\[
P(x, dx') := \delta_{x_0}(dx_0') \Pi(x_0', dx_1')
\]

is clearly \(\pi \)-invariant. We also refer to these elementary kernels as Gibbs kernels in this work since their concatenation leads to MCMC algorithms known as Gibbs samplers. These are described in the next subsection.

3.2.2 Combinations of Kernels

More complicated MCMC kernels are constructed by combining elementary MCMC kernels. Indeed, let \((\tilde{P}_m)_{m \in M} \) be a countable collection of \(\pi \)-invariant kernels with \(\tilde{P}_m = \tilde{P}((m, \cdot), \cdot) \in \mathcal{K}_1(X, X) \), for \(m \in M := \mathbb{N}_M \). Additionally, let \(\beta \in \mathcal{K}_1(M, M) \) be another stochastic kernel which will be used to determine the choice of kernel \(P_m \).

In this case, we can include the indices \(M \) into the state space to justify kernels of the form

\[
P((m, x), dm' \times dx') := \beta(m, dm') \tilde{P}((m', x), dx').
\]

This implies a mixture of (elementary) kernels on the marginal space \(X \). As a special case, we can justify compositions of kernels (on the marginal space), \(P = P_1 \cdots P_M \), by setting

\[
\beta((m, x), dm') := 1_{\{1\}}(m)\delta_{x_0} (dm') + 1_{\{1, \ldots, M-1\}}(m)\delta_{m+1} (dm').
\]
3 Markov Chain Monte Carlo Methods

3.4 Example (Gibbs sampler). Assume that we can decompose the state space as \(X = X_{1:j}^N \) for some \(J \in \mathbb{N} \) and write \(X = X_{1:j} \). Define sets \(J_1, \ldots, J_M \subseteq \mathbb{N}_J \) such that \(\bigcup_{m \in M} J_m = \mathbb{N}_J \). Furthermore, define the \(m \)-th Gibbs kernel via

\[
\bar{P}((m, x), dy) := \delta_{x_{J_m}}(dy_{J_m}) \Pi_m(y_{-J_m}, dy_{J_m}),
\]

where \(X_{J_m} := (X_j)_{j \in J_m}, X_{-J_m} := (X_j)_{j \in J \setminus J_m} \) and where \(\Pi_m(x_{-J_m}, \cdot) \) denotes the full conditional distribution of \(X_{J_m} \) under \(\pi \). In this case, the Markov chain induced by \(P = \beta \otimes \bar{P} \) is called a Gibbs sampler (S. Geman & Geman, 1984). In particular, it is called a

- random-scan Gibbs sampler if \(\beta(m, \cdot) \) is non-degenerate,
- deterministic-scan Gibbs sampler if \(\beta \) is as given in Equation 3.4.

3.5 Example (partially-collapsed Gibbs sampler). Deterministic-scan Gibbs samplers are often presented as updating every component of \(X \) exactly once per iteration, i.e. taking \((J_m)_{m \in M} \) to be a partition of \(\mathbb{N}_J \). However, large reductions in the asymptotic variance are achievable if \(J_m \cap J_{m+1} \neq \emptyset \), and in this case, the Gibbs sampler is often referred to as a partially-collapsed Gibbs sampler (Van Dyk & Park, 2008).

3.2.3 Generic MCMC Kernel

Clearly, sampling from a tractable distribution on a sufficiently small, finite state space is feasible and we would not need MCMC algorithms for this task. However, the only kernel capable of sampling (approximately) from a higher-dimensional distribution \(\pi \) on general state space is the Gibbs-sampling kernel presented in Example 3.4. Unfortunately, this kernel requires sampling from full conditional distributions under \(\pi \) which are often intractable.

In this subsection, we construct a generic \(\pi \)-invariant MCMC kernel which does not require sampling from full conditional distributions under \(\pi \). Unsurprisingly, this generic kernel is based around a state-space extension pioneered by Tjelmeland (2004). That is, it can be viewed as being invariant with respect to a distribution on an extended space which (1) admits \(\pi \) as a marginal, (2) has full conditional distributions from which we can sample. The resulting MCMC algorithm can thus be viewed...
3.2 Generic MCMC Kernel

as a Gibbs sampler targeting this extended distribution. As we shall see, this generic kernel admits most known kernels as a special case.

The generic kernel is again based around (a normalised version of) the extended measure \(\bar{\pi} = \tilde{\gamma} / (1) \in \mathcal{M}_1(\mathcal{X}) \) from Chapter 1. Recall that \(\tilde{\mathcal{X}} = X \times K \times Z \), where \(K = \mathbb{N}_N \) and \(Z = X^N \times Y \), where \(Y \) is the set of values taken by some auxiliary variables, \(Y \).

Note that in the previous section, we used the framework from Chapter 1 to interpret the entire algorithm as a special case of this \(\pi \)-invariant kernel, \(P \).

Further Extended Target Distribution. Recall that the extended distribution can be seen as a distribution over some auxiliary variables \(Y \), a pool of \(N \) candidates for \(X \), \(X = X^{1:N} \), and an index \(K \). It is constructed in such a way that if \(\tilde{\mathcal{X}} = (X, K, Z) = (X, K, X^{1:N}, Y) \sim \bar{\pi} \) then \(X^K = X \sim \pi \) (Assumption 1.12). Approximations of \(\pi \) were previously constructed by integrating out \((X, K) \) and thus averaging over all possible candidates in an \(\pi \)-scheme.

Here, instead of integrating \((X, K) \) out, we generate a new value for the index \(K \), denoted \(\tilde{K} \), and a 'new' candidate, \(\tilde{X} = X^{\tilde{K}} \), in such a way that again, \(\tilde{X} \sim \pi \) under the extended distribution defined below. More precisely, writing \(\tilde{\mathcal{X}} := (\tilde{X}, \tilde{K}, \tilde{X}) \) and recalling that \(\tilde{Z} = (K, Z) \), the generic kernel targets the extended distribution

\[
\bar{\pi}(d\tilde{x}) := \bar{\pi}(d\tilde{x}) \mathcal{E}(\tilde{x}, d\tilde{K} \times d\tilde{x}) = \pi(dx) \bar{\mathcal{I}}(x, d\tilde{z}) \mathcal{E}(\tilde{x}, d\tilde{K} \times d\tilde{x})
\]

on \(\tilde{\mathcal{X}} := \tilde{X} \times K \times X \). Here, \(\mathcal{E} \in \mathcal{K}_1(\tilde{\mathcal{X}}, K \times X) \) is chosen such that

\[
\tilde{X} \sim \bar{\pi} \quad \Rightarrow \quad X^{\tilde{K}} = \tilde{X} \sim \pi. \tag{3.5}
\]

Note that such a kernel exists because we can always (and will often) take \(\mathcal{E}(x, d\tilde{K} \times d\tilde{x}) = \bar{\pi}^c(z, d\tilde{K} \times d\tilde{x}) \), where \(\bar{\pi}^c(z, \cdot) \) is the full conditional distribution of \((K, X) \) under \(\bar{\pi} \).

Dominating Measure. Throughout the remainder of this chapter, we assume that \(\bar{\pi} \) has a density \(\tilde{w} \) with respect to a suitable dominating measure \(\tilde{\psi} \) which admits the factorisation

\[
\tilde{\psi}(d\tilde{x}) := \psi(dz) \xi(z, d\tilde{K}) \delta_{x^k}(dx).
\]
where $\psi \in M_\sigma(Z)$ and $\xi \in K_\sigma(Z, K)$. This factorisation is required to obtain the following explicit representation of $\bar{\pi}^c$. For $\bar{x} = (x, k, z)$, write $w^k(z) := \bar{\omega}(\bar{x})\xi(z, \{k\})$. We can then represent the full conditional distribution of (X, K) under $\bar{\pi}$ as $\bar{\pi}^c(z, dk \times dx) = \bar{\pi}_z(dk)\delta_{\bar{x}}(dx)$, where

$$\bar{\pi}_z(\{k\}) := \frac{w^k(z)}{\sum_{n=1}^{N} w^n(z)}.$$

Finally, note the measure ψ does not depend on k. It therefore generalises the symmetric dominating measure required in Green (1995) as discussed in the Subsection 3.3.2.

Summary. By Equation 3.5, a π-invariant kernel is given by

$$P(x, A) := \int_{\bar{x} \times K \times A} \bar{\Pi}(x, d\bar{z}) \bar{Z}(\bar{x}, d\bar{k} \times d\bar{x}).$$

for all $(x, A) \in X \times \mathcal{B}(X)$. It is summarised in Algorithm 3.6

3.6 Algorithm (generic MCMC kernel). Given $X \sim \pi$,

1. sample $\bar{Z} \sim \bar{\Pi}(x, \cdot)$ and set $\bar{X} := (X, \bar{Z})$,
2. sample $(\bar{K}, \bar{X}) \sim \bar{Z}(\bar{x}, \cdot)$,
3. output $X := \bar{X} (= X\bar{K})$.

Note that the generic MCMC kernel is just a Gibbs kernel targeting the extended distribution $\bar{\pi}$. The advantage of this state-space extension is that the kernels $\bar{\Pi}$ and \bar{Z} can often be chosen in such a way that sampling from them – and thus sampling from this Gibbs kernel – is feasible even if sampling from full conditional distributions under π is not.

Finally, we note that the generic MCMC kernel is π-invariant by construction. In particular, this insight immediately shows that all the MCMC kernels mentioned in this chapter are π-invariant (since they are all special cases of this approach) without appealing (explicitly) to sufficient conditions such as detailed balance. However, we reiterate the fact that π-invariance is not sufficient for obtaining useful MCMC kernels. Indeed, taking $q := \pi$ in Example 1.14 can be viewed as initialising the Markov chain from π and then applying the trivial kernel $P(x, \cdot) := \delta_x$. This kernel is π-invariant but not ergodic and thus clearly useless.
For later use, we define the following terminology, borrowed from Nicholls, Fox and Watt (2012), which will be justified in the next section.

3.7 Definition (randomised MCMC kernel). Any instance of the generic MCMC kernel is called ‘randomised’ if it makes use of further auxiliary variables, i.e. if \(Y \neq \emptyset \).

3.2.4 Finite State-Space Kernels

In this section, we show that finite-state space MCMC kernels such as the Metropolis kernel (Metropolis et al., 1953) and the modified discrete-state Gibbs sampler kernel from Liu (1996) can be viewed as special cases of the generic kernel introduced in the previous subsection. These kernels are mainly of interest because they themselves serve as building blocks for the general-state space MCMC kernels described in the next section. Namely, they will be used to construct the kernel \(\mathcal{E} \) in Algorithm 3.6 when the state space \(X \) is infinite.

Throughout this subsection, we do not make use of the auxiliary variables, \(Y \), and therefore set \(Y := \emptyset \), for simplicity. However, there is no principal difficulty with including extra auxiliary variables and thus obtaining ‘randomised’ versions of the kernels described here.

Assume a finite state space, without loss of generality \(X = \mathbb{N}_N \), and assume that \(N \in \mathbb{N} \) is sufficiently small so that any normalising constant \(\tilde{z} = \gamma(1) = \sum_{x \in X} \gamma(x) \) of \(\pi = \gamma/\tilde{z} \) is tractable which in turn implies that we can sample directly from \(\pi \). Throughout, we write \(\gamma(\{x\}) = \gamma(x) \).

General Construction. Define the extended target distribution through

\[
\bar{\Pi}(x, d\bar{z}) := \delta_x(dk)\delta_x(dx^k)\delta_{(1, \ldots, k-1, k+1, \ldots, N)}(dx^{-k}),
\]

\[
\mathcal{E}(\bar{x}, \{\bar{k}\} \times d\bar{x}) := A(x^k, x^{\bar{k}})\delta_{x^{\bar{k}}}(d\bar{x}).
\]

Here \(A(x, y) := s(x, y)\pi(y) \), where, following Hastings (1970), we take

\(s: \mathbb{R}^2 \to [0, \infty) \) to be some non-negative symmetric function chosen such that \(\mathcal{E} \) is a stochastic kernel. In this case, if \(\tilde{X} \sim \tilde{\pi} \), we clearly have that \(X^K \sim \pi \) and by symmetry, \(X^{\bar{K}} \sim \pi \).
Examples. The remainder of this subsection details how some well-known finite state-space MCMC kernels can be viewed as special cases of this framework.

3.8 Example (IID sampling). Generating IID samples from \(\pi \) can be interpreted as running an MCMC algorithm which uses the kernel \(P \) based on Equations 3.6 and 3.7 with \(s \equiv 1 \), i.e. \(A(x, y) = \pi(y) \).

The following example defines an alternative MCMC kernel which dominates IID sampling in the Peskun sense (Peskun, 1973).

3.9 Example (modified discrete-state Gibbs sampler). Another valid choice for the symmetric function \(s \) is given by

\[
s(x, y) := \begin{cases}
[1 - \pi(x) \vee 1 - \pi(y)]^{-1}, & \text{if } x \neq y, \\
\frac{1}{\pi(x)} \sum_{y \in \mathcal{X} \backslash \{x\}} s(x, y) \pi(y), & \text{otherwise.}
\end{cases}
\] (3.8)

In this case, \(\mathcal{S} \) defined according to Equation 3.7 is indeed a stochastic kernel. To see this, define the sets \(\mathcal{X}_0 := \{ y \in \mathcal{X} \backslash \{x\} \mid \pi(x) \leq \pi(y) \} \) and \(\mathcal{X}_1 := \{ y \in \mathcal{X} \backslash \{x\} \mid \pi(x) > \pi(y) \} \), then

\[
\sum_{y \in \mathcal{X} \backslash \{x\}} A(x, y) = \sum_{y \in \mathcal{X}_0} \frac{\pi(y)}{1 - \pi(x)} + \sum_{y \in \mathcal{X}_1} \frac{\pi(y)}{1 - \pi(y)} \\
\leq \frac{1}{1 - \pi(x)} \sum_{y \in \mathcal{X} \backslash \{x\}} \pi(y) \\
= 1.
\]

The kernel \(P \) based on this symmetric function can be recognised as the modified discrete-state Gibbs kernel from (Liu, 1996).

3.10 Example (Metropolis). If \(N = 2 \), then the kernel defined by Equations 3.6 and 3.8 is the famous Metropolis kernel introduced in (Metropolis et al., 1953). Indeed, in this case

\[
A(x, y) = \frac{\pi(y)}{\pi(y) \vee \pi(x)} = 1 \wedge \alpha(x, y),
\]

for \(x \neq y \) with \(\alpha(x, y) := \gamma(y)/\gamma(x) \). This the usual Metropolis ‘acceptance probability’, so called because in some of the general state-space kernels presented in the next section, it can be viewed as the probability of accepting a proposed move from \(x = x^k \) to \(y = x^{k'} \).
3.3 General State-Space Kernels

3.3.1 Barker, Forced-Move, Metropolis–Hastings

In this subsection, we show that many classical kernels for general state spaces such as the Metropolis kernel (Metropolis et al., 1953), Barker’s kernel (Barker, 1965), the Metropolis–Hastings kernel (Hastings, 1970), as well as generalisations of the latter two to proposals (Tjelmeland, 2004) can be viewed as special cases of the generic kernel introduced in Subsection 3.2.3.

Assume now that X is some general state space, e.g. continuous or finite but large enough such that the normalising constant of $\pi = \gamma/\tilde{\gamma}$, given by $\tilde{\gamma} = \gamma(1)$, is intractable.

General Idea. To ease the explanation, we recall that the main intuition behind the generic kernel can be summarised as follows. Given some value $X \sim \pi$, we propose N possible candidates with the Kth candidate being set equal to X. Of course, we cannot generally propose these candidates from X. Instead, we propose them from another (conditional) distribution and then pick the next value of the chain, $X^{\tilde{K}}$, by sampling a new index \tilde{K}. If $\tilde{K} = K$, then the Markov chain induced by the generic kernel does not move to a different value. If $N = 2$, then this amounts to ‘rejecting’ the proposed candidate X^{-K}.

The extended target distribution from Chapter 1, $\tilde{\pi}$, involved in the construction of the generic kernel is essentially the distribution targeted by the pseudo-prior approach from Carlin and Chib (1995) (if all models are defined on the same space). Though in the pseudo-prior case, the index K actually has some physical interpretation; namely, it indexes one out of N possible models. Because this framework allows for $N - 1 > 1$ proposals to be made (of which one, the \tilde{K}th, is ‘accepted’) it has recently received renewed attention with a view to harnessing the benefits of parallelisation within algorithms (Calderhead, 2014).

Simplification. To obtain the concrete expressions for ‘acceptance probabilities’ and other familiar quantities, we often assume in this section that the extended target distribution factorises according to Assumption 3.11. However, we stress that this factorisation is only employed for illustrative purposes and is not necessary for constructing π-invariant kernels.
3 Markov Chain Monte Carlo Methods

3.11 Assumption (simplified target distribution). We take
\[\tilde{H}(x, d\tilde{x}) = \text{Unif}_k(dk)\delta_x(dx^k)Q_k(x, dx^{-k})R_k(x, dy), \]
where \(Q_k(x, \cdot) := Q((x, k), \cdot) \), \(R_k(x, \cdot) := R((x, k), \cdot) \), and
(1) \(Q \in \mathcal{K}_1(X \times K, X^{N-1}) \) proposes the \(N - 1 \) remaining candidates,
(2) \(R \in \mathcal{K}_1(X \times K, Y) \) defines a distribution over the auxiliary variable \(Y \).

In this subsection, we assume a ‘non-randomised’ algorithm, i.e. we do not make use of the further auxiliary variables and take \(Y = \emptyset \) so that \(Z = X = X^{1:N} \). We then obtain the classical Metropolis–Hastings algorithm and Barker’s algorithms as instances of the generic kernel. We present slightly generalised versions of both which allow for \(N > 1 \), not necessarily (conditionally) independent ‘proposals’.

Barker’s Kernel. If we take \(\tilde{P}_x(k, \cdot) := \pi_x \) to be the ID-sampling kernel from Example 3.8, then the generic kernel \(P \) simplifies to Barker’s kernel (Barker, 1965), slightly generalised to allow for \(N - 1 \) (not necessarily independent) proposals. In turn, Barker’s kernel admits the frozen Carlin-&-Chib kernel from Douc, Maire and Olsson (2014) as a special case (again, the index \(K \) then has a ‘physical’ interpretation: it indexes a particular component in an \(N \)-component mixture model).

In particular, under Assumption 3.11, a single application of Barker’s kernel is outlined in Algorithm 3.12.

3.12 Algorithm (Barker). Given \(X \sim \pi \),
(1) sample \(K \sim \text{Unif}_K, X^{-k} \sim Q_k(x^k, \cdot) \), and set \(X^k := X \),
(2) set \(\tilde{K} = l \) with probability
\[\tilde{P}_x(k, \{l\}) = \pi_x(\{l\}) = \frac{\gamma(dx^l)Q_l(x^l, dx^{-l})}{\sum_{n=1}^{N} \gamma(dx^n)Q_n(x^n, dx^{-n})}, \]
(3) output \(\tilde{X} = X^\tilde{K} \).

Note that in this simplified case (due to the exchangeability implied by the uniform distribution for \(K \) in Assumption 3.11), it suffices to set \(\tilde{K} := 1 \), say, in Step 3 of Algorithm 3.12.
Forced-Move Kernels. If we take \(\tilde{P}_X(k, \cdot) \) to be the modified discrete-state Gibbs kernel from Example 3.9 in the previous section, with target distribution \(\tilde{\pi}_X \), then the generic kernel \(P \) simplifies to the forced-move kernel described in Chopin and Singh (2013) (though, in that work, the kernel also makes use of the auxiliary variables, \(Y \), which we have left out here, for simplicity). As shown in that work, the forced-move kernel dominates (the above-mentioned generalisation of) Barker’s kernel in terms of Peskun ordering (Peskun, 1973).

In particular, under Assumption 3.11, a single application of the forced-move kernel is summarised in Algorithm 3.13, where we set

\[
\beta_X(k, l) := \frac{\tilde{\pi}_X(\{l\})}{1 - \tilde{\pi}_X(\{k\}) \vee 1 - \tilde{\pi}_X(\{l\})}.
\]

3.13 Algorithm (forced move). Given \(X \sim \pi \),

1. sample \(K \sim \text{Unif}_K, X^{-k} \sim Q_k(x^k, \cdot) \), and set \(X^k := X \),
2. set \(\tilde{K} = l \) with probability

\[
\tilde{P}_X(k, \{l\}) := \begin{cases}
\beta_X(k, l), & \text{if } l \neq k, \\
1 - \sum_{l \in K \setminus \{k\}} \beta_X(k, l), & \text{if } l = k,
\end{cases}
\]
3. output \(\tilde{X} = X^{\tilde{K}} \).

Again in the simplified case (due to the exchangeability implied by Assumption 3.11), it suffices to set \(K := 1 \), say, in Step 2 of Algorithm 3.13. Note that setting \(\tilde{K} = k \) in Step 2 is usually interpreted as ‘rejecting’ all the \(N - 1 \) proposed candidates \(X^{-k} \).

Metropolis–Hastings Kernels. If \(N = 2 \), then the forced-move kernel simplifies to the classic Metropolis–Hastings (MH) kernel introduced by Hastings (1970). Note that in this case, \(P_X \) reduces to the Metropolis kernel from Example 3.10 with target distribution \(\tilde{\pi}_X \).

In particular, under Assumption 3.11, a single application of the MH kernel takes the familiar form outlined in Algorithm 3.14, where we set

\[
\alpha_X(k, l) := \frac{\tilde{\pi}_X(\{l\})}{\tilde{\pi}_X(\{k\})} = \frac{\gamma(dx^l)Q_l(x^l, dx^{-l})}{\gamma(dx^k)Q_k(x^k, dx^{-k})}.
\]
3.14 Algorithm (Metropolis–Hastings). Given $X \sim \pi$,

1. sample $K \sim \text{Unif}_K$, $X^{-k} \sim Q_k(x^k, \cdot)$, and set $X^k := X$,
2. set $\tilde{K} = l$ with probability

$$P_x(k, \{l\}) := \begin{cases} 1 \land \alpha_x(k, l), & \text{if } l \neq k, \\ 1 - 1 \land \alpha_x(k, l), & \text{if } l = k, \end{cases}$$

3. output $\tilde{X} = X^k$.

As before, in this simplified case (due to the exchangeability implied by Assumption 3.11), it suffices to set $K := 1$, say, in Step 1. In particular, setting $\tilde{K} = l \neq k$ in Step 2 is usually interpreted as 'accepting' the proposed candidate X^{-k} and $P_x(k, \{l\}) = 1 \land \alpha_x(k, l)$ is the corresponding 'acceptance probability'.

It is well known that many MCMC kernels can themselves be viewed as special cases of the Metropolis kernel on a suitably extended space:

- **Multiple-try Metropolis** kernels (Liu, Liang & Wong, 2000) are shown to be MH kernels e.g. in Maire, Douc and Olsson (2014, Appendix B.2).
- **Delayed-acceptance** kernels (Christen & Fox, 2005) are MH kernels whose proposal kernel is itself an MH kernel targeting another distribution,
- **Reversible-jump** kernels (Green, 1995) (see Subsection 3.3.2) are MH kernels targeting a distribution on a particular countable union of spaces.
- **Pseudo-marginal** MH kernels (Beaumont, 2003; Andrieu & Roberts, 2009) (see Subsection 3.3.4) are MH kernels targeting a version of the pseudo-marginal target distribution from Subsection 1.4.3.

Note that these kernels are not inherently reliant on $N = 2$ and can easily be generalised to using $N - 1 > 1$ proposals. In addition, they could also use of some set of auxiliary variables, Y, e.g. as in Subsection 3.3.3.

We conclude this subsection by noting that Gibbs kernels are often viewed as (one-proposal) MH kernels in which the acceptance probability is equal to 1 (Gelman, 1992). The above interpretation shows that the opposite interpretation is also possible. That is, MH kernels are fundamentally Gibbs kernels on a suitably extended space. Of course, this is unsurprising because any implementable Monte Carlo algorithm must necessarily decompose into steps that require sampling from tractable (conditional) distributions.
3.3 General State-Space Kernels

3.3.2 Reversible-Jump MCMC

In some cases, for instance in the context of model selection problems, the target distribution \(\pi \) is defined on a particular countable union of spaces,

\[
X := \bigcup_{m \in M} \{m\} \times X_m,
\]

for some sequence of essentially arbitrary spaces \((X_m)_{m \in M}\). Kernels targeting such distributions are then known as \(\text{reversible-jump Markov chain Monte Carlo (RJMC\-MC)} \) kernels (Green, 1995) though there is no fundamental difficulty with targeting \(\pi \) using other (more general) instances of the generic MCMC kernel. Indeed, Extensions and modifications of the RJMC\-MC kernel can be found in Brooks, Giudici and Roberts (2003).

Often, RJMC\-MC kernels induce additional degenerate dependencies in the kernel \(\Pi \) because the candidates \(X^{-k} \) are constructed, at least in part, from deterministic transformations of \(X^k \). As a result, the dominating measure \(\psi \) can no longer be the otherwise common choice: Lebesgue measure, counting measure or combination of the two.

In this case, constructing a suitable dominating measure \(\psi \) will often be difficult. In the specific case: \(N = 2 \), Green (1995) proposes way of constructing the ‘symmetric’ dominating measure \(\psi \). Evaluating (densities with respect to) this measure typically requires calculating Jacobian determinants related to the deterministic transformation. This requirement is simply a product of making such (partially) deterministic proposals and is entirely unrelated to the specific structure of the state space \(X \).

As shown by Besag (1997), Godsill (2001), RJMC\-MC kernels and other MCMC kernels targeting distributions on a space as in Equation 3.9 can actually be viewed as being embedded in (and thus being a special case of) the pseudo-prior approach from Carlin and Chib (1995). The latter uses standard MCMC algorithms to target a distribution on the product space

\[
X = M \times \bigcap_{m \in M} X_m.
\]

Again, if \(X_m = X_n \), for \(n, m \in M \), then this extended distribution can in turn be interpreted as a special case of the extended target distribution \(\tilde{\pi} \) (but one in which the index \(M = K \) taking values in \(M = K \) has some ‘physical’ interpretation, for instance as the model index).
3.3.3 Randomised MCMC

Recall that in Definition 3.7 we defined instances of the generic MCMC kernel as 'randomised' if they make use of additional auxiliary variables, \(Y \), which are included in \(Z = (X, Y) \). In this subsection, we motivate this terminology and give some examples of such kernels.

Randomised Metropolis–Hastings Kernels. Note that the full conditional distribution of \((X, K)\) under \(\pi \) now also depends on the auxiliary variable, \(Y \). Assume that the extended target distribution has the particular structure from Assumption 3.11 and that \(N = 2 \).

In particular, under Assumption 3.11, a single application of such a randomised MH kernel is outlined in Algorithm 3.15, where we write

\[
\hat{\alpha}_z(k, l) := \frac{\pi_z(\{k\})}{\pi_z(\{l\})} = \alpha_x(k, l) \frac{dR_l(x, \cdot)}{dR_k(x, \cdot)}(y).
\]

Here, \(\alpha_x(k, l) \) is as in the standard MH kernel from Algorithm 3.14.

Algorithm (randomised Metropolis–Hastings).

Given \(X \sim \pi \),

1. sample \(K \sim \text{Unif}_K \), \(X^{-k} \sim Q_k(x^k, \cdot) \), and set \(X^k := X \),
2. sample \(Y \sim R_k(x, \cdot) \),
3. set \(\tilde{K} = l \) with probability

\[
\tilde{P}_z(k, \{l\}) := \begin{cases}
1 \wedge \hat{\alpha}_z(k, l), & \text{if } l \neq k, \\
1 - 1 \wedge \hat{\alpha}_z(k, l), & \text{if } l = k,
\end{cases}
\]

4. output \(\tilde{X} = X^k \).

As before, in this simplified case (due to the exchangeability implied by Assumption 3.11), it suffices to set \(K := 1 \), say, in step 1.

Randomised MH kernels have for instance been studied in Ceperley and Dewing (1999) (the *penalty method*), in I. Murray, Ghahramani and MacKay (2006) (the *single-variable exchange algorithm*) and in Nicholls et al. (2012), Alquier, Friel, Everitt and Boland (2014). They are usually motivated by the fact that the 'exact' acceptance probability based on \(\alpha_x(k, l) \) is intractable but that introducing the auxiliary variables \(Y \) allows the evaluation of \(\hat{\alpha}_z(x, \cdot)(k, l) \). However, as shown in Andrieu and Vihola (2014), these kernels cannot have a smaller asymptotic variance than the corresponding non-randomised kernels.
Interpretation as Randomised Acceptance Probability. The terminology 'randomised' \textsf{MCMC} (also called 'perturbed' \textsf{MCMC} in Andrieu & Vihola, 2014) is motivated by the fact that the term $\hat{\alpha}_{(x,y)}(k,l)$ in the acceptance probability can be viewed as a randomised version of the term $\alpha_x(k,l)$ in the acceptance probability from the standard \textsf{MH} kernel in Algorithm \textsf{3.14}. That is, using the reparametrisation $x; k; l \rightarrow y$ with $d \mathbb{R}_l(x, \cdot) = d \mathbb{R}_k(x, \cdot)$, we may write $\hat{\alpha}_{(x,y)}(k,l) = \alpha_x(k,l)V$, where V is a random variable, taking values in $V := [0, \infty)$, which is distributed according to $\zeta_{k,l}(x, \cdot) := R_k(x, \cdot) \circ \phi^{-1}_{x,k,l}$. Conditional on $X = x, K = k$ and $L = l$, this random variable has expectation 1 which implies $\mathbb{E}[\hat{\alpha}_{(x,y)}(k,l)] = \alpha_x(k,l)$. Thus, V is interpreted as noise perturbing the acceptance probability.

The fact that the randomised acceptance probability in these algorithms is equivalent to including the auxiliary variables Y into the state space is pointed out in Lee, Andrieu and Doucet (in prep.).

Reversibility. We stress again that viewing these kernels as special cases of the generic kernel from the previous section immediately shows that they are π-invariant – without appealing to (and having to check!) sufficient conditions such as detailed balance.

The following simple condition for π-reversibility is given by O’Neill, Balding, Becker, Eerola and Mollison (2000, Equation 3.10).

3.16 Proposition (O’Neill et al., 2000). Let $\alpha_x(k,l)$ in Algorithm \textsf{3.14} be replaced by $\alpha_x(k,l)V$, where $V \sim \rho_{k,l}(x, \cdot)$ for some distribution $\rho_{k,l}(x, \cdot) \in \mathcal{M}_1(V)$. Then the resulting kernel is π-reversible if

$$
\frac{\mathbb{E}[1 \wedge \alpha_x(k,l)V]}{\mathbb{E}[1 \wedge \alpha_x(l,k)W]} = \alpha_x(k,l),
$$

(3.10)

for any $k, l \in \{1, 2\}$ with $k \neq l$, and where $W \sim \rho_l,k(x, \cdot)$.

Proof. Note that $\alpha_x(k,l) = 1/\alpha_x(l,k)$. Hence, by Equation 3.10

$$
\tilde{\pi}_x(\{k\}) \mathbb{E}[1 \wedge \alpha_x(k,l)V] = \tilde{\pi}_x(\{l\}) \mathbb{E}[1 \wedge \alpha_x(l,k)W].
$$

Thus, the randomised \textsf{MH} kernel is π-reversible. \hfill \Box
A version of the following sufficient condition for Equation 3.10 can be found in Andrieu and Vihola (2014, Lemma 6).

3.17 Proposition (Andrieu & Vihola, 2014). Using the notation from Proposition 3.16, Equation 3.10 holds if
\[
\int_A \rho_{k,l}(x, dv) v = \int_V \rho_{l,k}(x, dw) \mathbb{1}_{(1/\text{id}_V)^{-1}(A)}(w), \tag{3.11}
\]
for any \(A \in \mathcal{B}(Y)\).

Proof. Again, let \(V \sim \rho_{k,l}(x, \cdot)\) and \(W \sim \rho_{l,k}(x, \cdot)\). Using that \(\alpha_x(k, l) = 1/\alpha_x(l, k)\) and decomposing the domain of integration, the left hand side in Equation 3.10 can be written as
\[
\mathbb{E}[V \mathbb{1}_{(\alpha_x(k, l), \infty)}(V)] + \alpha_x(l, k) \mathbb{E}[\mathbb{1}_{[0, \alpha_x(k, l)]}(V)]
\]
\[
\mathbb{E}[\mathbb{1}_{[0, \alpha_x(k, l)]}(W)] + \alpha_x(l, k) \mathbb{E}[W \mathbb{1}_{(\alpha_x(l, k), \infty)}(W)] \alpha_x(k, l).
\]
Note that \([a, b] = (1/\text{id})^{-1}([1/b, 1/a])\), for \(0 < a \leq b\), then by Equation 3.11 the first and second expectation in the denominator are equal to \(\mathbb{E}[V \mathbb{1}_{(\alpha_x(k, l), \infty)}(V)]\) and \(\mathbb{E}[\mathbb{1}_{[0, \alpha_x(k, l)]}(V)]\), respectively. Hence, Equation 3.10 is satisfied. \(\square\)

In turn, our auxiliary-variable construction immediately implies the sufficient condition from Equation 3.11. To see this, write \(\rho_{k,l} = \zeta_{k,l}\) and use the changes-of-variables \(v = \phi_{x,k,l}(y)\) and \(w = \phi_{x,l,k}(y)\). For any \((x, A) \in X \times \mathcal{B}(V)\) and any \(k \neq l\), we then have
\[
\int_A \zeta_{k,l}(x, dv) v = \int_A R_k(x, \cdot) \circ \phi_{x,k,l}^{-1}(dv) v
\]
\[
= \int_Y \frac{d}{dy} R_k(x, \cdot) (y) R_k(x, dy) \mathbb{1}_{\phi_{x,k,l}^{-1}(A)}(y)
\]
\[
= \int_V R_l(x, \cdot) \circ \phi_{x,l,k}^{-1}(dw) \mathbb{1}_{\phi_{x,l,k} \circ \phi_{x,k,l}^{-1}(A)}(w)
\]
\[
= \int_V R_l(x, \cdot) \circ \phi_{x,l,k}^{-1}(dw) \mathbb{1}_{(1/\text{id}_V)^{-1}(A)}(w)
\]
\[
= \int_A \phi_{l,k}(x, dw) \mathbb{1}_{(1/\text{id}_V)^{-1}(A)}(w).
\]
Here, in the fourth step, we have used that for any suitable surjective function \(f : X_1 \to X_2\), and any set \(A \subseteq X_2\), \(f \circ (1/f)^{-1}(A) = (1/\text{id}_{X_2})^{-1}(A)\).
3.3.4 Pseudo-Marginal MCMC

As a pseudo-marginal kernel, we refer to any MCMC kernel used to approximate a ‘marginal’ distribution $\pi^* \propto \gamma^* \in \mathcal{M}(\Theta)$, where

$$\gamma^*(d\theta) := \sigma(d\theta)\gamma(\theta, 1),$$

by targeting an extended distribution

$$\pi(d\theta \times dv) := \gamma^*(d\theta)\tilde{T}(\theta, dv)v,$$

as defined in Subsection 3.2.3.

Note that this entails using the generic extended target measure from Chapter 1 three times. Once for justifying the overall MCMC approximation (Subsection 3.1.4), once for constructing the particular MCMC kernel P (Subsection 3.2.3) and now a third time for building the distribution π which with respect to which the kernel P is invariant.

Illustration. To give a more concrete description of the resulting MCMC kernel, assume again the particular factorisation of the extended target distribution (associated with the MCMC kernel) given in Assumption 3.1. For simplicity, assume that $Y = \emptyset$. In addition, set $X := \Theta \times V$, where $V := [0, \infty)$, and write $X := (\Theta, V)$, $X^k = (\Theta^k, V^k)$ and $\Theta = \Theta^{1:N}$ as well as $V = V^{1:N}$. The crucial ingredient of pseudo-marginal MCMC kernels is then a proposal kernel with the following factorisation:

$$Q_k(x, dx^{-k}) := S_k(\theta, d\theta^{-k}) \prod_{n \in K \setminus \{k\}} \tilde{T}(\theta^k, dv^k),$$

where $S \in \mathcal{K}_1(X \times K, \Theta^N)$ is some suitable proposal kernel for Θ and where we write $S((\theta, k), \cdot) =: S_k(\theta, \cdot)$, for simplicity.

The conditional distribution of (X, K) under π then simplifies to

$$\tilde{\pi}_x(\{k\}) = \frac{\gamma(dx^k)Q_k(x^k, dx^{-k})}{\sum_{n=1}^N \gamma(dx^n)Q_n(x^n, dx^{-n})}$$

$$= \frac{\gamma^*(d\theta^k)S_k(\theta^k, d\theta^{-k})v^k}{\sum_{n=1}^N \gamma^*(d\theta^n)S_n(\theta^n, d\theta^{-n})v^n}.$$ \hspace{1cm} (3.12)
In other words, if \(V \equiv 1 \), then the probability in Equation (3.12) reduces to that obtained from some MCMC algorithm which directly works on the marginal space, \(\Theta \) and which at each iteration, proposes \(N - 1 \) candidates according to the kernel \(S \) to target the marginal distribution \(\pi^* \). In the particular context of MCMC methods, this property can be powerful because the mixing properties of algorithms targeting this (usually intractable) marginal distribution – and whose properties the pseudo-marginal algorithm seeks to mimic by controlling the oscillations of \(V \) – can be substantially better than those of algorithms targeting some (tractable) extended distribution.

Pseudo-Marginal MH Kernels. Pseudo-marginal methods were introduced by Beaumont (2003), Andrieu and Roberts (2009) and – in the context of MCMC methods – they are usually implemented by targeting the pseudo-marginal distribution using a standard MH kernel.

More precisely, assume in particular that that \(N = 2 \). Then under Assumption 3.11, the MH algorithm (Algorithm 3.14) can be restated as in Algorithm 3.18 where the term \(\alpha_x(k, l) \) in the acceptance probability can be expressed as

\[
\alpha_x(k, l) = \frac{\pi_x(\{l\})}{\pi_x(\{k\})} = \frac{\gamma^*(d\theta^l) S_l(\theta^l, d\theta^{-l}) v^l}{\gamma^*(d\theta^k) S_k(\theta^k, d\theta^{-k}) v^k}.
\]

(3.13)

3.18 Algorithm (pseudo-marginal MH). Given \(X \sim \pi \),

(1) sample \(K \sim \text{Unif}_K \) and \(\Theta^{-k} \sim S_k(\theta, \cdot) \),
(2) sample \(V^{-k} \sim \tilde{T}(\theta^{-k}, \cdot) \) and set \(X^k := X \),
(3) set \(\tilde{K} = l \) with probability

\[
\tilde{P}_z(k, \{l\}) := \begin{cases} 1 \land \alpha_x(k, l), & \text{if } l \neq k, \\ 1 - 1 \land \alpha_x(k, l), & \text{if } l = k, \end{cases}
\]

(4) output \(\tilde{X} = X^\tilde{k} \).

As before, in this simplified case (due to the exchangeability implied by Assumption 3.11), it suffices to set \(K := 1 \), say, in Step 1.

A thorough analysis of pseudo-marginal MH kernels has been undertaken by Doucet, Pitt, Deligiannidis and Kohn (2015), Andrieu and Vihola
Three fitted. Three fitted. General State-Space Kernels

(2015, 2014), Sherlock, Thiéry, Roberts and Rosenthal (2015) who also de-

drive guidelines for the optimal value of tuning parameters which govern

vibrations of the ‘noise’, \(V \), in this context.

3.19 Example (particle marginal MH). The particle marginal Met-

ropolis–Hastings (PMMH) kernel from Andrieu et al. (2010) is immediately

justified by recalling that SMC methods can be viewed as a special case of

the MOSIS framework from Chapter 2. More precisely, the PMMH kernel is a

special case of Algorithm 3.18 with

\[T_\theta (\theta, \cdot) := \bar{\psi} (\theta, \cdot) \circ (\bar{w}_\theta)^{-1}, \]

where \(\bar{\psi} (\theta, \cdot) \) and \(\bar{w}_\theta \) represent the extended proposal distribution and the

Radon–Nikodým derivative from Chapter 2. These are now indexed by \(\theta \). In

other words, at every iteration, the PMMH kernel employs an SMC algorithm

which, conditionally on the proposed value of \(\Theta \), proposes the ‘weight’ \(V^l \) in

the acceptance probability in Equation 3.13. More precisely, the weight \(V^l \)

is simply the usual SMC-based estimate of the normalising constant \(\gamma (\theta, 1) \) of

the measure \(\gamma (\theta, \cdot) \) which is marginally targeted by the SMC algorithm.

3.20 Example (random refreshment). The random refreshment algo-

rithm from Maire et al. (2014, Algorithm 3) can be viewed as applying the

pseudo-marginal MH kernel twice but taking \(S_k (\theta, \cdot) := \delta_\theta \) in the first

application. This kernel obviously dominates a single application of the

pseudo-marginal MH kernel in terms of not inducing a larger asymptotic

variance.

Other Pseudo-Marginal MCMC Kernels. The pseudo-marginal distri-

bution can also be targeted by other (more general) instances of the

generic MCMC kernel from Subsection 3.2.3. That is, the pseudo-marginal

idea can still be used when the kernel includes extra auxiliary variables \(Y \)

(leading to ‘randomised’ pseudo-marginal MH kernels) or if it uses \(N > 2 \)

candidates (leading to multiple-proposal pseudo-marginal kernels).

For instance, using (iterated) conditional sequential Monte Carlo kernels – these are described in the next section – based around pseudo-
marginal SMC algorithms (see Subsection 2.3.5) can be viewed as more

complicated (non-MH) pseudo-marginal MCMC kernels. The latter are also

‘randomised’ pseudo-marginal kernels due to the use of a number of

further auxiliary variables (e.g. parent indices) within SMC algorithms.

81
3.3.5 Ensemble MCMC

The ensemble MCMC methods from Neal (2003, 2011), Shestopaloff and Neal (2013) are based around a particular instance of the generic MOSIS target measure \(\hat{\gamma} \) from Section 1.4 which we describe below. Specifically, they describe two approaches.

Single-sequence ensemble MCMC kernels, described in Neal (2011) and also called embedded HMM methods in Neal (2003), can be viewed as building a multiple-proposal MCMC kernel around \(\hat{\gamma} \). This leads to a special case of the generic MCMC kernel from Section 3.2.3. We show that this method bears some resemblance – upon which we further elaborate below – to the conditional sequential Monte Carlo kernel with backward sampling which we describe in the next section.

Pseudo-marginal ensemble MCMC kernels, described in Shestopaloff and Neal (2013, 2014), are special cases of the pseudo-marginal MH kernel described in the previous subsection. They employ the particular instance of the measure \(\hat{\gamma} \) at a lower level to construct a particular kind of pseudo-marginal target distribution which is then targeted using a standard MH kernel. We show that this method can be interpreted as a particular PMMH kernel in which all the parent indices are integrated out analytically.

Setting. Let \(\gamma_T \in \mathcal{M}(X_{1:T}) \) be some target measure, let \(\pi_T := \gamma_T / \gamma_T(1) \) denote the target distribution, and let \(T' \in \mathcal{K}(X_{i_{T-1}}, X_i) \) be finite kernels such that \(\gamma_T = T'_{1:T} \).

Ensemble MCMC methods propose a pool of \(N_t \) possible candidates for the \(t \)th component of this target measure. In contrast to SMC methods, the candidates for different components are proposed independently. Given the pool of candidates, single-sequence ensemble MCMC kernels select one possible candidate for each component. In contrast, pseudo-marginal ensemble MCMC kernels average over all available candidates.

Extended Target Distribution. We describe both types of ensemble MCMC approaches in the following. First, we discuss the particular instance of the generic extended measure \(\hat{\gamma} \) around which they are based. We let \(K_T := \mathbb{N}_{N_t} \), for some \(N_t \in \mathbb{N}, N_t > 1 \), and set \(Y := \emptyset \) (i.e. we do not use any extra auxiliary variables).
The extended target measure employed by ensemble methods, and termed ‘ensemble density’ in Neal (2011), is then given by the usual factorisation

$$
\gamma_T(\text{d}x_{1:T}) := \gamma_T(\text{d}x_{1:T}) \tilde{\Pi}_T(x_{1:T}, \text{d}\tilde{z}_T),
$$

where

$$
\tilde{\Pi}_T(x_{1:T}, \text{d}\tilde{z}_T) := \text{Unif}_{K_{1:T}}(\text{d}k_{1:T}) \delta_{x_{1:T}}(\text{d}x_{1:T}^{k_{1:T}}) \\
\times \prod_{t=1}^{T} \xi_t^c((k_t, x_t^{k_t}), \text{d}x_t^{-k_t}).
$$

(3.14)

Above, for each \(t \in \mathbb{N}_T : = T\), \(\xi_t^c \in \mathcal{K}_1(K_t \times X_t, X_t^{N_t-1})\) is some stochastic kernel which defines a distribution over the \(N_t - 1\) remaining candidates in the ‘pool’ \(Z_t := X_t \sim X_t^{N_t} \).

For later use, let \(\tilde{\zeta}_t \in \mathcal{M}_t(X_t)\), be a probability measure on the space \(Z_t := X_t := X_t^{N_t}\), which is such that \(\tilde{\zeta}_t^c((k, x), \cdot)\) is the conditional distribution of \(X^{k}_{t}\) under \(\tilde{\zeta}_t\) given that the \(k\)th component takes the value \(x\). Similarly, let \(\zeta_t^m(k, \cdot)\) denote the marginal distribution of the \(k\)th component under \(\tilde{\zeta}_t\).

3.21 Example. For instance, Neal (2003) proposes to take \(\zeta_t^m(k, \cdot) = \rho_t\) to be some probability measure which is constant in \(k\) and sets

$$
\xi_t^c((k, x), \cdot) := P_t^{\otimes(N_t-1)}(x, \text{d}x_t^{k+1:N_t}) L_t^{\otimes(k-1)}(x, \text{d}x_t^{k-1} \times \cdots \times \text{d}x_1),
$$

where \(P_t\) is some \(\rho_t\)-invariant kernel and \(L_t\) is the associated time-reversal kernel.

Dominating Measure. Assuming that \(\gamma_T \ll \tilde{\zeta}_T^m(1_{1:T}, \cdot)\), for any \(k_{1:T} \in K_{1:T}^c\), the dominating measure employed by ensemble methods exists and can be written as

$$
\tilde{\psi}_T(\text{d}\tilde{z}_{1:T}) := \psi_T(\text{d}z_{1:T}) \tilde{\zeta}_T(z_{1:T}, \text{d}k_{1:T}) \delta_{x_{1:T}}^{k_{1:T}}(\text{d}x_{1:T}),
$$

(3.15)

where \(\xi_T \in \mathcal{K}_1(\mathcal{Z}_{1:T}, K_{1:T}^c)\) is some suitable stochastic kernel (whose support is a large-enough subset of \(K_{1:T}^c\)) and where \(\psi_T := \tilde{\zeta}_T^m\) was termed ‘ensemble base measure’ in Neal (2011).
Radon–Nikodým Derivative. For the above-mentioned extended target measure and associated dominating measure, we obtain the following simple Radon–Nikodým derivative \(\bar{\nu}_T := d\tilde{\nu}_T/d\tilde{\psi}_T \), given by

\[
\bar{\nu}_T(x_T) = \mathbb{1}_{\{x_T\}}(x_{1:T}^{k_t}) \times \frac{d\text{Unif}_{k_T}}{d\xi_T}(k_{1:T}) \frac{d\tilde{\psi}_T}{d\xi_T}(x_{1:T}^{k_t}), \quad (3.16)
\]

For \(\tilde{X}_T \sim \tilde{\psi}_T \), if we again write

\[
\nu^{k_t:T}(z_{1:T}) := \mathbb{E}\left[\bar{\nu}_T(\tilde{X}_T) \mathbb{1}_{\{k_T\}}(K_{1:T}) | Z_{1:T} \right]
= \left[\prod_{t=1}^{T} N_t \right]^{-1} \frac{d\tilde{\psi}_T}{d\xi_T}(x_{1:T}^{k_t}),
\]

then the full conditional distribution of \((X_{1:T}, K_{1:T})\) under \(\tilde{\psi}_T \) can be written as \(\tilde{\nu}_T(z_{1:T}, dk_{1:T} \times dx_{1:T}) = \tilde{\nu}_{T, z_{1:T}}(dk_{1:T}) \delta_{x_{1:T}}(dx_{1:T}) \), where

\[
\tilde{\nu}_{T, z_{1:T}}(\{k_{1:T}\}) := \frac{w^{k_{1:T}}(z_{1:T})}{\sum_{n_{1:T} \in \mathcal{K}_{1:T}} \nu^{n_{1:T}}(z_{1:T})}.
\]

Single-Sequence Ensemble MCMC. The single-sequence ensemble or embedded HMM method from Neal (2003, 2011) is an instance of the generic MCMC kernel from Subsection 3.2.3. More specifically, by adding a large number of degenerate copies of the candidates and by using a suitable reparametrisation, it can be viewed as an instance of Barker’s kernel with \(N = \prod_{t=1}^{T} N_t \) candidates. In algorithmic form, it may be summarised as follows.

3.22 Algorithm (single-sequence ensemble MCMC). For \(X_{1:T} \sim \pi_T \),

1. sample \(k_{1:T} \sim \text{Unif}_{K_{1:T}} \) and set \(X_{1:T}^{k_{1:T}} := X_{1:T} \),
2. for \(t \in T \), sample \(X_{t}^{k_t} \sim \xi_t^c((k_t, X_t^{k_t}), \cdot) \),
3. sample \(\tilde{K}_{1:T} \sim 1_{1:T} \) with probability \(\tilde{\nu}_{T, z_{1:T}}(\{l_{1:T}\}) \),
4. output \(\tilde{X}_{1:T} = X_{1:T}^{k_{1:T}} \).

Note that the computational cost of sampling \(\tilde{K}_{1:T} \) in Step 3 of this Algorithm will generally grow exponentially in \(T \). However, in the setting
studied in Neal (2003, 2011), the kernels Γ_t are Markov, i.e. $\Gamma_t(x_{1:t-1}, \cdot)$ is constant in $x_{1:t-2}$. As a result, the usual forward–backward recursions (Rauch et al., 1965; Baum et al., 1970) can reduce the computational complexity of Step 3 to $\Theta(TN^2)$ (assuming $N_1 = \ldots = N_T = N$).

Pseudo-Marginal Ensemble

We now turn to the ensemble approach from Shestopaloff and Neal (2013) which may be viewed as a special case of the pseudo-marginal kernel described in the previous subsection.

More precisely, the extended target measure defined by Equation 3.14 is now used to construct a particular instance of the pseudo-marginal target measure from Subsection 1.4.3 and hence to define a particular distribution π with respect to which the MH kernel is invariant. Note that this is in contrast to the single-sequence method in which the extended target measure was used at a ‘higher level’ to construct the π-invariant MH kernel P.

As in Subsection 3.3.4 we assume that we actually want to approximate some ‘marginal’ distribution $\pi^* \propto \gamma_T^* \in \mathcal{M}(\Theta)$, where

$$\gamma_T^*(d\theta) := \sigma(d\theta)\gamma_T(\theta, 1).$$

In this case, $\gamma_T(\theta, \cdot)$ is the target distribution used for the single-sequence method but which may now depend on Θ. The probability measure $\sigma \in \mathcal{M}_1(\Theta)$ can often be viewed as a prior distribution on the parameter Θ.

As before, to circumvent intractabilities in the acceptance probability, the MH algorithm may be viewed as targeting the extended distribution π_T, proportional to the extended measure $\sigma(d\theta)\bar{T}(\theta, dv)v$. Here, $\bar{T}(\theta, \cdot) := \psi_T(\theta, \cdot)\circ (\bar{w}_T^\theta)^{-1}$ where $\psi_T(\theta, \cdot)$ and \bar{w}_T^θ are the dominating measure and the Radon–Nikodým derivative from Equations 3.15 and 3.16 but which may now depend on Θ.

By Proposition 1.13, taking $\xi_T(z_{1:T}, \{k_{1:T}\}) := \bar{n}_{T, z_{1:T}}(\{k_{1:T}\})$ means that the random variable governing the ‘noise’ in the noisily evaluated target density, $V^\theta \sim \bar{T}(\theta, \cdot)$ is given by the usual estimate of the normalising constant, i.e. by

$$V^\theta = \bar{w}_T^\theta(\bar{X}_T) = \sum_{k_{1:T} \in \mathcal{K}_{1:T}} w_{k_{1:T}}(\theta, Z_{1:T}).$$

Here, the notation $w_{k_{1:T}}(\theta, Z_{1:T})$ is used to indicate dependence on Θ.

85
Comparison With Particle MCMC. We conclude this section by offering a comparison between ensemble MCMC methods and the particle MCMC methods introduced by Andrieu et al. (2010). Such a formal comparison has not been undertaken in the literature.

Let ψ_T be the distribution of all random variables generated by an SMC algorithm up to Step T, as defined in Chapter 2. Specifically, assume that the SMC algorithm is as follows. For any $t \in T := \mathbb{N}_T$,

- $R_{t-1}(z_{1:t-1}, \cdot) = \text{Unif}_{k_{t-1}^{N_t}}$, i.e. the resampling distribution is uniform, and, in addition, $O_t \equiv 1$, i.e. we resample at every step,

- $Q_t((z_{1:t-1}, a_{t-1}), \cdot) = \zeta_t$, i.e. the particles are proposed independently of the particles generated at previous steps (and of the parent indices).

In this case, the single-sequence ensemble MCMC method can be seen as an instance of the CSMC algorithm which we describe in the next section, but with a non-standard backward-sampling recursion. This recursion may be viewed as performing backward sampling after having analytically integrated out the parent indices.

Similarly, the pseudo-marginal ensemble MCMC method can be viewed as a PMMH algorithm (again based around the particular kind of SMC algorithm specified above) but one in which all the parent indices are integrated out when forming the estimate of the normalising constant.

Note that ensemble MCMC methods do not make use of the fundamental insight from Andrieu and Roberts (2009) described in Remark 1.16. More precisely, the extended target measure is constructed by extending the measure γ_T using the stochastic kernel $\xi^{c;\cdot}_{1:T}((k_{1:T}, x_{1:T}), \cdot)$ which is a full conditional distribution under the joint proposal distribution (the ‘ensemble base measure’) ψ_T. As a result, evaluating the importance weights requires evaluating (a density with respect to) the marginal proposal distribution, $\xi^{m;\cdot}_{1:T}((k_{1:T}), \cdot)$ (see Remark 1.16).

The need for the marginal proposal distribution to be tractable is exactly why the ensemble base measure, ψ_T, does not allow for dependence between X_t and X_{t+1}. Unfortunately, this impedes the efficiency of ensemble MCMC methods whenever the tth and $(t + 1)$th component are highly correlated under the target measure, γ_T. Nonetheless, Shestopaloff and Neal (2013) specifically stress the benefits of ensemble MCMC methods over other MCMC methods for models which exhibit such a strong dependence structure.
In contrast, as pointed out in Remarks 2.7 and 2.8, SMC methods only require evaluations of (densities with respect to) a certain conditional distribution under the joint proposal distribution. As a result, they are able to employ a proposal distribution with a much more complicated dependence structure. For instance, particles proposed at successive steps are almost always correlated under the law of the SMC algorithm, \(\psi_T \), even without resampling. Indeed, it is precisely this complicated dependence structure which can lead to efficient proposal distributions on high-dimensional spaces.

Meanwhile, ensemble MCMC methods are only justified by assuming 'computational short-cuts'. More precisely, for the single-sequence method, let \(\Theta \) be some other parameter which may be updated using another MCMC kernel. Neal (2011) then justifies these methods by assuming that \(X_{1:T} \) are 'fast' variables so that sampling (and evaluating densities associated with) \((\Theta, X_{1:T}) \) can be computationally faster than \(N \) times sampling (and evaluating densities associated with) the pair \((\Theta, X_t) \).

3.4 Conditional SMC Kernels

3.4.1 Iterated CSMC Kernel

In this section, we describe MCMC kernels based around the conditional sequential Monte Carlo (CSMC) kernel from Equation 2.4. In particular, we provide a unified framework for variance-reduction techniques for CSMC-based algorithms termed backward sampling (Whiteley, 2010) and ancestor sampling (Lindsten, Jordan & Schön, 2014): we show that both target the same extended distribution, \(\tilde{\pi}_T := \tilde{\gamma}_T / \tilde{\gamma}_T(1) \). To our knowledge, this is a new result. Finally, we comment on the use of CSMC kernels within particle Gibbs samplers.

Throughout this section, we assume that we are running an SMC algorithm up to \(T \in \mathbb{N} \) steps. To construct \(\tilde{\pi}_T \), we include an additional set of particles \(\tilde{X} = V_{1:T} \) and particle indices \(\tilde{K} = C_{1:T} \) into the state space. Both of these will be such that \(V_{1:T} \) coincides with the particles with indices \(C_{1:T} \) generated under the SMC algorithm, i.e. \(V_{1:T} = X_{1:T} \). Throughout this section, we re-use a substantial amount of notation from Subsection 2.4.2. This is deliberate because in the case of CSMC with back-
ward sampling, discussed in the next subsection, the extended measure \(\tilde{\gamma} \) is exactly the extended target measure associated with the filtering–backward smoothing approximation from Subsection 2.4.2.

In particular, in this subsection, we present the basic iterated CSMC algorithm from Andrieu et al. (2010) which forces the particles \(V_{1:T} \) to coincide with a particle lineage under the SMC algorithm. That is, we have \(C_{1:T} = B_{1:T|T}^n \), for some \(n \in K_T \). The variance-reduction techniques described in the next subsection are based around relaxing this condition.

To construct a \(\pi_T \)-invariant MCMC kernel based on the CSMC kernel \(\Pi_T^{\text{CSMC}} \in K_1(X_{1:T}, Z_{1:T}) \) from Equation 2.4, we let

\[
\mathcal{E}_T(z_{1:T}, dx_{1:T} \times dk_{1:T}) = \xi_{T|T}(z_{1:T}, dk_T) \left[\prod_{t=1}^{T-1} \delta_{a_t^{k_{t+1}}}^1(duk_t) \right] \delta_{X_{1:T}^{k_{1:T}}}(dx_{1:T})
\]

be the stochastic kernel from Equation 2.2.

Throughout this section, \(\xi_{T|T}(z_{1:T}, \{k\}) := W_{T}^k(z_{1:T}) \), for \(k \in K_T \). Take \(\pi_T := \tilde{\gamma}_T / \tilde{\gamma}_T(1) \) to be the extended target distribution associated with the generic SMC algorithm from Chapter 2. Then by Proposition 2.10

\[
\pi_T(d\tilde{x}_T) := \pi_T(dz_{1:T} \times du_{1:T} \times db_{1:T}) \mathcal{E}_T(z_{1:T}, dv_{1:T} \times dc_{1:T})
= \psi_T(dz_{1:T}) \tilde{\gamma}_T^{\text{CSMC}, T} \mathcal{E}_T(z_{1:T}, dv_{1:T} \times db_{1:T}) \\
\times \mathcal{E}_T(z_{1:T}, dv_{1:T} \times dc_{1:T})
= \pi_T(dz_{1:T} \times dv_{1:T} \times dc_{1:T}) \mathcal{E}_T(z_{1:T}, dv_{1:T} \times db_{1:T}).
\]

The further extended distribution \(\pi_T \) therefore satisfies Equation 3.5, i.e. if \(\tilde{X} \sim \pi_T \), then \(V_{1:T} \sim \pi_T \). As a result, the following algorithm induces a \(\pi_T \)-invariant kernel, called the iterated CSMC kernel.

3.23 Algorithm (iterated CSMC). Given \(X = U_{1:T} \sim \pi_T \),

1. sample \((B_{1:T}, Z_{1:T}) \sim \Pi_T^{\text{CSMC}}(u_{1:T}, \cdot)\),
2. sample \((V_{1:T}, C_{1:T}) \sim \mathcal{E}_T(z_{1:T}, \cdot)\),
3. return \(X := V_{1:T} \).

Unfortunately, as discussed by Fearnhead (2010), Whiteley (2010), the sample-impoverishment phenomenon discussed in Subsection 2.4.1 can
3.4 Conditional SMC Kernels

lead to slow mixing of this kernel. That is, all \(N_T \) particle lineages under \(\psi_T \) will often share a common ancestor, i.e. there is some \(t < T \) such that \(B^n_{t:T} = U_{t:t} \), for all \(n \in K_T \).

In this case (at least) the first \(t \) particles of the path \(U_{1:T} \) coincide with the first \(t \) particles of the path \(V_{1:T} \). It is well known (Andrieu, Lee & Vihola, 2015; Lindsten, Douc & Moulines, 2013) and has been observed empirically (e.g. Fearnhead, 2010) that, in sufficiently ergodic models, the number of particles needs to scale at least linearly in \(T \) to control the probability of such a coalescence events and hence the asymptotic variance associated with the MCMC approximation.

3.4.2 Variance-Reduction Techniques

In this subsection, we describe two variance-reduction techniques for iterated SMC algorithms known as backward sampling and ancestor sampling. The main idea of these techniques is to allow \(C_{1:T} \neq B^n_{1:T|T} \), for any \(n \in K_T \) so that \(V_{1:T} \) does not need to coincide with any particle lineage at Step \(T \).

Backward and Ancestor Sampling Weights. Before describing the variance-reduction techniques we recall some notation from Subsection 2.4.2.

For \(t \in T := N_T \), we again define the following kernels, termed backward sampling weights or ancestor sampling weights in this section,

\[
\alpha_t^k(z_{1:t}, v_{t+1:T}) := w_t^k(z_{1:t}) \frac{dF^\otimes_{t+1:T}(X^{b_{t+1:T}}_{1:t}, \cdot)}{d\lambda^\otimes_{t+1:T}(X^{b_{t+1:T}}_{1:t}, \cdot)},
\]

for \(k \in K_t \), where the kernels \(\lambda_t \in \mathcal{K}_d(X_{t:t-1}^t) \) define some suitable dominating measure. We also define the self-normalised versions

\[
W_t^k(z_{1:t}, v_{t+1:T}) := \frac{w_t^k(z_{1:t}, v_{t+1:T})}{\sum_{n=1}^{N_t} w_t^n(z_{1:t}, v_{t+1:T})}.
\]

We again note that \(w_T^k(z_{1:T}) = w_T(z_{1:T}) \).
3 Markov Chain Monte Carlo Methods

Backward Sampling. First introduced by Whiteley (2010), **backward sampling (BS)** replaces the standard kernel \mathcal{E}_T by the slightly more general kernel $\mathcal{E}^\text{BS}_T \in \mathcal{K}_1(\mathcal{Z}_{i:T}, \mathcal{X}_{i:T} \times \mathcal{K}_{i:T})$ from Subsection 2.4.2 which we recall was given by

$$\mathcal{E}^\text{BS}_T(z_{1:T}, dv_{1:T} \times dc_{1:T})$$

\[= \prod_{t=1}^{T} \xi_{t|T}((z_{1:t}, v_{t+1:T}, c_{t+1:T}), dc_t) \delta_{z_t} (dv_t),\]

where, for any $t \in T \setminus \{T\}$,

$$\xi_{t|T}((z_{1:t}, v_{t+1:T}, c_{t+1:T}), \{c_t\})$$

\[= \begin{cases}
\delta_{z_{t+1}}(\{c_t\}), & \text{if } Q_t(o_t) = 0, \\
W_{t|T}^{c_t}(z_{1:t}, v_{t+1:T}), & \text{if } Q_t(o_t) = 1,
\end{cases} \quad (3.18)

Here, $Q_t : O_t \to \{0, 1\}$ is again some suitable function for interpolating between the ‘plain’ iterated CSMC kernel from the previous subsection and an iterated CSMC kernel with ‘full’ backward sampling.

Iterated CSMC with BS is summarised in Algorithm 3.24 The proof that this procedure induces a kernel that is π_T-invariant is postponed to the next subsection.

3.24 Algorithm (iterated CSMC with BS). Given $X = U_{1:T} \sim \pi_T$,

1. sample $(B_{1:T}, Z_{1:T}) \sim \tilde{\Pi}^\text{CSMC}(u_{1:T}, \cdot)$,

2. sample $(V_{1:T}, C_{1:T}) \sim \mathcal{E}^\text{BS}_T((b_{1:T}, u_{1:T}, z_{1:T}), \cdot)$,

3. return $X := V_{1:T}$.

That is, to sample according to the kernel induced by iterated CSMC with BS we first sample $\tilde{Z}_{1:T} = (U_{1:T}, B_{1:T}, Z_{1:T})$ according to the standard CSMC kernel. Note that this conditions on particles $U_{1:T} = u_{1:T}$ which are allocated to indices $B_{1:T}$ in such a way that the B_Tth particle lineage at Step T (implied by $Z_{1:T}$) takes values $u_{1:T}$. We then sample a sequence of particle indices $C_{1:T}$ ‘backwards’. The collection of particles thus indexed is then labelled $V_{1:T}$. In general, it does not need to coincide with any of the Step-T particle lineages implied by $Z_{1:T}$.
3.4 Conditional SMC Kernels

Ancestor Sampling. Introduced by Lindsten, Jordan and Schön (2012, 2014), *ancestor sampling (AS)* keeps the kernel \mathcal{E}_T from the plain iterated CSMC algorithm but replaces the standard CSMC kernel, $\hat{\Pi}^\text{CSMC}_T$, by $\hat{\Pi}^\text{AS}_T \in \mathcal{K}_1(\mathcal{X}_{1:T}^T, \mathcal{Z}_{1:T}^T \times \mathcal{K}_{1:T}^\infty)$, given by

$$
\hat{\Pi}^\text{AS}_T(v_{1:T}, dz_{1:T} \times dc_{1:T}) := \hat{\Pi}^\text{AS}_T(v_{1:T}, dc_1 \times dz_1) \times \prod_{t=2}^T \hat{\Pi}^\text{AS}_T((v_{1:T}, c_{1:t-1}, z_{1:t-1}), dc_t \times dz_t),
$$

with

$$
\hat{\Pi}^\text{AS}_T(v_{1:T}, dc_1 \times dz_1) := A_t(v_1, dc_1)\delta_{v_1}(dx_1^{c_1})q_t^c((c_1, x_1^{c_1}), dx_1^{-c_1})
$$

and

$$
\hat{\Pi}^\text{AS}_T((v_{1:T}, c_{1:t-1}, z_{1:t-1}), dc_t \times dz_t) := S_{t-1}(z_{1:t-1}, do_{t-1})\delta_{o_{t-1}}(dx_t^{c_t}) \times \rho_{t-1}(v_{1:t}, z_{1:t-1}, o_{t-1}, c_{1:t-1}), dc_{t-1}) \times A_t((v_{1:t}, z_{1:t-1}, o_{t-1}, a_{t-1}^{c_{t-1}}), dc_t) \times R_t^c((z_{1:t-1}, o_{t-1}, c_t, a_{t-1}^{c_{t-1}}), da_t^{-c_t}) \times Q_t^c((z_{1:t-1}, o_{t-1}, a_{t-1}, c_t, x_t^{c_{t-1}}), dx_t^{-c_t}).
$$

The only difference to the standard CSMC kernel is that the parent index associated with the particle on which we condition at Step $t + 1$, A_{t+1}, is not deterministically set to C_t but rather sampled from some distribution determined by the stochastic kernel for any $t \in T \setminus \{T\}$ defined by

$$
\rho_t(v_{1:t}, o_t, u_{t+1:T}, c_{1:t}, a_{t}^{c_{t+1}}) = \begin{cases}
\delta_{c_t}(\{a_{t}^{c_{t+1}}\}), & \text{if } Q_t(o_t) = 0, \\
W_{t,T}^{a_{t}^{c_{t+1}}}(z_{1:t}, u_{t+1:T}), & \text{if } Q_t(o_t) = 1.
\end{cases}
$$

As a result, $V_{1:T}$ does not necessarily coincide with any particle lineage under the SMC algorithm. The function Q_t is the same is in the case of RS.
3 Markov Chain Monte Carlo Methods

More precisely, the only difference between iterated CSMC with AS and ‘plain’ iterated CSMC is that the former potentially sets $A_{t-1}^c \neq C_{t-1}$ in Step 2 of Algorithm 3.25 which details the steps entailed in sampling from $\bar{\pi}_T^{\text{AS}}(v_{1:T}, \cdot)$.

3.25 Algorithm. At Step 1, sample $C_1 \sim A_1(v_1, \cdot)$, set $x_1^{c_1} := v_1$ and sample $X_1^{-C_1} \sim q_1^c((c_1, x_1^{c_1}), \cdot)$. At Step t, $t \in \mathbb{Z}_{2:T}$,

1. sample $O_{t-1} \sim S_{t-1}(z_{1:t-1}, \cdot)$,
2. sample $A_{t-1}^{c_t} \sim \rho_{t-1}(v_{1:t}, z_{1:t-1}, o_{t-1}, c_{t-1})$, \cdot),
3. sample $C_t \sim \Lambda_t((v_{1:t}, z_{1:t-1}, o_{t-1}, a_{t-1}^{c_t}), \cdot)$ and set $x_t^{c_t} = v_t$,
4. sample $A_{t-1}^{-c_t} \sim R_{t-1}^{c_t}(z_{1:t-1}, o_{t-1}, c_t, a_{t-1}^{c_t})$, \cdot),
5. sample $X_t^{-c_t} \sim Q_t^{c_t}(z_{1:t-1}, o_{t-1}, a_{t-1}, c_t, x_t^{c_t}), \cdot)$.

The complete set of sampling steps needed for performing one iteration of the iterated CSMC with AS kernel is summarised in Algorithm 3.26. Again, the proof that this procedure induces a kernel that is π_T-invariant is postponed to the next subsection.

3.26 Algorithm (iterated CSMC with AS). Given $X = V_{1:T} \sim \pi_T$,

1. sample $(C_{1:T}, Z_{1:T}) \sim \bar{\pi}_T^{\text{AS}}(v_{1:T}, \cdot)$ via Algorithm 3.25,
2. sample $(U_{1:T}, B_{1:T}) \sim \mathcal{E}(z_{1:T}, \cdot),$
3. return $X := U_{1:T}$.

3.4.3 Duality of Backward and Ancestor Sampling

By construction, iterated CSMC with AS targets the extended distribution

$$\tilde{\pi}_T^{\text{AS}}(d\tilde{x}_T) := \pi_T(du_{1:T})\bar{\pi}_T^{\text{CSMC}}(u_{1:T}, dz_{1:T} \times db_{1:T}) \times \mathcal{E}_T^{\text{AS}}(z_{1:T}, dc_{1:T} \times dv_{1:T}).$$

Similarly, iterated CSMC with AS targets the extended distribution

$$\tilde{\pi}_T^{\text{AS}}(d\tilde{x}_T) := \pi_T(dv_{1:T})\bar{\pi}_T^{\text{AS}}(v_{1:T}, dz_{1:T} \times dc_{1:T}) \times \mathcal{E}(z_{1:T}, db_{1:T} \times du_{1:T}).$$

The main focus of this subsection is the following result whose proof can be found at the end of this subsection.
3.27 Proposition. Iterated conditional sequential Monte Carlo algorithms with backward sampling and ancestor sampling target the same extended distribution, i.e. \(\tilde{\pi}_T := \tilde{\pi}_T^{BS} = \tilde{\pi}_T^{AS} \).

Recalling that forward filtering–backward smoothing (as well as its sampling approximation: forward filtering–backward sampling) targets an extended measure whose normalised version coincides with \(\tilde{\pi}_T^{BS} \), Proposition 3.27 implies that it leads to unbiased estimates of integrals of the form \(\gamma_T(f_T) \). More importantly, Proposition 3.27 immediately guarantees that iterated CSMC kernels with BS and AS both leave \(\pi_T \) invariant, as formalised in the following corollary.

3.28 Corollary. If \(\tilde{X}_T \sim \tilde{\pi}_T \), then \(V_{1:T} \sim \pi_T \) and \(U_{1:T} \sim \pi_T \).

3.29 Remark. Corollary 3.28 might also be useful for analysing and perhaps comparing the convergence properties of iterated CSMC algorithms with BS and with AS. This could be done by analysing the expectation of the usual normalising-constant estimate under a ‘doubly-conditional’ CSMC algorithm to which Corollary 3.28 gives rise. This ‘doubly-conditional’ CSMC algorithm is slightly more general than the one from Andrieu et al. (2013).

To summarise, recall that \(U_{1:T} \) forms a particle lineage under the CSMC algorithm but \(V_{1:T} \) does not (necessarily). The above-mentioned CSMC kernels with BS and AS can thus be interpreted as follows.

Iterated CSMC with BS samples from the conditional distribution of all random variables under \(\tilde{\pi}_T \) given \(V_{1:T} = v_{1:T} \). The procedure yields a new set of particles \(U_{1:T} \).

Iterated CSMC with AS samples from the conditional distribution of all random variables under \(\tilde{\pi}_T \) given \(U_{1:T} = u_{1:T} \). The procedure yields a new set of particles \(V_{1:T} \).

The remainder of this subsection is devoted to proving Proposition 3.27. To that end, we first state the following technical lemma.

3.30 Lemma. For \(v_{1:T} \in \mathcal{X}_{1:T}^{\mathbb{R}} \), use the convention that for any integer \(k \),

\[
u_{0|T}^k(v_{1:T}) := \frac{d\gamma_T}{d\lambda_{1:T}^k}(v_{1:T}),
\]
where \(\lambda^\otimes_{1:T} \in \mathcal{M}_0(X_{1:T}^\times) \) is the same dominating measure used in the definition of the BSAS weights. With some abuse of notation, for \(t > 1 \), write \(\beta_t(k, l) \) as a shorthand for

\[
\frac{A_t((z_{1:t-1}, o_{t-1}, k), \{l\})}{R_{t-1}^m((z_{1:t-1}, o_{t-1}, l), \{k\}) Q_t^m((z_{1:t-1}, a_{t-1}, l), dx_t^l)}.
\]

Likewise, for \(t = 1 \) and for any \(k \), write

\[
\beta_1(k, l) := \frac{A_1(\{l\})}{q_1^m(l, dx_1^l)}.
\]

Let \(c_{1:T} \in K_{1:T} \) and let \(t \in T \). If there exists \(p \in \mathbb{N}_{t-1} \) such that

\[
\forall s \in \mathbb{Z}_{p:t-1} : a_{s+1}^{c_s} = c_s,
\]

(i.e. so that \(c_{p:t} = b_{p:t}^{c_p} \)) then, writing \(v_{1:T} = x_{1:T}^{c_{1:T}} \),

\[
w_{1:T}^e(v_{1:T}, v_{1:t} = x_{1:t}^{c_{1:t}}) = u_{p-1}^{a_{p-1}^{c_p}}(z_{1:p-1}, v_{p:T}) \prod_{s=p}^t \beta_s(a_{s+1}^{c_s}, c_s).
\]

Proof. This follows from the definition of the BSAS weights after some tedious but simple algebraic manipulations. \(\square \)

Proof of Proposition 3.27. To simplify the notation throughout this proof, we omit all degenerate dependencies and write \(b_{t|T} = b_t, u_t = x_t^{b_t} \) and \(v_t = x_t^{c_t} \), for \(t \in T \). We also define \(\beta_t \) as in Lemma 3.30.

As we assume that \(\xi_{T|T}(z_{1:T}, \{k\}) = W_T^X(z_{1:T}) \), it suffices to show that

\[
\sum_{n=1}^{N_T} w_n^u(z_{1:T}) \prod_{t=1}^T \xi_{t|T}(z_{1:t}, v_{t+1:T}, c_{t+1:T}, \{c_t\}) = \frac{dy_T}{dx_{1:T}^\otimes}(v_{1:T}) \left[\prod_{t=1}^T \beta_t(a_{t-1}^{c_t}, c_t) \right] \\
\times \prod_{t=1}^{T-1} \rho_{t|T}(z_{1:t}, v_{t+1:T}, c_{t+1:t}, \{a_t^{c_t+1}\}). \quad (3.19)
\]

Define

\[
\tilde{\mathcal{O}} := \{ t \in T \mid \rho_t(o_t) = 1 \} \cup \{ T \}
\]
to be the indices of the \texttt{CSMC} steps for which BS is performed (to which we also count the final step). Using the definition of the kernels ξ_i/t from Equation 3.18 left hand side in Equation 3.19 then equals

$$
\left[w_{T}^{C_{T}}(z_{1:T}) \prod_{t \in \mathcal{O}\setminus\{T\}} W_{i/t}^{C_{t}}(z_{1:t}, v_{t+1:T}) \right] \prod_{t \in T\setminus\mathcal{O}} \delta_{c_{t}}(\{a_{t}^{c_{t+1}}\}). \tag{3.20}
$$

Let $L := \#\mathcal{O}$ be the number of \texttt{CSMC} steps at which backward sampling is performed (to which we again count the final step) and let $t_{i:L}$ denote the indices of these \texttt{CSMC} steps in increasing order. In particular, therefore, $t_{L} = T$. Additionally, we use the conventions $t_{0} := 1$.

By Lemma 3.30 and the conventions defined therein, in particular with the convention that $w_{0:T}^{k} = d\gamma_{T}/d\lambda_{i:T}$, for any integer k, the term in the square brackets in Equation 3.20 can then be written as

$$
\left[\prod_{l=0}^{L-1} w_{t_{l}:T}^{a_{t_{l}+1}}(z_{1:t_{l}}, v_{t_{l}+1:T}) \prod_{t=t_{l}+1}^{t_{l+1}} \beta_{t}(a_{t-1}^{c_{t}}, c_{t}) \right] \times \prod_{t \in \mathcal{O}\setminus\{T\}} \left[\sum_{n \in K_{t}} w_{t_{l}:T}^{n}(z_{1:t_{l}}, v_{t_{l}+1:T}) \right]^{-1} = \frac{d\gamma_{T}}{d\lambda_{i:T}}(v_{1:T}) \left[\prod_{t=1}^{T} \beta_{t}(a_{t-1}^{c_{t}}, c_{t}) \right] \prod_{t \in \mathcal{O}\setminus\{T\}} W_{t_{l}:T}^{a_{t_{l}+1}}(z_{1:t_{l}}, v_{t_{l}+1:T}).
$$

This completes the proof. \hfill \Box

3.4.4 Application to Particle Gibbs Samplers

The \texttt{CSMC} kernels described above are usually employed as only one ingredient in a composite \texttt{MCMC} kernel.

That is, we usually want to approximate some ‘marginal’ distribution $\pi^{*} := \gamma^{*}/\gamma^{*}(1) \in \mathcal{M}_{1}(\Theta)$, where $\gamma^{*}(d\theta) := \sigma(d\theta)\gamma_{T}(\theta, 1)$.

Here, $\sigma \in \mathcal{M}_{1}(\Theta)$ and, for any $\theta \in \Theta$, $\gamma_{T}(\theta, \cdot) \in \mathcal{M}(X_{i:T})$ is the measure employed throughout this section but is now indexed by θ. However,
to avoid calculating the integral \(\gamma_T(\theta, 1) \), which is often intractable, we devise an MCMC kernel which targets an extended distribution \(\pi := \gamma/\gamma(1) \in \mathcal{M}_1(\Theta \times X_{1:T}^\times) \), where

\[
\gamma(d\theta \times dx_{1:T}) := \sigma(d\theta)\gamma_T(\theta, dx_{1:T}).
\]

3.31 Example (Bayesian posterior, continued).

In Bayesian statistics, \(\pi \) is often the joint posterior distribution of parameters \((\Theta, X_{1:T})\). In this case, letting \(M(\theta, \cdot) \) be a conditional prior distribution of the parameters \(X_{1:T} \), the joint prior distribution is given by \(\bar{\sigma} := \sigma \otimes M \). Furthermore, \(\bar{L} := dy/d\bar{\sigma} \) represents the likelihood of \((\Theta, X_{1:T})\) given some observations. Such joint posterior distributions are often more tractable than the marginal posterior distribution given by \(\pi^*(A) := \pi(A \times X_{1:T}^\times) \).

Particle Gibbs Sampler. Particle Gibbs (PG) samplers target the distribution \(\pi \) using an MCMC kernel \(P \) which is formed by first applying an MCMC kernel which is invariant with respect to the full conditional distribution of \(\Theta \) under \(\pi \), with some abuse of notation denoted \(\pi(d\theta|x_{1:T}) \), and then applying one of the above-mentioned iterated CSMC kernels (which are invariant with respect to the full conditional distribution of \(X_{1:T} \) under \(\pi \), again denoted with some abuse of notation as \(\pi(dx_{1:T}|\theta) := \gamma_T(\theta, dx_{1:T})/\gamma_T(\theta, 1) \)). Algorithm 3.32 presents a single iteration of the PG sampler.

3.32 Algorithm (particle Gibbs).

Given \((\Theta, X_{1:T}) \sim \pi\),

1. sample \(\tilde{\Theta} \) from some \(\pi(d\theta|x_{1:T}) \)-invariant MCMC kernel,
2. sample \(\tilde{X}_{1:T} \) using Alg. 3.23, 3.24 or 3.26 (targeting \(\pi(dx_{1:T}|\tilde{\theta}) \)),
3. return \((\Theta, X_{1:T}) := (\tilde{\Theta}, \tilde{X}_{1:T})\).

Novel Auxiliary-Variable Rejuvenation Step. The distribution \(\pi \) targeted by the PG sampler is sometimes itself an ‘artificially’ extended distribution in the sense that there is some one-to-one reparametrisation

\[
(\Theta, X_{1:T}) \leftrightarrow (\Theta, Z, Y).
\]

Here, \(Z \) is often some collection of random variables which can be interpreted as latent parameters in the model of interest. In contrast, \(Y \) is often
some collection of random variables which have only been introduced to allow a more flexible (conditional) SMC algorithm to be used.

We let \(\hat{\pi} \) be the distribution of the random variables under the parametrisation on the right hand side in Equation 3.21. More specifically,

\[
\hat{\pi}(d\theta \times dz \times dy) = \hat{\pi}^s(d\theta \times dz)L((\theta, z), dy).
\]

Here \(\hat{\pi}^s \in \mathcal{M}_1(\Theta \times Z) \) and \(L \in \mathcal{K}_1(\Theta \times Z, Y) \) while \(Z \) and \(Y \) take values in \(Z \) and \(Y \), respectively. Crucially, we assume that sampling from \(L((\theta, z), \cdot) \) is feasible.

3.33 Example. In the SMC-sampler framework from 2.3.2 \(\hat{\pi}^s \) may the distribution that is actually of interest, \(Z = X_T, Y = X_{1:T-1} \), and \(L = L^\otimes_T \) is the tensor product of the backward Markov kernels. In practice, it is often possible to sample from these.

3.34 Remark. As mentioned in Example 3.33, the auxiliary variables take a simple form in the case of the SMC-sampler framework. However, the auxiliary-variable rejuvenation idea is more widely applicable. Indeed, in Chapter 4 we apply it to an SMC algorithm which cannot be viewed as a (trivial) SMC sampler.

Conditioning on the auxiliary variables \(Y \) when sampling \(\Theta \) in Step 1 of the PG sweep described in Algorithm 3.32 can become computationally expensive and can induce slow mixing as soon as \(L((\theta, z), \cdot) \) is not constant in \(\theta \). In Finke et al. (2014), we proposed an additional PG step that overcomes these potential difficulties. It is summarised in Algorithm 3.35 where we slightly abuse notation by letting \(\hat{\pi}^s(d\theta|z) \) denote the full conditional distribution of \(Z \) under \(\hat{\pi}^s \).

3.35 Algorithm (PG with auxiliary-variable rejuvenation). Given a draw \((\Theta, X_{1:T}) \sim \pi \),

1. reparametrise \((\Theta, Z, Y) \leftarrow (\Theta, X_{1:T})\),
2. sample \(\tilde{\Theta} \) from some \(\hat{\pi}^s(d\theta|z) \)-invariant MCMC kernel,
3. sample \(\tilde{Y} \sim L((\theta, z), \cdot) \) and reparametrise \((\tilde{\Theta}, X_{1:T}) \leftarrow (\tilde{\Theta}, Z, \tilde{Y})\),
4. sample \(\tilde{X}_{1:T} \) using Alg. 3.23, 3.24 or 3.26 (targeting \(\pi(dx_{1:T}|\tilde{\Theta}) \)),
5. return \((\Theta, X_{1:T}) := (\tilde{\Theta}, \tilde{X}_{1:T})\).
3 Markov Chain Monte Carlo Methods

This algorithm is justified since the combination of steps Steps 1 to 3 leaves π invariant. Indeed, these steps represent a partially collapsed Gibbs step as described in Example 3.5. It offers three advantages.

1. By only conditioning on Z, Step 1 can take larger steps in the θ-direction compared to Step 3 in the standard PG algorithm.

2. Under some SMC algorithms, there is a strong interaction between Z and Y, so that rejuvenating the auxiliary variables Y outside of the CSMC kernel can dramatically improve mixing of the PG sampler. We give an example for this in Chapter 4. Therein, $X_{1:T} = (\phi_{1:T}, m_{1:T})$, where ϕ_t is some parameter and m_t is some finite index. Then, Z includes some subvector of $\phi_{1:T}$, whose choice depends on $m_{1:T}$, and Y denotes the remaining elements of $\phi_{1:T}$ and some other auxiliary variables. In this case, updating Y is beneficial because some of its components may be ‘chosen to be part of Z’ by the CSMC kernel.

3. Finally, Algorithm 3.35 comes at little or no extra computational cost. It can even offer computational savings compared to the standard PG scheme, e.g. when each PG sweep updates Θ using the m-fold convolution of a Metropolis–Hastings kernel (as is often done in practice since these updates tend to be relatively inexpensive). Algorithm 3.35 then avoids $m + 1$ evaluations of (densities of) L at the cost of generating one sample from $L((\theta, z), \cdot)$.

3.5 Summary

In this chapter, we have shown that MCMC algorithms can be viewed as a special case of the MOSIS framework described in Chapter 1. Using the same framework at a lower level, we have constructed a generic MCMC kernel. One way of interpreting the relationship between some well-known MCMC kernels for general state spaces mentioned in this chapter is outlined in Figure 3.1.
Figure 3.1 Particular instances of the generic MCMC kernel described in this chapter and their relation to the generic MCMC kernel.
Part II

Some Novel Monte Carlo Schemes
4 Inference in Piecewise Deterministic Processes

4.1 Introduction

4.1.1 Motivation

In this chapter, we develop algorithms for conducting inference in discretely observed piecewise deterministic processes. This class of models is defined in Section 4.2 where we also provide motivating examples. Section 4.3 describes an existing sequential Monte Carlo sampler for these models and investigates some of its properties. Section 4.4 derives a novel representation for this algorithm. In addition to ensuring the existence of the importance weights, this representation permits the use of backward sampling and ancestor sampling within particle Gibbs samplers and also allows the use of forward filtering–backward sampling schemes. Section 4.5 provides simulation results and comments on the utility of the novel particle Gibbs step which was presented in Subsection 3.4.4. An extended version of the work presented in this chapter was published as Finke et al. (2014).

A piecewise deterministic process (PDP) is a stochastic process that jumps randomly at a countable number of stopping times but otherwise evolves deterministically in continuous time. In this chapter, we employ sequential Monte Carlo (SMC)-based methods to conduct inference in PDPs which are observed only partially, noisily and in discrete time. Such models are more general than state-space models and inference for them is often more difficult.

Simple particle filters for PDPs termed variable-rate particle filters (VRPFs) were introduced by Godsill and Vermaak (2004) and a corresponding smoothing algorithm for non-degenerate models was suggested by Bunch and Godsill (2015). To apply more sophisticated particle filtering techniques to these models, an SMC filter for PDPs based on the SMC-
sampler framework from Del Moral et al. (2006b) (see Subsection 2.3.2), was introduced in Whiteley, Johansen and Godsill (2011).

However, methods for efficiently estimating the static parameters in such models still need to be developed. A few approaches have been proposed in the literature. A stochastic expectation–maximisation algorithm based on a reversible-jump Markov chain Monte Carlo (RJMCMC) sampler (Green, 1995) was introduced by Centanni and Minozzo (2006a, 2006b). A simple SMC sampler was attempted in Del Moral et al. (2007) to which some improvements were made in Martin, Jasra and McCoy (2013). In addition, Rao and Teh (2013) developed a Gibbs sampler for the special case in which the state space is discrete.

4.1.2 Contribution

We employ a particle Gibbs (PG) sampler (Andrieu et al., 2010), based around the SMC filter for PDPs from Whiteley et al. (2011), to estimate the static parameters. Our methodological contributions are as follows.

1) We provide new insight into the approximation induced by the SMC filter for PDPs and by related algorithms used in Del Moral et al. (2006b, 2007), Martin et al. (2013). We also suggest a way of ensuring the existence of the importance weights.

2) We derive a new representation of the algorithm that – for non-degenerate models – permits the use of backward sampling and ancestor sampling (Whiteley, 2010; Whiteley et al., 2010; Lindsten et al., 2014) within PG samplers and also allows the use of forward filtering–backward sampling schemes.

3) We apply the novel PG step for rejuvenating the potentially large number of auxiliary variables used in the SMC filter which was introduced in Subsection 3.4.4. This reduces the impact of these auxiliary variables on the overall mixing of the PG chain at virtually no extra computational cost, often even resulting in computational savings.

We demonstrate our method on two challenging examples. Our simulations indicate that it can compete with both a VRPF-based PG sampler and a RJMCMC sampler, at a potentially lower computational cost. We also empirically investigate the impact of the approximation mentioned in Item 1 above.
4.2 Piecewise Deterministic Processes

4.2.1 Definition

In this section, we introduce discretely-observed piecewise deterministic processes, the class of models with which the remainder of this article is concerned. They are stochastic processes that jump randomly at an almost surely countable number of random times but otherwise evolve deterministically in continuous time. Their description here follows Whiteley et al. (2011). We also provide motivating examples.

Notation. First, we clarify some notational conventions used throughout this chapter. For some spaces Θ and X, and some positive finite kernel $R \in K(\Theta, X)$, we usually write $R(\theta, \cdot) =: R^\theta(\cdot)$, for any $\theta \in \Theta$. We use the same notation, $R^\theta(x)$, to denote a density of this measure with respect to some σ-finite measure on X, e.g. with respect to a suitable version of the Lebesgue or counting measure, evaluated at some point x. For vectors $x = (x_1, \ldots, x_n)$ and some vector of indices $a = (a_1, \ldots, a_k)$, where $\{a_1, \ldots, a_k\} \subseteq \mathbb{N}_n$, we write $x_a := (x_{a_1}, \ldots, x_{a_k})$. Finally, $x_{-a} = x \setminus x_a$ denotes the vector that is identical to x, except that the components x_{a_1}, \ldots, x_{a_k} have been removed.

Prior Distribution. Let $(\tau_j, \phi_j)_{j \in \mathbb{N} \cup \{0\}}$ be a stochastic process such that $0 \equiv \tau_0$, such that $\tau_j < \tau_{j+1}$, and such that each ϕ_j takes a value in some non-empty set Φ. In addition, take a (deterministic) function $F^\theta : [0, \infty)^2 \times \Phi \to \Phi$ that satisfies $F^\theta(t, t, \cdot) = \text{id}$ for any $t \geq 0$. A piecewise deterministic process (PDP) is then a continuous-time stochastic process $\zeta := (\zeta_t)_{t \geq 0}$ with initial condition $\zeta_0 = \phi_0$ and with

$$\zeta_t = F^\theta(t, \tau_{v_t}, \phi_{v_t}),$$

for $t > 0$. Here, we have defined $v_t := \sup\{ j \in \mathbb{N} \cup \{0\} \mid \tau_j \leq t \}$, so that v_t represents the time of the last jump before (and including) time t. In other words, after time τ_{j-1}, the PDP evolves deterministically in continuous time according to the function F^θ until it reaches the next jump time τ_j, at which point the process randomly jumps to a new value given by the jump size ϕ_j. Here and throughout, θ denotes the ordered set of all static parameters present in the model. That is, θ contains all
4 Inference in Piecewise Deterministic Processes

the parameters that do not change over time and which therefore cannot be estimated via standard (particle) filtering methods.

Let \(0 = t_0 < t_1 < t_2 < \ldots \) be strictly increasing (non-random) times and let \(K_n := n \) denote the number of jumps before time \(t_n \), with realisations \(k_n \) and convention \(k_0 = 0 \). The process \(\zeta_{[0,t_n]} := (\zeta_t)_{t \in [0,t_n]} \) is then completely determined by \((K_n, \tau_1:K_n, \phi_0:K_n) \) (and \(\theta \)). For simplicity, as in Whiteley et al. (2011), we assume the following Markovian prior on the number, times and sizes of jumps in the interval \([0,t_n]\) for any \(n \in \mathbb{N} \),

\[
p_n^\theta(k_n, \tau_{1:k_n}, \phi_{0:k_n}) = S_0^\theta(t_n, \tau_{k_n}) q_0^\theta(\phi_0) \mathbb{1}_{(0,t_n]}(\tau_{k_n}) \prod_{j=1}^{k_n} q_j^\theta(\phi_j | \phi_{j-1}, \tau_j, \tau_{j-1}) f^\theta(\tau_j | \tau_{j-1}),
\]

where \(q_j^\theta(\phi_j | \phi_{j-1}, \tau_j, \tau_{j-1}) f^\theta(\tau_j | \tau_{j-1}) \) forms the Step-\(j \) transition kernel of \((\tau_j, \phi_j)_{j \in \mathbb{N}\cup\{0\}}\) with the support of \(f^\theta(\tau_j | \tau_{j-1}) \) being \((\tau_{j-1}, \infty)\). Furthermore, \(q_0^\theta(\phi_0) \) is the distribution of the initial jump size, and finally, \(S_0^\theta(t, \tau) := 1 - \int_0^t f^\theta(d\tau | \tau) \) denotes the probability of no jump occurring in the interval \((\tau, t)\) (for \(\tau \leq t \)).

Posterior Distribution. Inference for such models becomes necessary if we assume that \(\zeta \) can be observed only partially, at discrete times, and subject to some measurement error. Observations may be recorded at fixed or random times. Let \(y_{(s,t]} \) denote the vector of all observations in the interval \((s,t] \) for some \(0 < s < t < \infty \), a density of which is represented by \(g^\theta(y_{(s,t]} | \zeta_{(s,t]}) \). Again for simplicity, we assume the observations in disjoint time intervals to be conditionally independent given the \([PDP] \) though this assumption could easily be relaxed. Hence,

\[
g^\theta(y_{(0,t_n]} | \zeta_{(0,t_n]}) = g^\theta(y_{[\tau_{k_n},t_n]} | \tau_{k_n}, \phi_{k_n}) \prod_{j=1}^{k_n} g^\theta(y_{[\tau_{j-1},\tau_j]} | \tau_{j-1}, \phi_{j-1}),
\]

where we sometimes use the notation

\[
g^\theta(y_{[\tau_{j-1},\tau_j]} | \tau_{j-1}, \phi_{j-1}) = g^\theta(y_{[\tau_{j-1},\tau_j]} | \zeta_{[\tau_{j-1},\tau_j)})
\]

to stress that \(\zeta_{[\tau_{j-1},\tau_j)} \) is conditionally independent of all the other jump times, jump sizes, and the total number of jumps (up to time \(\tau_j \)), given \((\tau_j, \tau_{j-1}, \phi_{j-1}) \) (and given \(\theta \)).
The conditional-independence property of the observations is reminiscent of state-space models. However, as mentioned earlier, piecewise deterministic processes (PDPs) can be seen as being more general than state-space models. Indeed, state-space models may be viewed as PDPs in which \(f^\theta (\tau_j | \tau_{j-1}) \) is degenerate, i.e., in which the number of jumps and the jump times are known. Hence, for the remainder of this work, we assume that \(f^\theta (\tau_j | \tau_{j-1}) \) is non-degenerate.

The conditional posterior distribution of the jumps up to time \(t_n \) (as well as their number) may then be defined by the density (with respect to a suitable dominating measure)

\[
\tilde{\pi}_n^\theta (k_n, \tau_1:k_n, \phi_{0:k_n}) = \tilde{\gamma}_n^\theta (k_n, \tau_1:k_n, \phi_{0:k_n}) / \tilde{s}_n^\theta
\]

\[
:= p_n^\theta (k_n, \tau_1:k_n, \phi_{0:k_n}) g^\theta (y(0,t_n) | \zeta(0,t_n)) / \tilde{s}_n^\theta, \quad (4.1)
\]

where \(\tilde{s}_n^\theta > 0 \) is the normalising constant which is typically unknown.

Variable-Dimension Interpretation. Explicitly including the dimensionality parameter \(K_n \) into the state space ensures that for all \(n \in \mathbb{N} \), the Step-\(n \) posterior distributions are defined on increasing subsets of the same space, i.e., the support of \(\tilde{\pi}_n^\theta \) is a subset of

\[
\tilde{E}_n := \bigcup_{k=0}^{\infty} (\{k\} \times T_{(0,t_n),k} \times \Phi^{k+1}),
\]

where \(T_{(s,t),k} := \{ (\tau_1, \ldots, \tau_k) \in (0, \infty)^k \mid s < \tau_1 < \cdots < \tau_k \leq t \} \). This representation makes the unknown number of jumps in any interval of time, \((0, t_n) \), explicit.

4.2.2 Elementary Change-Point Example

This subsection introduces an elementary change-point model as a first example of a PDP. We assume that the interjump times, \(\tau_j - \tau_{j-1} \), are distributed according to some parametric family indexed by a parameter vector \(\theta \). Conditional on the jump times, the jump sizes follow a first-order Gaussian autoregressive process, i.e.,

\[
q^\theta (d\phi_j | \phi_{j-1}, \tau_j, \tau_{j-1}) = N_{\alpha \phi_{j-1}, \sigma^2_\phi} (d\phi_j),
\]
4 Inference in Piecewise Deterministic Processes

Figure 4.1 and observations simulated from the elementary change-point model.

for some $\rho \in \mathbb{R}$. The deterministic function is taken to be piecewise constant and is given by $F^\theta(t, \tau, \phi) := \phi$. Observations are recorded at regular intervals of length Δ and are formed by adding Gaussian noise with mean 0 and variance σ^2 to the PDP.

Figure 4.1 shows data simulated from the model over a horizon of $T = 1,000$ time units with $\Delta = 1$, $\rho = 0.9$, $\sigma^2 = 1$ and $\sigma^2 = 0.5$ using gamma-distributed interjump times with shape and scale parameters $\theta_t := (\alpha, \beta) = (4, 10)$.

As the PDP ζ is only discretely and noisily observed, (particle) filtering methods are generally needed to conduct inference about the jump times and jump sizes. In addition, $\theta := (\rho, \sigma^2, \sigma^2, \theta_t) \in \mathbb{R} \times (0, \infty)^4$ are static parameters which often also have to be estimated.

4.2.3 Shot-Noise Cox-Process Example

A second example of a PDP is a shot-noise Cox-process model described in Whiteley et al. (2013). The model assumes that observations are taken on a Cox process (also known as a doubly-stochastic Poisson process) with piecewise deterministic shot-noise intensity, $\zeta = (\zeta_t)_{t \geq 0}$.

Application in Finance. Such models have applications in finance, as described in Centanni and Minozzo (2006a, 2006b): in the modelling of ultra-high-frequency financial data, observations are two-dimensional,
4.2 Piecewise Deterministic Processes

comprising the time and size of the price movements of a stock. That is, the stock price process (which can be fully observed) is piecewise constant since the quoted price is only updated at a countable collection of random times. The times at which the stock price changes are realisations of a Cox process with unobserved shot-noise intensity ζ.

The latent intensity process ζ (i.e. the \mathbb{P}) then has the following interpretation. The jth stopping time, τ_j, corresponds to the arrival of the jth news item at the market. This causes a positive jump in the intensity process, whose size, $\phi_j > 0$, depends on the ‘importance’ of the news item. Between τ_j and τ_{j+1}, the intensity gradually decays as the news item is absorbed by the market. The intensity process thus governs the amount of activity in the market: each jump leads to an increase in the trading activity as measured by the number of subsequent change points in the (observed) price process.

Application in Insurance. Such models are also used to price catastrophe insurance derivatives as described in Dassios and Jang (2003). In this context, the observations are only one-dimensional and represent the times at which claims are being recorded. In other words, the claim arrival process is a Cox process with intensity process ζ. The jth jump in the intensity process (at time τ_j) thus corresponds to a catastrophic event. The associated jump size, ϕ_j, characterises the event’s severity.

More precisely, we have $q^j(\phi_0) = \lambda \exp(-\lambda \phi_0) \mathbb{I}_{[0,\infty)}(\phi_0)$, and

$$f^j(\tau_j | \tau_{j-1}) := \lambda \exp(-\lambda (\tau_j - \tau_{j-1})) \mathbb{I}_{(\tau_{j-1}, \infty)}(\tau_j),$$

$$q^j(\phi_j | \phi_{j-1}, \tau_j, \tau_{j-1}) := \lambda \exp(-\lambda (\phi_j - \zeta_{\tau_j}^-)) \mathbb{I}_{(\tau_j^-, \infty)}(\phi_j),$$

where $\zeta_{\tau_j}^- := \phi_{j-1} \exp(-\kappa (\tau_j - \tau_{j-1}))$ is the intensity immediately before the jth jump. At any time t, the intensity is a deterministic function of t as well as of the most recent jump time and jump size as follows,

$$\zeta_t = F^j(t, \tau_{\nu}, \phi_{\nu}) := \phi_{\nu} \exp(-\kappa (t - \tau_{\nu})).$$

In addition, the likelihood of the observations recorded in the time interval $[\tau_{n-1}, \tau_n]$ (i.e. the times at which claims are recorded in this interval), denoted $y(\tau_{n-1}, \tau_n)$, is given by

$$g^\theta (y(\tau_{n-1}, \tau_n) | \zeta(\tau_{n-1}, \tau_n)) \propto \exp \left(-\int_{\tau_{n-1}}^{\tau_n} \zeta_s \, ds \right) \prod_{i : \tau_i \in [\tau_{n-1}, \tau_n]} \zeta_{\tau_i}. $$

109
4 Inference in Piecewise Deterministic Processes

Figure 4.2 Data simulated from the shot-noise Cox-process model. Top: intensity process. Bottom: histogram of the observations using a bin width of 2.5.

Figure 4.2 shows an example trajectory and observations simulated from the model with \(\kappa = 1/100, \lambda_\tau = 1/40, \lambda_\phi = 2/3 \).

As the process \(\zeta \) is not directly observed, (particle) filtering methods are needed to conduct inference about the jump times and jump sizes in the intensity process. The static parameters \(\theta := (\kappa, \lambda_\tau, \lambda_\phi) \in (0, \infty)^3 \) must often also be estimated.

4.2.4 Object-Tracking Example

This subsection briefly mentions, as a third example of a PDP, a model for tracking fighter aircraft from Whiteley et al. (2011).

In this model, the PDP represents the evolution of position, speed, and velocity of the aircraft. The assumption is that the pilot accelerates or decelerates at a countable collection of random times which correspond to the jumps in the PDP. Between jumps, the aircraft’s location and speed are deterministic functions, given by the standard equations of motion, of the location, speed, and acceleration at the most recent jump time as well as of the time elapsed since the most recent jump. However, only countably many noisy observations on the aircraft’s location are available.

While filtering for this model was shown to be feasible in Whiteley et al. (2011), it exhibits a characteristic that makes static-parameter es-
estimation difficult: the transitions $q^\theta(\phi_j | \phi_{j-1}, \tau_j, \tau_{j-1})$ have degenerate components because the location and speed components of the PDP evolve continuously, i.e. they only have trivial jumps.

We note here that the variance-reduction techniques for conditional sequential Monte Carlo kernels described in Subsection 3.4.2 cannot be applied to such degenerate problems which makes sampler-based inference impractical. However, RJMCMC-based algorithms, such as those from Centanni and Minozzo (2006a, 2006b), Del Moral et al. (2007), Martin et al. (2013) will not be practical for such models either because the conditional posterior distribution of almost any individual jump is degenerate. The problem remains generally unsolved.

4.3 Existing SMC Algorithms

4.3.1 Variable-Rate Particle Filter

In this section, we describe filtering for PDPs via sequential Monte Carlo (SMC) methods. All three algorithms presented in this section may be viewed as special cases of the generic SIR algorithm from Section 2.3.1. Hence, we always use the same symbols $X_{1:n}, \pi_n^\theta, \gamma_n^\theta, P_n^\theta$ and G_n^θ to refer to the ‘states’, normalised and unnormalised extended target measures, proposal kernels and unnormalised incremental weights even though the particular form of these quantities may change between the next three subsections. The actual (marginal) target measure, $\tilde{\gamma}_n^\theta \in \mathcal{M}(\tilde{E}_n)$, and its normalising constant, $\tilde{\gamma}_n^\theta$, are defined as in Subsection 4.2.1.

The first particle filter for PDPs termed variable-rate particle filter (VRPF) was proposed by Godsill and Vermaak (2004). The VRPF can be viewed as an application of the generic SMC algorithm to a slightly reparametrised model described in the following.

Let $0 = t_0 < t_1, < t_2 < \ldots$ be a sequence of strictly increasing (non-random) times, where t_p, for $p > 1$, represents the time of the pth SMC step. Moreover, let $(\tau_{p,k}, \phi_{p,k})$ denote the kth jump time in the interval $(t_{p-1}, t_p]$ and its associated jump size. Let $k_p \geq 0$ be the total number of jumps in this interval and define the ‘states’ $X_{1:n}$, where
4 Inference in Piecewise Deterministic Processes

- \(X_n := (k_n, \tau_{n,1:k_n}, \phi_{n,1:k_n})\), for \(n > 1\), takes values in (a subset of)
 \[E_n := \bigcup_{k=0}^{\infty} (\{k\} \times T_{(t_{n-1}, J_n), k} \times \Phi_k),\]

- \(X_1 := (k_1, \tau_{1,1:k_1}, \phi_{1,0:k_1})\) takes values in (a subset of)
 \[E_1 := \bigcup_{k=0}^{\infty} (\{k\} \times T_{(0,t_1), k} \times \Phi^{k+1}).\]

Let \(v(n) := \sup\{ m \in \mathbb{N}_{n-1} \mid k_m > 0 \}\) be the index of the last interval of the form \((t_{p-1}, t_p]\) before \((t_{n-1}, t_n]\) in which the PDP has had a jump, with the convention that if \(v(n) = -\infty\), then we set \(\tau_{v(n),k_{v(n)}} = \tau_0 = 0\) and \(\phi_{v(n),k_{v(n)}} = \phi_0\). The target distribution is then given by \(\pi^\theta_n := \gamma^\theta_n / \xi^\theta_n\) on \(E_1^\infty := \bigotimes_{t=1}^{t_n} E_p\), where

\[
\gamma^\theta_n (d\xi_{1:n}) := S^\theta (t_n, \tau_{v(n),k_{v(n)}}) q^\theta_0 (d\phi_0) g^\theta (y_{(0,t_n)}|\zeta_{(0,t_n)}) \\
\times \prod_{p \in D_n} \mathbb{1}_{T_{(t_{p-1}, t_p], k_p}} (\tau_{p,1:k_p}) \\
\times q^\theta (d\phi_{p,1}|\phi_{v(p),k_{v(p)}}, \tau_{p,1}, \tau_{v(p),k_{v(p)}}) \\
\times f^\theta (d\tau_{p,1}|\tau_{v(p),k_{v(p)}}) \\
\times \prod_{j=2}^{k_p} q^\theta (d\phi_{p,j}|\phi_{p,j-1}, \tau_{p,j-1}, \tau_{v(p),k_{v(p)}}) f^\theta (d\tau_{p,j}|\tau_{p,j-1}).
\]

Here, \(D_n := \{ p \in \mathbb{N}_n \mid k_p > 0 \}\) is the collection of indices of intervals of the form \((t_{p-1}, t_p]\) that contain at least one jump. For \(t \in (t_{n-1}, t_n]\), the PDP is then defined by

\[
\zeta_t := \begin{cases}
F^\theta (t, \tau_{n,j}, \phi_{n,j}), & \text{if } k_n > 0 \text{ and } t \in [\tau_{n,j}, \tau_{n,j+1}), \\
F^\theta (t, \tau_{v(n),k_{v(n)}}, \phi_{v(n),k_{v(n)}}), & \text{otherwise},
\end{cases}
\]

with the convention that \(\tau_{n,k_n+1} = t_n\). The extended distribution \(\pi^\theta_n\) then admits \(\pi^\theta_{n+1}\) as a marginal.
4.3 Existing SMC Algorithms

At Step \(n \), the algorithm generates a particle \(X_n \) from the proposal kernel
\[
P_n^\theta (dx_n|X_{1:n-1}) := P_{n,1}^\theta (d\phi_n|X_{1:n-1}) \\
\times P_{n,2}^\theta (d\tau_{n,1:k_n} \times d\phi_{n,1:k_n}|X_{1:n-1}).
\]

In the above equation, the kernels on the right hand side are selected in such a way that the usual absolute-continuity conditions are satisfied. At Step 1, the kernel \(P_{1,2}^\theta \) also samples a value for \(\phi_0 \).

The unnormalised incremental weight at Step \(n \) is then given by the following expressions. If \(k_n = 0 \), then with some abuse of the notation for Radon–Nikodým derivatives,
\[
G_n^\theta (x_{1:n}) = \frac{S_n^\theta (t_n, \tau_{v(n)}, k_{v(n)})}{S_{n-1}^\theta (t_{n-1}, \tau_{v(n)}, k_{v(n)})} \\
\times g^\theta (y(t_{n-1:n}), \phi_{v(n)}, \tau_{v(n)}, k_{v(n)}) \\
\times P_n^\theta (k_n|X_{1:n-1}).
\]

If \(k_n \geq 1 \), then again with some abuse of notation,
\[
G_n^\theta (x_{1:n}) = \frac{S_n^\theta (t_n, \tau_{n,k_n})}{S_{n-1}^\theta (t_{n-1}, \tau_{v(n)}, k_{v(n)})} \\
\times g^\theta (y(t_{n,k_n:n}), \phi_{n,k_n}, \tau_{n,k_n}) \\
\times q^\theta (\phi_{n,1}, \phi_{v(n)}, \tau_{n,1}, \tau_{v(n)}, k_{v(n)}) f^\theta (\tau_{n,1}|\tau_{v(n)}, k_{v(n)}) \\
\times \prod_{j=2}^{k_n} g^\theta (y(t_{n-1:n}, \phi_{n,j-1}, \tau_{n,j-1}), \phi_{n,j}, \tau_{n,j-1}) f^\theta (\tau_{n,j}|\tau_{n,j-1}).
\]

As shown in Whiteley et al. (2011), the \textit{VRPF} can suffer from severe sample impoverishment. This is because at Step \(n \), jumps are only proposed in the interval \((t_{n-1}, t_n]\) and only based on information available up to time \(t_n \). If subsequent observations are highly informative about
4 Inference in Piecewise Deterministic Processes

jumps in \((t_{n-1}, t_n]\), as they usually are in PDPs, then at later steps, this information can only be incorporated by reweighting particle paths. This can increase the variance of the particle weights which in turn aggravates the sample-impoverishment problem outlined in Subsection 2.4.1.

The SMC filter from Whiteley et al. (2011), outlined below, can reduce sample impoverishment because – even in its simplest form – it allows new jumps to be sampled anywhere after the most recent jump and also allows previously generated jumps to be adjusted.

4.3.2 SMC Filter for PDPs

The SMC filter for PDPs from Whiteley et al. (2011) is based on the SMC sampler framework described in Subsection 2.3.2. That is, it is a 'standard' SMC algorithm that targets a sequence of artificially extended distributions \(\pi_n^\theta := \gamma_n^\theta / \tilde{\beta}_n^\theta\) (as in Equation 2.10) by means of mixture proposal kernels. These extended distributions are defined on (product) spaces \(E_{\pi} := \prod_{p=1}^{n} E_p\), with \(E_p := (M \times E_p)\). Here, \(M\) is again the set of (proposal-kernel) mixture component indices.

We now add an additional subscript to the model parameters to account for the fact that for any particle, the \(j\) th jump time or jump size at the \(n\)th step of the algorithm may be different from the \(j\) th jump time or jump size at Step \(n - 1\). Thus, we hereafter write \(X_n := (M_n, K_n, \tau_{n,1:k_n}, \phi_{n,0:k_n})\) for a particle at Step \(n\). To ease the notational burden, we often write \(Z_n := X_n \setminus M_n = (K_n, \tau_{n,1:k_n}, \phi_{n,0:k_n})\).

Proposal Kernels. In the most basic form presented in this work, we employ a mixture Kernel,

\[
P^\theta_n(dx_n|x_{n-1}) := \alpha_n^\theta(dm_n|z_{n-1})P^\theta_{n,m_n}(dz_n|z_{n-1}),
\]

with just two mixture components, i.e. \(m_n \in M = \{a, b\}\). At Step \(n\), an adjustment move \((M_n = a)\),

\[
P^\theta_{n,a}(dz_n|z_{n-1}) = \delta_{k_{n-1}}(dk_n)\delta_{\tau_{n-1,1:k_{n-1}}}(d\tau_{n,1:k_{n-1}})
\]

\[
\times \delta_{\phi_{n-1,0:k_{n-1}}}(d\phi_{n,0:k_{n-1}})
\]

\[
\times \rho^\theta_{n,a}(d\tau_{n,k_n}|z_{n-1})\eta^\theta_{n,a}(d\phi_{n,k_n}|\tau_{n,k_n}, z_{n-1}).
\]

114
moves the most recent stopping time to a new location according to a distribution $\rho_{n,a}^\theta(\cdot \mid z_{n-1})$ with support $(\tau_{n-1,k_n-1}, \tau_n]$ and samples a new value for the corresponding jump size from a distribution $\eta_{n,a}^\theta(\cdot \mid \tau_n, k_n, z_{n-1})$ on Φ. A birth move ($M_n = b$),

$$P_{n,b}^\theta(dz_n \mid z_{n-1}) = \delta_{k_{n-1}+1}(dk_n)\delta_{\tau_{n-1,k_n-1}}(d\tau_{n,1;k_n-1})$$

$$\times \delta_{\phi_{n-1,0;k_n-1}}(d\phi_{n-1,0;k_n-1})$$

$$\times \rho_{n,b}^\theta(d\tau_{n,k_n} \mid z_{n-1})\eta_{n,b}^\theta(d\phi_{n,k_n} \mid \tau_n, k_n, z_{n-1}),$$

adds a new stopping time by sampling it from a distribution $\rho_{n,b}^\theta(\cdot \mid z_{n-1})$ with support $(\tau_{n-1,k_n-1}, \tau_n]$. Additionally, a new jump-size parameter is sampled from a distribution $\eta_{n,b}^\theta(\cdot \mid \tau_n, k_n, z_{n-1})$ on Φ.

As in Whiteley et al. [2011], the forward mixture weights are set to $\alpha_n^\theta(a \mid z_{n-1}) := S^\theta(\tau_n, \tau_{n-1,k_n-1})$ as well as $\alpha_n^\theta(b \mid z_{n-1}) := 1 - \alpha_n^\theta(a \mid z_{n-1})$, i.e. the probability of a birth move grows as the time to the last jump increases. At Step 1, a birth move is enforced for each particle so that $\alpha_n^\theta(dm_1) = \delta_b(dm_1)$.

Backward Kernels. The backward Markov kernels

$$L_{n-1}^\theta(dm_n \times dz_{n-1} \mid z_n) := \beta_{n-1}^\theta(dm_n \mid z_n) L_{n-1,m_n}^\theta(dz_{n-1} \mid z_n),$$

have a similar ‘mixture’ structure. The component corresponding to adjustment moves is

$$L_{n-1,a}^\theta(dz_{n-1} \mid z_n) := \delta_{k_n}(dk_{n-1})\delta_{\tau_{n-1,k_n-1}}(d\tau_{n-1,1;k_n-1})$$

$$\times \delta_{\phi_{n,0:k_n-1}}(d\phi_{n-1,0;k_n-1})$$

$$\times Q_{n-1,a}^\theta(d\tau_{n-1,k_n-1} \times d\phi_{n-1,k_n-1} \mid z_n),$$

where $Q_{n-1,a}^\theta(\cdot \mid z_n)$ is a distribution whose support is a subset of the space $(\tau_{n-1,k_n-1}, \tau_n] \times \Phi$. For a birth move, the corresponding backward kernel component is

$$L_{n-1,b}^\theta(dz_{n-1} \mid z_n) = \delta_{k_{n-1}}(dk_{n-1})\delta_{\tau_{n-1,1;k_n-1}}(d\tau_{n-1,1;k_n-1})$$

$$\times \delta_{\phi_{n,0:k_n-1}}(d\phi_{n-1,0;k_n-1}).$$

The adjustment- and birth-move kernels only affect the most recent jump time and jump size. This is a reasonable approach as SMC filters can
only be expected to work for ergodic models and for these, this strategy should be adequate. Nonetheless, other moves – and even a larger number of moves – could easily be incorporated. For instance, the second, say, most recent jump time or jump size may also be modified.

Indeed, as noted by Whiteley et al. (2011), a kernel for multiple-birth-moves should be included because otherwise, the above choice of forward/backward kernels induces an approximation. However, the probability of such moves is typically so small that this leads to computationally the same algorithm. To keep the presentation simple, we refrain from including such moves here (as was done in Del Moral et al., 2006b, 2007), although there is no technical difficulty with so doing.

4.3.3 Theoretical Analysis

Actually Targeted Distribution. In the following, we characterise the approximation induced by the above choice of forward and backward kernels, i.e. with only single-birth or single-adjustment moves.

First, we define some notation.

- \(b_j := \inf\{ q \in \mathbb{N} \mid \sum_{i=1}^{q} 1_{(b_i)}(m_i) = j \} \) denotes the index of the SMC step at which the \(j \)th birth move occurs.
- \(s(\tau) := \inf\{ q \in \mathbb{N} \mid t_q \geq \tau \} \) denotes the index of the first SMC step at which a jump with jump time \(\tau \) could have been proposed.
- \(\bar{s}(\tau_{1:j}) := \sup\{ s(\tau_{j-1+k}) + l - 1 \mid l \in \mathbb{N} \} \) denotes the minimum number of SMC steps needed to propose jumps with jump times \(\tau_{1:j} \).

The product of the particle proposal kernels up to Step \(n \),

\[
P_n^0(d\mathbf{x}_1) \prod_{p=2}^{n} P_p^0(d\mathbf{x}_p|x_{1:p-1}),
\]

then has support

\[
E^r_n := \left\{ x_{1:n} \in E_{1:n}^\infty \mid b_1 = 1 \text{ and } \forall j \in \mathbb{Z}_{k_n} : \bar{s}(\tau_{n:1:k_j-1}) < b_j \leq n \right\}.
\]

In particular, the marginal distribution of \(X_n \) under the distribution in Equation 4.2 then has support

\[
\tilde{E}^r_n := \left\{ (k_n, \tau_{1:k_n}, \phi_{0:k_n}) \in \tilde{E}_n \mid \forall j \in \mathbb{N}_{k_n} : s(\tau_j) \leq n - k_n + j \right\}.
\]
Recall that we write \(z_n = x_n \setminus m_n = (k_n, \tau_{1:k_n}, \phi_{0:k_n}) \). To ensure that the importance weights exist, the algorithm can therefore only target, as a marginal, the distribution

\[
\tilde{\pi}_n^{r,\theta}(dz_n) \propto \tilde{y}_n^{r,\theta}(dz_n) = \tilde{y}_n^{\theta}(dz_n) \mathbb{1}_{E_n}(z_n).
\]

If the time between successive SMC steps, \(t_n - t_{n-1} \), is short compared to the average time between jumps, the difference between the distribution in Equation 4.1 and the marginally targeted distribution \(\tilde{\pi}_n^{r,\theta} \) should be negligible. We will consider the influence of this approximation in Section 4.5.

The extended distribution actually targeted by the algorithm is

\[
\pi_n^{r,\theta}(dx_{1:n}) \propto \tilde{y}_n^{r,\theta}(dz_n) \beta_0^\theta(dm_1|z_1) \times \prod_{p=1}^{n-1} \beta_p^\theta(dm_{p+1}|z_{p+1}) L_p^\theta(dm_{p+1}|z_{p+1}).
\]

where we assume, for the moment, that the backward mixture weights \(\beta_p^\theta(\cdot|z_{p+1}) \) can be chosen such that this extended distribution does not have probability mass outside of \(E_n^r \) to ensure that the importance weights exist. A detailed discussion of the choice of backward mixture weights is given below.

We conclude this subsection by describing some implementation issues regarding the above-mentioned SMC algorithm. To our knowledge, they have not been pointed out in the literature. The point we wish to stress here is that backward and proposal kernels need to be chosen carefully and in such a way that they are consistent with each other in order to avoid introducing biases resulting from a loss of absolute continuity. Such biases may be small in the case of filtering (i.e. if the static parameters are known). However, if the static parameters are to be estimated alongside the jump times and jump sizes, even small biases in the filter can induce large biases in the estimates of the static parameters.

Choice of Jump-Size Proposal Kernels. It was advocated in Whiteley et al. (2011) to sample the jump sizes from their full conditional posterior distribution. However, given the structure of the algorithm, this posterior distribution will often be based on observations ‘too far’ into the future.
4 Inference in Piecewise Deterministic Processes

![Diagram]

Figure 4.3 Proposal distributions for the jump size \(\phi = \phi_{n,k_n} \) associated with the jump time \(\tau = \tau_{n,k_n} \) sampled at the \(n \)th SMC step in the elementary change-point model (as part of one of the particles). *Dashed line:* full conditional distribution of \(\phi \) given all the data up to time \(t_n \). *Solid line:* full conditional distribution of \(\phi \) given the data up to time \(\tau + c \).

More formally, assume that the jump time \(\tau = \tau_{n,k_n} \) proposed at Step \(n \) is much smaller than \(t_n \). In this case, the full conditional posterior distribution of the jump size \(\phi = \phi_{n,k_n} \) conditions on there not being another jump in the interval \((\tau, t_n) \). Due to conditioning on a potentially large number of observations, this full conditional posterior distribution can then be highly concentrated.

However, not having another jump in the interval \((\tau, t_n) \) can have little probability mass under the joint posterior distribution. If, at Step \((n + 1) \), a further jump is added in this interval, then the jump size \(\phi \) might be located in a region that has little probability mass under the full conditional posterior distribution (which then also conditions on the additional jump). This can lead to a high variance in the particle weights. The problem is illustrated in Figure 4.3.

To circumvent this problem while still retaining the benefit of incorpor-
Algorithms

4.3 Existing SMC Algorithms

ating observations into the proposal kernels, we recommend to only take observations from some interval \([t, t + c]\) into account when sampling \(\phi\). For instance, we may take \(c = (\tau + \lambda \tilde{\mu}) \land t_n, \lambda \in (0, 1)\) and \(\tilde{\mu}\) may be the mean interjump time or a quantile of the interjump-time distribution.

Choice of Backward Mixture Weights. As previously mentioned, the backward mixture weights must be chosen such that the extended target distribution does not have probability mass outside of \(\mathbb{E}_n\). The most obvious problem with a poor choice of backward mixture weights is that the extended target distribution does not actually admit the right marginal (in addition to having ill-defined importance weights).

There is a one-to-one correspondence between \(\sum_{p=1}^n 1_{\{b\}}(m_p)\), the number of birth moves, and \(k_n\), the number of jumps in the proposal distribution and hence in the support of the truncated target distribution \(\pi_n^{r, \theta}\). Therefore we cannot specify their distributions independently. The target already specifies a distribution over \(k_n\); if the backward mixture weights \(\tilde{\pi}_{n}^{r, \theta} \) do not depend on \(k_n\), then they implicitly specify a second distribution over \(k_n\) and the marginal distribution of this quantity under the target distribution will not be what is intended.

For instance, consider setting the backward mixture kernel weights to a uniform distribution over \(M = \{a, b\} \) – a popular choice. Write \(A_n := \{p \in \mathbb{N}_{n-1} \mid m_{p+1} = a\}, B_n := \mathbb{N}_{n-1} \setminus A_n\), and \(C_n := \{b\} \times \mathbb{N}^{n-1}\), the algorithm targets as a marginal the distribution defined by

\[
\int_{\mathbb{E}_n^{\leq n}} \pi_n^{r, \theta}(dx_{1:n}) 1_D(z_n)
\]

\[
\propto \int_{\mathbb{E}_n^{\leq n}} \tilde{\pi}_n^{r, \theta}(dz_n) 1_D(z_n)
\]

\[
\times \sum_{m_{1:n} \in C_n} \left(\prod_{p \in A_n} L_{p,a}(dz_p | z_{p+1}) \right) \prod_{p \in B_n} L_{p,b}(dz_p | z_{p+1})
\]

\[
= \int_D \tilde{\pi}_n^{r, \theta}(dz_n) \# \left\{ m_{1:n} \in C_n \mid \sum_{p=1}^n 1_{\{b\}}(m_p) = k_n \right\}
\]

\[
= \int_D \tilde{\pi}_n^{r, \theta}(dz_n) \binom{n - 1}{k_n - 1}.
\]

for any measurable set \(D \subseteq \mathbb{E}_n\).
For regular proposal kernels, a possible choice of backward kernels restricting the support of the extended target distribution to E^*_n may be induced by setting the backward mixture weights to

$$
\rho^\theta_{p-1}(b|z_p) = \begin{cases}
0, & \text{if } k_p = 1 \text{ and } p > 1, \\
1, & \text{if } p \in \{1, k_p, \tilde{s}(\tau_{p,1:k_p-1}) + 1\}, \\
q_p(z_p), & \text{otherwise},
\end{cases}
$$

for some probability $q_p(z_p) \in (0, 1)$ which may depend on z_p.

Local Adjustment Moves. Ideally, adjustment moves should direct the jumps towards regions of higher posterior probability. If such moves cannot be devised, it is preferable to use local adjustment moves, e.g. small-scale Gaussian kernels centred around the current location of the jump. This reduces the risk of moving jumps away from regions of high posterior probability, which would add to sample impoverishment. However, such local adjustment moves are unlikely to move a jump currently contained in $(t_{p-1}, t_p]$ out of such an interval. Therefore, even using Equation 4.3 could result in importance weights with infinite variance.

A simple remedy is to employ restricted adjustment moves, i.e. local moves that are limited to the particular interval $(t_{p-1}, t_p]$ currently containing the jump. More formally, recall that $s(\tau) = \inf\{ q \in \mathbb{N} \mid t_q \geq \tau \}$ is the first SMC step at which a jump with jump time τ could have been proposed. For restricted adjustment moves, $\rho^\theta_{n,a}(\cdot|z_{n-1})$ then has support $((\tau_{n-1,k_{n-1}-1} \lor l_{s_{n-1}-1}), l_{s_{n-1}}]$, where $s_{n-1} := s(\tau_{n-1,k_{n-1}-1})$, rather than having support $(\tau_{n-1,k_{n-1}-1}, t_n]$.

Also recalling that $\tilde{s}(\tau_{1:j}) = \sup\{ s(\tau_{j-l+1}) + l - 1 \mid l \in \mathbb{N}_j \}$ represents the minimum number of SMC steps needed to propose jumps with jump times $\tau_{1:j}$, the support of the joint proposal distribution from Equation 4.2 is then given by

$$
E^*_n = \left\{ x_{1:n} \in E^*_{1:n} \left| \begin{array}{l} b_1 = \tilde{s}(\tau_{n,1}) = 1 \text{ and } \\
\forall j \in \mathbb{Z}_{2,k_n} : \tilde{s}(\tau_{n,1:k_j}) \leq b_j \leq n \end{array} \right. \right\}.
$$

To ensure that the target distribution does not have probability mass outside of E^*_n, the distribution of $\tau_{n-1,k_{n-1}}$ under $Q^\theta_{n-1,a}(\cdot|z_n)$ must have support $((\tau_{n,k_{n-1}} \lor l_{s_n-1}), l_{s_n}]$, where $s_n := s(\tau_{n,k_n})$. In addition, the backward mixture weights might take the form presented in Equation 4.3 but with $\tilde{s}(\tau_{p,1:k_p-1})$ replaced by $\tilde{s}(\tau_{p,1:k_p}) - 1$.

120
4.4 Reformulation of the SMC Filter

4.4.1 General Idea

One problem with the SMC filter for PDPs from the previous subsection – henceforth referred to as the ‘original’ SMC filter – is that it induces unnecessary degeneracy in the transitions at Step n because most jump times and jump sizes in X_{n-1} coincide with jump times and jump sizes in X_n. In other words, the algorithm works explicitly on the path space by embedding a ‘standard’ SMC filter within the SMC sampler framework using (mostly) trivial degenerate backward transitions.

Unfortunately, degenerate backward transitions prevent the use of backward-simulation methods such as forward filtering–backward sampling and they also prevent the use of the essential variance-reduction techniques for PG samplers: backward sampling and ancestor sampling which were described in Subsection 3.4.2. At the same time, the algorithm does not gain any benefit from the path-space representation.

Below, we present a novel representation of the algorithm whose alternative Step-n extended target distribution also admits $\tilde{\pi}^n_{\theta}$ as a marginal but whose ‘states’ do not have degenerate transitions (unless $q^\theta(\phi_j\mid\phi_{j-1},\tau_j,\tau_{j-1})$ is degenerate). In addition, this algorithm makes it easier to ensure the existence of the importance weights as it circumvents the problem of choosing sensible backward mixture weights. Our representation may be viewed as a way of extracting the ‘standard’ SMC filter embedded in the SMC sampler from Whiteley et al. (2011). The structure of its extended target distribution is reminiscent of the product-space formulation from Carlin and Chib (1995) (see also Godsill, 2001).

4.4.2 Extended Target Distribution

The algorithm presented in this subsection targets an extended distribution (defined further below) that contains all the ‘states’ $X_{1:n}$, where

- $X_n := (M_n, \tau_n, \phi_n)$, for $n > 1$, takes values in (a subset of)
 $$E_n := M \times (0, t_n] \times \Phi,$$

- $X_1 := (M_1, \tau_1, \phi_1, \phi_0)$ takes values in (a subset of)
 $$E_1 := M \times (0, t_n] \times \Phi^2.$$
In this subsection, \(\tau_n \) and \(\phi_n \) are the jump time and associated jump size sampled at the \(n \)th step of the SMC algorithm as part of a birth move or as part of an adjustment move. As before, \(M_n \) indicates an adjustment move \((M_n = a) \) or birth move \((M_n = b) \) at Step \(n \). Again, these mixture component indices are added to the state space as auxiliary variables.

The main idea is to use the mixture component indices \(M_{1:n} \) to keep track of which jumps affect the marginal target distribution \(\tilde{\pi}^{\tau,\theta}_n \). These are the jumps sampled in SMC Steps \(p \in H_n \), where

\[
H_n := \{ j \in \mathbb{N}_{n-1} \mid m_{j+1} = b \} \cup \{n\}.
\]

That is, \(H_n \) contains the indices of all jumps which have been sampled (up to Step \(n \)) immediately before a birth move. We also define the set of indices of the remaining jumps, \(V_n := \mathbb{N}_n \setminus H_n \). For easier reference, we collect all elements of the set \(H_n \) in the vector

\[
h_n = (h_n(1) \ldots h_n(\#H_n)),
\]

in increasing order and all the elements of the set \(V_n \) in the vector

\[
v_n = (v_n(1) \ldots v_n(\#V_n)),
\]

again in increasing order.

Extended Target Distribution. In the following, we present the extended target distribution of the algorithm. To show that it admits the right marginal, some reparametrisation is required: write \(k_n := \#H_n \) for the total number of birth moves in the first \(n \) steps and let \(i_1 : k_n \) denote the SMC steps at which these birth moves occur, i.e. \(i_1 := 1 \) and \(i_j := h_n(j - 1) + 1 \) for \(j \in \mathbb{Z}_{\geq k_n} \). Re-label \((\tau_{h_n}, \phi_{h_n}) := (\tau_{1:k_n}^{\cdot}, \phi_{1:k_n}^{\cdot}) \) and \((\tau_{v_n}, \phi_{v_n}) := (\tau_{1:n-k_n}^{\cdot}, \phi_{1:n-k_n}^{\cdot}) \). This permits the one-to-one transformation

\[
\begin{align*}
[m_{1:n}, \tau_{h_n}, \phi_{h_n}, \tau_{v_n}, \phi_{v_n}] & \quad \leftrightarrow \quad [(n, k_n, i_1 : k_n), (\tau_{1:k_n}^{\cdot}, \phi_{1:k_n}^{\cdot}), (\tau_{1:n-k_n}^{\cdot}, \phi_{1:n-k_n}^{\cdot})],
\end{align*}
\]

where we have implicitly used that \(H_n, V_n, h_n \) and \(v_n \) can be equivalently defined in terms of \(m_{1:n} \) or in terms of \((n, k_n, i_1 : k_n) \).

Let \(\mu_n^\theta(dm_{1:n} \mid k, \tau_{h_n}, \phi_{h_n}, \phi_0) \) be some distribution on the indices \(M_{1:n} \) conditional on \(\sum_{p=1}^{n} \mathbb{1}_b(M_p) = k \).
4.4 Reformulation of the SMC Filter

4.1 Remark. With some abuse of notation, Equation 4.4 allows us to use the same symbol \(\mu_n^\theta \) to define a distribution on the indices \(I_{1:k_n} \), i.e., \(\mu_n^\theta(\delta i_{1:k_n}|k_n, \tau_{1:k_n}^i, \phi_{1:k_n}^i, \phi_0) \). The choice of \(\mu_n^\theta \) is discussed below.

The alternative extended target distribution for the SMC filter introduced in this subsection is defined as \(\pi_n^\theta = \gamma_n^\theta \delta_n \), where

\[
\gamma_n^\theta(x_{1:n}) := \bar{\gamma}_n^\theta(\#H_n, \tau_{hn}, \phi_{hn}, \phi_0) \mu_n^\theta(m_{1:n} | \#H_n, \tau_{hn}, \phi_{hn}, \phi_0) \times \prod_{j \in V_n} Q_n^\theta_j, \phi_j(\#H_{j+1}, \tau_{h_{j+1}}, \phi_{h_{j+1}}, \phi_0) \\
= \bar{\gamma}_n^\theta(k_n, \tau_{1:k_n}^i, \phi_{1:k_n}^i, \phi_0) \mu_n^\theta(i_{1:k_n} | k_n, \tau_{1:k_n}^i, \phi_{1:k_n}^i, \phi_0) \times \left[\prod_{j \in D_n} Q_n^\theta_{v_n(j), \phi_j} (\tau_j^*, \phi_j^* | \tilde{k}_n(j), \bar{\tau}_n(j), \bar{\phi}_n(j), \phi_0) \right] \\
\times \prod_{j \in N_{n-k_n} \setminus D_n} Q_n^\theta_{v_n(j), \phi_j} (\tau_j^*, \phi_j^* | \tilde{k}_n(j), \bar{\tau}_n(j), \bar{\phi}_n(j), \phi_0).
\]

The second line shows that this distribution can be written explicitly as a distribution over the variables on the right hand side in Equation 4.4.

Here, we have defined the following symbols.

- The quantity \(\tilde{k}_n(j) := \sup \{ p \in \mathbb{N}_n \mid i_p \leq v_n(j) \} \) is the number of birth moves up to (and including) the \(v_n(j) \) th step of the SMC algorithm.
- Recall that by the definition of \(V_n \) and \(v_n \), the particle trajectory \(X_{1:n} \) has an adjustment move at Step \(v_n(j) + 1 \), for any \(j \in \mathbb{N}_v \). As a result, under the extended target distribution at Step \(n \), the jump sampled at Step \(v_n(j) \) is not distributed according to a marginal under the ‘actual’ target distribution, \(\pi_n^{\tau,\theta} \). In the extended distribution above, we then need to distinguish two cases. First, the set

\[
D_n := \left\{ j \in \mathbb{N}_{n-k_n} \mid v_n(j) < n-1 \text{ and } \forall l \in \mathbb{N}_{k_n} : v_n(j) + 2 \neq i_l \right\},
\]

comprises those components \(v_n(j) \) of \(v_n \) which are such that there is also an adjustment move at Step \(v_n(j) + 2 \). Hence, under the extended target distribution at Step \(n \), the jump sampled at Step \(v_n(j) + 1 \) is also not distributed according to a marginal under \(\pi_n^{\tau,\theta} \). Conversely,
the set $\mathbb{N}_{n-k_n} \setminus D_n$ comprises those components $v_n(j)$ of v_n which are such that, under the extended target distribution at Step n, the jump sampled at Step $v_n(j) + 1$ is distributed according to a marginal under $\tilde{\pi}_n^{r,\theta}$ (because of a birth move at Step $v_n(j) + 2$).

- The symbols

$$\tilde{\tau}_n(j) := (\tau'_{1:k_n(j)-1}, \tau_{j+1}^*),$$
$$\tilde{\phi}_n(j) := (\phi'_{1:k_n(j)-1}, \phi_{j+1}^*),$$

represent the vectors of jump times and jump sizes which, under the extended target distribution at Step $v_n(j) + 1$, are distributed according to a suitable marginal of $\tilde{\pi}_n^{r,\theta}$ but whose last component is not distributed according to a suitable marginal of $\tilde{\pi}_n^{r,\theta}$ because of an adjustment move at Step $v_n(j) + 2$.

In summary, we have $j \in D_n$ if and only if the jumps sampled at Steps $v_n(j)$ and $v_n(j) + 1$ are distributed according to a suitable marginal of $\tilde{\pi}_n^{r,\theta}$. Similarly, $j \in \mathbb{N}_{n-k_n} \setminus D_n$ if and only if the jump sampled at Step $v_n(j)$ is not distributed according to a suitable marginal of $\tilde{\pi}_n^{r,\theta}$, but the jump sampled at Step $v_n(j) + 1$ is and it is denoted $$(\tau'_{k_n(j)}, \phi'_{k_n(j)}).$$

Finally, $Q^\theta_{p,a}$ is defined as in the previous section.

The second line in Equation 4.5 shows that the extended target distribution admits $\tilde{\pi}_n^{r,\theta}$ as a marginal. In addition, under this extended target distribution, the transitions from $X_{1:n-1}$ to X_n will be free of degenerate components as long as $q^\theta(\phi_j | \phi_{j-1}, \tau_j, \tau_{j-1})$ is non-degenerate.

4.4.3 Extended Proposal Distribution

We use the proposal kernels

$$P^\theta_n(dx_n|X_{1:n-1}) = \alpha_n(dx_n)P_{n,m_n}^\theta(\delta x_n \setminus m_n|X_{1:n-1})$$

with birth and adjustment moves that are similar to the ones used in the original formulation of the SMC filter for PDPS except that they do not
share the degenerate components. A birth move,

\[P_{n,b}^\theta (d\tau_n \times d\phi_n | x_{1:n-1}) := \rho_{n,b}^\theta (d\tau_n | \#H_{n-1}, \tau_{h_{n-1}}, \phi_{h_{n-1}}, \phi_0) \]

\[\times \eta_{n,b}^\theta (d\phi_n | \tau_n, \#H_{n-1}, \tau_{h_{n-1}}, \phi_{h_{n-1}}, \phi_0), \]

adds a new stopping time in \((\tau_{n-1}, t_n]\) and samples a new jump size. Similarly, an adjustment move,

\[P_{n,a}^\theta (d\tau_n \times d\phi_n | x_{1:n-1}) := \rho_{n,a}^\theta (d\tau_n | \#H_{n-1}, \tau_{h_{n-1}}, \phi_{h_{n-1}}, \phi_0) \]

\[\times \eta_{n,a}^\theta (d\phi_n | \tau_n, \#H_{n-1}, \tau_{h_{n-1}}, \phi_{h_{n-1}}, \phi_0), \]

shifts the most recent stopping time to a new location in \((\tau_{h_{n-1}}, t_n]\) and also samples a new value for the corresponding jump size. The kernels \(\rho_{n,m}^\theta\) and \(\eta_{n,m}^\theta\) are defined as in the previous section and we again define the forward ‘mixture weights’ by \(\alpha_n^\theta (a | x_{n-1}) := S^\theta (t_n, \tau_{n-1}).\)

4.4.4 Distribution Over Birth-Move Locations

The support of the target distribution in Equation 4.3 must be included in the support of the proposal distribution. To ensure this, we propose to use the following distribution over the locations of the birth moves,

\[\mu_n^\theta (d\tilde{l}_{1:k_n} | k_n, \tau_{1:k_n}^{'}, \phi_{1:k_n}^{'}, \phi_0) \]

\[:= v_{k_n}(d\tilde{l}_{1:k_n} | n + 1, k_n, \tau_{1:k_n}^{'}, \phi_{1:k_n}^{'}, \phi_0) \bar{s}_{1}(d\tilde{l}_1) \]

\[\times \prod_{j=2} v_j (d\tilde{l}_{j+1} | i_{j+1}, k_n, \tau_{1:k_n}^{'}, \phi_{1:k_n}^{'}, \phi_0). \]

Here, \(v_j (i_{j+1} | l, k_n, \tau_{1:k_n}^{'}, \phi_{1:k_n}^{'}, \phi_0)\) is a distribution that has support

\[\{ \tilde{s}(\tau_{1:j-1}) + 1, \ldots, l - 1 \}, \]

where we recall the definition \(\tilde{s}(\tau_{1:j}) = \sup \{ s(\tau_{j-l+1}) + l - 1 \mid l \in \mathbb{N}_j \} \) with \(s(\tau) = \inf \{ q \in \mathbb{N} \mid t_q \geq \tau \} \).

If only local adjustment moves are used (see Subsection 4.3.2) then the support of \(v_j (i_{j+1} | l, k_n, \tau_{1:k_n}^{'}, \phi_{1:k_n}^{'}, \phi_0)\) must be limited to

\[\{ \tilde{s}(\tau_{1:j}), \ldots, l - 1 \}. \]
In the applications presented in Section 4.5 we employ such restricted adjustment moves. Consequently, we may take $v_j(i_j \mid l, k_n, \tau'_j, \phi'_j, \phi_0)$ to be a geometric distribution truncated to \{\delta(\tau'_{j+1}), \ldots, l-1\} or simply a uniform distribution on this set. Such a choice also ensures that the computational cost (per SMC step) of computing the importance weights remains constant.

4.4.5 Incremental and Backward-Sampling Weights

Incremental Weights. For easier reference, we will hereafter refer to the algorithm presented in this subsection as the reformulated sequential Monte Carlo (RSMC) filter. Again abusing the notation for Radon–Nikodym derivatives, the incremental weights of this algorithm, denoted $G^\theta_n(x_{1:n}) = \gamma^\theta_n(x_{1:n}) / \gamma^\theta_n(x_{1:n-1}) P^\theta_n(x_n \mid x_{1:n-1})$, are computed as follows. For a birth move, i.e. $m_n = b$,

$$G^\theta_n(x_{1:n}) = \frac{S^\theta(t_n, \tau_n)}{S^\theta(t_{n-1}, \tau_{n-1})} \frac{f^\theta(\tau_n \mid \tau_{n-1}) q^\theta(\phi_n \mid \phi_{n-1}, \tau_n, \tau_{n-1})}{p^\theta_{n,b}(\tau_n, \phi_n \mid x_{1:n-1})} \times \frac{\mu^\theta_n(m_{1:n} \mid \#H_n, \tau_{h_n}, \phi_{h_n}, \phi_0)}{\mu^\theta_{n-1}(m_{1:n-1} \mid \#H_{n-1}, \tau_{h_{n-1}}, \phi_{h_{n-1}}, \phi_0) \alpha^\theta_n(b \mid x_{n-1})} \times \frac{g^\theta(y_{[\tau_n, \tau_{n-1}]} \mid \tau_n, \phi_n)}{g^\theta(y_{[\tau_{n-1}, \tau_n]} \mid \tau_{n-1}, \phi_{n-1})}.$$

For an adjustment move, i.e. $m_n = a$,

$$G^\theta_n(x_{1:n}) = \frac{S^\theta(t_n, \tau_n)}{S^\theta(t_{n-1}, \tau_{n-1})} \frac{Q^\theta_{n-1,a}(\tau_{n-1}, \phi_{n-1} \mid \#H_n, \tau_{h_n}, \phi_{h_n}, \phi_0)}{P^\theta_{n,a}(\tau_n, \phi_n \mid x_{1:n-1})} \times \frac{\mu^\theta_n(m_{1:n} \mid \#H_n, \tau_{h_n}, \phi_{h_n}, \phi_0)}{\mu^\theta_{n-1}(m_{1:n-1} \mid \#H_{n-1}, \tau_{h_{n-1}}, \phi_{h_{n-1}}, \phi_0) \alpha^\theta_n(a \mid x_{n-1})} \times \frac{f^\theta(\tau_{n-1} \mid \tau_{h_n}(e_{H_n-1}))}{f^\theta(\tau_{n-1} \mid \tau_n(e_{H_n-1}))} \times \frac{q^\theta(\phi_n \mid \phi_{h_n}(e_{H_n-1}), \tau_n, \tau_{h_n}(e_{H_n-1}))}{q^\theta(\phi_{n-1} \mid \phi_{h_{n-1}}(e_{H_{n-1}}), \tau_{n-1}, \tau_{h_{n-1}}(e_{H_{n-1}}))} \times \frac{g^\theta(y_{[\tau_{n-1}, \tau_n]} \mid \tau_{h_n}(e_{H_n-1}), \phi_{h_n}(e_{H_n-1}))}{g^\theta(y_{[\tau_{n-1}, \tau_n]} \mid \tau_n, \phi_n)} \times \frac{g^\theta(y_{[\tau_n, \tau_{n-1}]} \mid \tau_{h_n}(e_{H_n-1}), \phi_{h_n}(e_{H_n-1}))}{g^\theta(y_{[\tau_{n-1}, \tau_n]} \mid \tau_{n-1}, \phi_{n-1})}.$$

126
Here, we use the convention $g^\theta(y_{[s,t]}|\tau_j, \phi_j) := 1$ if $s \geq t$. To actually compute these weights, it is preferable to switch to the parametrisation from the right hand side in Equation 4.4.

Backward-/Ancestor-Sampling Weights. We conclude this subsection by deriving the probabilities $G^\theta_n(x_1:p) := \gamma_\theta_n(x_1:p)/\gamma_\theta_n(x_1:n)$ needed for the computation of the backward or ancestor sampling weights in Equation 3.17 for the VRPF and the RSMC filter.

For the VRPF using the notation from Subsection 4.3.1, assuming that $n < P$ and let

$$\mu(n) := \inf\{m \in \{n + 1, \ldots, P\} \mid k_m > 0\}.$$

If $\sum_{p=n+1}^P k_p = 0$ and $k_n > 0$, then, recalling that $t_P = T$,

$$G^\theta_n(x_1:p) \propto S^\theta(T, \tau_{n,k_n}) g^\theta(y_{(t_n,T]}|\phi_{n,k_n}, \tau_{n,k_n})/S^\theta(t_n, \tau_{n,k_n}).$$

If $\sum_{p=n+1}^P k_p > 0$ and $k_n > 0$ then

$$G^\theta_n(x_1:p) \propto g^\theta(y_{(t_n,\tau_{\mu(n),1}]}) f^\theta(\tau_{\mu(n),1} | \tau_{n,k_n})$$

$$\times q^\theta(\phi_{\mu(n)}, \phi_{n,k_n}, \tau_{\mu(n),1}, \tau_{n,k_n})/S^\theta(t_n, \tau_{n,k_n}).$$

In the case that $k_n = 0$, the quantity $(\tau_{n,k_n}, \phi_{n,k_n})$ in the above equations is replaced by $(\tau_{v(n),k_{v(n)}}, \phi_{v(n),k_{v(n)}})$.

For the RSMC filter, using the notation from this section and assuming $n < P$, let $n_b := \inf\{p \in \mathbb{Z}_{n+2, P} \mid m_p = b\}$ denote the iteration with the first birth move after step $n + 1$, with the convention that $n_b := P + 1$ if there is no further jump at steps $n + 2, \ldots, P$. If $m_{n+1} = b$,

$$G^\theta_n(x_1:p) \propto \frac{\mu^\theta_p(m_1:p \mid \#H_P, \tau_{h_P}, \phi_{h_P}, \phi_0)}{\mu^\theta_p(m_1:n \mid \#H_n, \tau_{h_n}, \phi_{h_n}, \phi_0)}$$

$$\times f^\theta(\tau_{h_{b-1}} \mid \tau_n) g^\theta(y_{(t_n,\tau_{h_{b-1}}]} | \tau_n, \phi_n)$$

$$\times q^\theta(\phi_{h_{b-1}}, \phi_{n, \tau_{h_{b-1}}}, \tau_{n, \tau_{h_{b-1}}})$$

$$\times \frac{S^\theta(t_n, \tau_n)}{S^\theta(t_{n_{b-1}}, \tau_{n_{b-1}}, \phi_{n_{b-1}})}$$

$$\times \prod_{j=n+2}^{n_{b-1}} Q^\theta_{j-1,a}(\tau_{j-1} \mid \#H_j, \tau_{h_j}, \phi_{h_j}, \phi_0).$$
4 Inference in Piecewise Deterministic Processes

If \(m_{n+1} = a \),

\[
G_{n \mid P}^a(x_{1:P}) \propto \frac{\mu^a_P(m_{1:P} \mid H_P, \tau_{H_P}, \phi_{H_P}, \phi_0)}{\mu^a_n(m_{1:n} \mid H_n, \tau_{H_n}, \phi_{H_n}, \phi_0)} \\
\times \frac{f^\theta(\tau_{H_n-1} \mid \tau_{H_n(\ast H_n-1)})}{S^\theta(\tau_n, \tau_n) f^\theta(\tau_n \mid \tau_{H_n(\ast H_n-1)})} \\
\times \frac{q^\theta(\phi_{H_n-1} \mid \phi_{H_n(\ast H_n-1)}, \tau_{H_n-1}, \tau_{H_n(\ast H_n-1)})}{q^\theta(\phi_n \mid \phi_{H_n(\ast H_n-1)}, \tau_n, \tau_{H_n(\ast H_n-1)})} \\
\times \frac{g^\theta(y_{[\tau_n, \tau_{H_n-1}, \tau_{H_n-1}]} \mid \tau_{H_n(\ast H_n-1)}, \phi_{H_n(\ast H_n-1)})}{g^\theta(y_{[\tau_n, \tau_{H_n-1}, \tau_{H_n-1}]} \mid \tau_{H_n(\ast H_n-1)}, \phi_{H_n(\ast H_n-1)})} \\
\times \frac{1}{g^\theta(y_{[\tau_n, \phi_n]} \mid \tau_n, \phi_n)} \\
\times \prod_{j=n+1}^{n-1} Q_{j-1,a}^\theta(\tau_{j-1}, \phi_{j-1} \mid \#H_j, \tau_{h_j}, \phi_{h_j}, \phi_0).
\]

Again, we use the convention that \(g^\theta(y_I \mid \tau_I, \phi_I) := 1 \), if \(I = \emptyset \). To compute these weights, it is again preferable to switch to the parametrisation from the right hand side in Equation 4.4.

4.4.6 The Algorithm

In this subsection, we summarise the RSMC-based PG sampler and with the auxiliary-variable rejuvenation scheme outlined in Subsection 3.4.4 and comment on the efficiency of backward sampling (BS) and ancestor sampling (AS) in this context.

More precisely, the algorithm is a special case of Algorithm 3.35 in which we take, with some abuse of notation, \(T = P \), as well as

- \(X_{1:P} = (M_{1:P}, \tau_{1:P}, \phi_{1:P}) \),
- \(Y = (I_{1:k_P}, \tau^*_{1:k_P} \mid \phi^*_{1:k_P}) \),
- \(Z = (k_P, \tau'_{1:k_P}, \phi'_{1:k_P}) \),
- \(\pi(\theta, x_{1:n}) \propto p(\theta)g^\theta_P(x_{1:n}), \) where \(p(\theta) \) is some prior density for the parameters \(\Theta \), and where \(g^\theta_P \) represents the extended target measure associated with the RSMC algorithm up to Step \(P \) as defined in Equation 4.5.
4.4 Reformulation of the SMC Filter

- \(\hat{\pi}^n(\theta | z) \propto p(\theta) \tilde{\pi}^n_\theta(k_0, \tau'_{1:k_0}, \phi'_{1:k_0}) \) (from which we sample in Step 2 of Algorithm 3.35), where \(\tilde{\pi}^n_\theta \) denotes the posterior distribution of the jump times, jump sizes as well as their number up to Time \(t_p \), as defined in Equation 4.1.

- and finally,

\[
L((\theta, z)), y) = \mu^\theta(i:1:k_n | \tilde{k}_n, \tau'_{1:k_n}, \phi'_{1:k_n}, \phi_0) \\
\times \left[\prod_{j \in D_n} \mathcal{O}^\theta_{\nu_n(j), a}(\tau^*_j, \phi^*_j | \tilde{k}_n(j), \tilde{\tau}_n(j), \tilde{\phi}_n(j), \phi_0) \right] \\
\times \left[\prod_{j \in \mathbb{N}_{n-k_n} \setminus D_n} \mathcal{O}^\theta_{\nu_n(j), a}(\tau^*_j, \phi^*_j | \tilde{k}_n(j), \tau'_{1:k_n(j)}, \phi'_{1:k_n(j)}, \phi_0) \right].
\]

Efficiency of Backward/Ancestor Sampling. We conclude this section by commenting on the efficiency of BS (and, similarly, AS) when using a conditional sequential Monte Carlo (CSMC) algorithm based around the RSME algorithm within a PG sampler. Assume that we are trying to 'connect' a particle path segment \(X_{1:n} \) with a particle path segment \(X_{n+1:p} \) via BS or AS.

1. If \(m_{n+1} = a, G_{\nu_n}(x_1:p) \) is necessarily equal to zero if \(\tau_j \leq \tau_{n+}(e_{H_{n-1}}) \), for any \(j \in \mathbb{Z}_{n+1,n_p-1} \). This reflects the fact that under the (extended) proposal distribution, any subsequent adjustment moves cannot move the most recent jump to a location before the second most recent jump at Step \(n \). Furthermore, if only local adjustment moves for the jump time and jump size are employed, the term \(G_{\nu_n}(x_1:p) \) will necessarily be very small unless the distances \(|\tau_n - \tau_{n+1}| \) and \(|\phi_n - \phi_{n+1}| \) are sufficiently small. This reflects the fact that in this case, adjustment moves only slightly perturb an existing jump.

2. If \(m_{n+1} = b, G_{\nu_n}(x_1:p) \) is necessarily equal to zero if \(\tau_j \leq \tau_n \), for any \(j \in \mathbb{Z}_{n+1,n_p-1} \), where \(n_b \) is defined as in the previous subsection. This reflects the fact that under the (extended) proposal distribution, the birth move at Step \(n + 1 \) cannot propose a jump in \((0, \tau_n) \) and subsequent adjustment moves are similarly unable to move the newly-born jump to any location in this interval.
In some models, \(G_{n|P}(x_{1:P}) \) may also be zero (or very small) due to restrictions imposed on the jump sizes under the model. For instance, in the Cox-process model from Subsection 4.2.3, the \(\text{PDP} \) must have a non-negative jump at the \(j \)th jump time, i.e. we must have \(\xi_{\tau_j} \leq \phi_j = \xi_{\tau_j} \), where \(\xi_{\tau_j} \) denotes value of the \(\text{PDP} \) immediately Time \(\tau_j \).

Whenever \(G_{n|P}(x_{1:P}) \) is zero (or sufficiently small), it is impossible (or difficult) to ‘connect’ the particle path \(X_{1:n} \) with the particle path \(X_{n+1:P} \) via \(\text{BS} \) or \(\text{AS} \). This hampers mixing of the \(\text{PG} \) kernel. However, the auxiliary-variable rejuvenation step alleviates this problem. More specifically, in our simulations (presented in the next Section), the extra Gibbs step (Step 3 of Algorithm 3.35) appeared to be crucial to the performance of the \(\text{RSMC} \)-based \(\text{PG} \) sampler: without it, the algorithm could get stuck in local modes.

We conjecture that with only local adjustment moves and without Step 3 of Algorithm 3.35, the \(\text{PG} \) sampler can get stuck because \(\text{AS} \) (or similarly \(\text{BS} \)) is relatively ineffective: it rarely changes the distinguished path (i.e. the particles \(U_{1:P} \) in the notation from the previous chapter) in Situation 1 above, and mixing thus relies on replacing the distinguished path in Situation 2. Here, however, if \(\tau_{n+1} \) is much smaller than \(t_n \), the most recent jump in all other particle paths is likely to be located in the interval \((\tau_{n+1}, t_n] \) so that they have \(\text{BS} \text{AS} \) weights equal to zero.

Step 3 of Algorithm 3.35 can circumvent the latter problem because it can change the \(\text{SMC} \) step of the birth move which is associated with a particular jump.

This reasoning might also explain why we observed that the \(\text{RSMC} \)-based \(\text{PG} \) sampler could get stuck in the shot-noise Cox-process example when it was initialised in a region with \(P \) jumps: if the distinguished path has only birth moves then Step 3 of Algorithm 3.35 cannot change the \(\text{SMC} \) step of the birth move associated with any jump.

4.5 Simulation study

4.5.1 General Setup

In this section, we apply a \(\text{PG} \) sampler with \(\text{AS} \) and with the auxiliary-variable rejuvenation step from Subsection 3.4.4 – based on the \(\text{RSMC} \)
4.5 Simulation study

filter from Subsection 4.4.2 to the elementary change-point model from Subsection 4.2.2 and to the shot-noise Cox-process model from Subsection 4.2.3. For easier reference, this algorithm is hereafter called RSME-based PG sampler. We compare its performance with that of a VRPF-based PG sampler also using AS and additionally with a RJMCMC algorithm.

Reformulated SMC Filter. For the RSME filter, a birth move at Step n samples a new jump time τ_n uniformly in $(\tau_{n-1}, t_n]$. The jump size, ϕ_n, is then sampled from its full conditional posterior distribution given the observations up to time $\tau_n + \bar{\mu} / 4 \wedge t_n$, with $\bar{\mu}$ being the prior mean interjump time. We use restricted jump-time adjustment moves, i.e. we use Gaussian kernels with variance 10^{-4}, centred around τ_{n-1} and truncated to $((\tau_{n-1} \wedge s_{n-1}), t_{n-1}]$ where $s_{n-1} := s(\tau_{n-1})$. Gaussian kernels with this variance, centred around ϕ_{n-1}, are also used for the jump-size adjustments. In the Cox-process example, these Gaussian kernels are truncated to $(F^\theta(\tau_n, \tau_n) \wedge \phi_{n-1}) \wedge \phi_{n-1} \wedge \infty)$. Likewise, the kernel $Q^\theta_{n-1,a}$ is a product of independent Gaussians, each with variance 10^{-4}.

- The first component is centred around τ_n and truncated to the interval $((\tau_n) \wedge s_n, t_n]$, where $s_n := s(\tau_n)$.
- The second component is centred around ϕ_n. In the Cox-process example, its support is restricted to $(F^\theta(\tau_{n-1} \wedge s_{n-1}), \phi_{n-1} \wedge \infty)$.

Finally, the conditional distribution of $i_{1:k_n}$ is taken to be a truncated geometric distribution with parameter 0.3 and with support (for restricted adjustment moves) as given in Subsection 4.4.2. Throughout, we use (conditional) systematic resampling and resample only when the effective sample size falls below 0.8N, where N is the (constant) number of particles at every step.

Variable-Rate Particle Filter. For the VRPF we propose the number of jumps in $(t_{n-1}, t_n]$ from a Poisson distribution with mean $(t_n - t_{n-1}) / \bar{\mu}$. The jump times are subsequently sampled independently from a uniform distribution on $(t_{n-1}, t_n]$ and are then ordered. The corresponding jump sizes are proposed from their full conditional time-t_n posterior distribution. The step size in both SMC algorithms is set to $t_n - t_{n-1} = 10$. Again, we use (conditional) systematic resampling and resample only when the effective sample size falls below 0.8N, where N is again the constant number of particles at every step.
Reversible-Jump MCMC Updates. The moves that update jumps in the RJMCMC algorithm are those used in Centanni and Minozzo (2006b) except that in the elementary change-point model, the jump sizes are always sampled from their full conditional posterior distributions.

Static-Parameter Updates. Within all three algorithms, a new value for the vector of static parameters is proposed using the m-fold convolution of a Gaussian random-walk Metropolis–Hastings kernel with the same covariance matrix across algorithms. More sophisticated updates for the static parameters could be constructed but we choose not to do so since this chapter’s focus is on updating the time-varying parameters.

In what follows, a single ‘iteration’ or ‘sweep’ of one of these algorithms refers to first updating the static parameters (followed by the auxiliary-variable rejuvenation step for the RSMC-based PG sampler algorithm) and then updating the jumps using either a conditional SMC update or RJMCMC updates. For the first example, we used $m = l = 500$ and for the second, we used $m = l = 1,000$.

Initial Values. Initial values for the static parameters are sampled from the prior. For the second example, we then divide the first two static parameters by 100 to avoid starting in a region with a very large number of jumps. This is done to reduce the computational cost for the first iterations in the VRPF-based PG sampler and RJMCMC algorithms and also because we have observed that the RSMC-based PG sampler can get stuck if started in a region with close to P jumps. A possible explanation of the latter phenomenon is provided in Subsection 4.4.6.

Implementation. The algorithms are implemented in Matlab (The MathWorks, Inc., 2015) on a single 2.66 GHz Intel ‘Westmere’ core using 4 gigabytes of RAM. In each case, the presented results are based on 60,000 iterations of which the first 10,000 are discarded as burn-in. We note that this is just a proof-of-concept implementation: significant speed-ups should be attainable using parallelisation techniques to which particle methods are amenable (Lee, Yau, Giles, Doucet & Holmes, 2010).

4.5.2 Elementary Change-Point Model

For the elementary change-point model, we used the simulated data shown in Figure 4.1. We chose a Gaussian prior on the static parameters, with covariance matrix $\text{diag}(10^2, 10^2, 10, 10^3, 10^4)$ and truncated to $\mathbb{R} \times (0, \infty)^4$. 132
As shown in Figure 4.4, all three algorithms yielded comparable estimates for the marginal posterior distributions of the static parameters even when using only 25 particles. The bivariate correlation structure and sample autocorrelations were also similar but are omitted due to limited space. However, we encountered chains that seemed to get stuck in local modes for a considerable number of iterations. Such a chain is represented by the dashed line in the bottom row of Figure 4.4 and the corresponding trace plot for the parameter β is shown in Figure 4.5. We stress that this did not occur in all runs of the algorithm. This behaviour may be the result of the sampler finding it difficult to add, remove, or modify individual jumps in particular regions of the space. Such single-site updates are particularly inefficient in this case due to the gamma prior on the interjump times. We did not encounter such a behaviour in any of the PG samplers as they allow for a blocked update of (large parts of) the entire set of jumps.

The computing time for the auxiliary-variable rejuvenation and conditional update (with AS) in the sampler was around 1.6 seconds on average, the conditional update (with AS) for the sampler took around 2.5 seconds and $l = 500$ individual moves for the algorithm took around 2 seconds. The difference can partially be explained by the fact that the sampler is more amenable to code vectorisation than the because at each step, it generates the same number of random variables for each particle.

4.5.3 Shot-Noise Cox-Process Model

For the shot-noise Cox-process example, we used the simulated data set shown in Figure 4.2. We chose a Gaussian prior for the vector of static parameters, with covariance matrix diag$(10, 10, 10^2)$ and truncated to \mathbb{R}^3. For the static-parameter updates we switched to a partially non-centred parametrisation of the jump sizes to improve mixing of the decay parameter k.

As shown in Figure 4.6, the estimated marginal posterior densities from all three algorithms have similar modes. However, those obtained from the sampler are more concentrated. This difference is possibly due to the approximation described in Subsection 4.3.2 which restricts the number of jumps in any particular interval. In this model, it produces visibly different results because the exponential prior on the
4 Inference in Piecewise Deterministic Processes

Figure 4.4 Kernel density estimates for the marginal posterior densities of the static parameters in the elementary change-point model. *Top row:* \texttt{RSMC}-based PG sampler algorithm with 100 particles (solid line), 50 particles (dashed line), 25 particles (dash-dotted line). *Middle row:* \texttt{VRPF}-based PG sampler with 100 particles (solid line), 50 particles (dashed line), 25 particles (dash-dotted line). *Bottom row:* two RJMCMC chains. Vertical lines indicate the true parameters; dotted lines show the prior densities.
interjump times allows large numbers of jumps to be placed close to each other with non-negligible probability. Thus, the posterior distribution of this model has tail regions with large numbers of jumps which the RSMC-based \text{PG} sampler algorithm rarely enters. This could also contribute to the differences in the autocorrelations in Figure 4.6. Note that the effect of this approximation can be reduced by decreasing the step size $t_n - t_{n-1}$.

4.6 Summary

In this chapter, we have demonstrated that \text{PG} samplers can be applied to piecewise deterministic processes and have presented a number of methodological developments in doing so. Numerical studies provide a comparative illustration of the performance of the proposed methods.

One of the methodological developments presented in this work involves a novel representation of the SMC sampler from Whiteley et al. (2011). This kind of representation, which embeds a ‘variable-dimension’ problem within a ‘fixed-dimension’ problem, may be useful more generally, e.g. for applying quasi-SMC methods (Gerber & Chopin, 2015) to variable-dimension problems. An extension of this representation to allow for multiple-birth-move kernels is left for future research.
Figure 4.6 Static-parameter estimates for the shot-noise Cox-process example. Based on the RSMC-based PG sampler algorithm with 100 particles (solid line), the VRPF-based PG sampler with 100 particles (dashed line), and an RJMCMC sampler (dash-dotted line). *Top row:* kernel density estimates of the marginal posterior densities. Vertical lines indicate true parameters; dotted lines represent prior densities. *Bottom row:* autocorrelations.
5 Non-Centred Particle Gibbs Samplers for Compound Poisson-Process Models

5.1 Introduction

5.1.1 Motivation

In this chapter, we devise a particle Gibbs sampler for static-parameter estimation in partially or noisily observed compound Poisson processes. The algorithm is based on a non-centred parametrisation described in Section 5.2 in order to reduce the impact of the correlation between the latent point process and the parameters on the mixing of the Gibbs sampler. Some modifications for enhancing the efficiency of the (conditional) sequential Monte Carlo algorithm at the heart of the particle Gibbs sampler are mentioned in Section 5.3. Finally, in Section 5.4, we provide illustrative results demonstrating the performance of the algorithm on a challenging Lévy-driven stochastic volatility model.

This paper considers a class of statistical models which are based around a compound Poisson process \(L = (L_t)_{t \in [0,T]} \), for some \(T \in (0, \infty) \). Such a process can be represented as

\[
L_t := \sum_{j=1}^{K} E_j 1_{[0,t]}(S_j),
\]

for \(t \in [0,T] =: T \). Here, the number of jumps, \(K \), and the ordered jump times, \(0 < S_1 < S_2 < \ldots < S_K \), are generated by a Poisson process on \(T \) with finite intensity \(\lambda = l(\theta) \) which we assume to be constant, for simplicity. Here, \(l: \Theta \to (0, \infty) \) is some known function which determines the intensity, and the jump sizes \(E_1, E_2, \ldots, E_K \) are random variables distributed according to some distribution \(\nu^\theta \) on \(\mathbb{E} \subseteq \mathbb{R} \). For convenience, we hereafter write \(\Psi := (K, S_{1:K}, E_{1:K}) \).
Throughout, we assume that the process is latent, i.e. \(\psi \) can only be partially or noisily observed. The aim is to conduct inference about the parameters \(\Theta \) that parametrise both the compound Poisson process and the likelihood function of the observations, \(g^\theta (\cdot | \psi) \). In a Bayesian framework, this entails computing or at least approximating the marginal posterior distribution of \(\Theta \).

Usually, Markov chain Monte Carlo (MCMC) algorithms are used to approximate such posterior distributions. In addition, to circumvent intractable integrals, we usually have to work on an extended space and approximate the joint posterior distribution of \(\Theta \) and \(\Psi \), denoted \(\pi (d \theta \times d \psi) \). Due to the difficulty of constructing efficient global updates for \((\Theta, \Psi) \), the transitions are almost always based around a convolution of local, component-wise updates, resulting in so-called Gibbs samplers, Metropolis-within-Gibbs algorithms, or combinations of the two. Within these algorithms, the components of \(\Psi \) are usually updated individually using a particular type of MCMC update known as reversible-jump Markov chain Monte Carlo (RJ-MCMC) kernel (Green, 1995). A single sweep of such a sampler is outlined in Algorithm 5.1 where \(\pi (d \psi | \theta) \) and \(\pi (d \theta | \psi) \) denote, respectively, the full conditional distributions of \(\Psi \) and of \(\Theta \) under \(\pi \).

5.1 Algorithm (centred Metropolis-within-Gibbs).

1. Update (components of) \(\Psi \) using a \(\pi (d \psi | \theta) \)-invariant MCMC kernel.
2. Update \(\Theta \) using a \(\pi (d \theta | \psi) \)-invariant MCMC kernel.

Unfortunately, as is well known, such component-wise updates impede mixing of the MCMC chain whenever components are highly correlated. To reduce the impact of correlation between \(\Theta \) and \(\Psi \) on the mixing of the MCMC chain, Roberts, Papaspiliopoulos and Dellaportas (2004) propose Metropolis-Within-Gibbs samplers with single-site RJ-MCMC updates for \(\Psi \) based on various non-centred parametrisations (NCPS). Roughly speaking, NCPS are parametrisations under which certain subsets of parameters/latent variables are independent a-priori.

One of these NCPS is based on a representation by Ferguson and Klass (1972) which was also used by Griffin and Steel (2004). It was found to be highly effective in Roberts et al. (2004) as soon as the latent point process \(\Psi \) could be updated as a single block.

When multiple updates of \(\Psi \) are performed for every update of the parameters, the [non-centred algorithm] that is
5.2 Non-Centred Metropolis-Within-Gibbs Algorithm

based on the Ferguson–Klass representation is much more efficient than the others . . . [B]ig steps in parameter space can be achieved with this scheme. However, the mixing of Ψ is slow, since only small moves in the point process space are attempted . . . Multiple updates of Ψ are computationally extremely expensive and should be avoided. We have experimented extensively with more sophisticated approaches for updating Ψ, without significant success. However, if more efficient methods for this updating step could be found, the [non-centred algorithm] that is based on the Ferguson–Klass representation would become very attractive [emphasis added]. (Roberts et al., 2004, pp. 387–388)

5.1.2 Contribution

With the introduction of [particle Gibbs (PG)] samplers in Andrieu et al. (2010) it has become possible to jointly update all the components of Ψ and thus potentially reduce the impact of correlation between the components of Ψ on the mixing of the MCMC chain. Hence, it is only natural to devise a PG sampler that adopts the NCP based on the Ferguson–Klass representation to simultaneously reduce the impact of the correlation between Θ and Ψ. This is the focus of this work. We also apply the resulting non-centred PG sampler to a particularly challenging Lévy-driven stochastic volatility model for which we also point out some identifiability issues that have not been recognised in the literature. We note that the utility of reparametrisations in PG samplers has also recently been recognised by Fearnhead and Meligkotsidou (2014).

5.2 Non-Centred Metropolis-Within-Gibbs Algorithm

5.2.1 Actual Target Distribution

A generic statistical model based around a compound Poisson process L has a posterior distribution – the target distribution – of the form

$$\pi(\text{d}\theta \times \text{d}\psi) \propto \gamma(\text{d}\theta \times \text{d}\psi)$$
5 Particle Gibbs Samplers for Poisson-Process Models

on \(\Theta \times \Psi \), where

\[
\gamma(d\theta \times d\psi) := \varpi(d\theta)\Pi^\theta(d\psi)g^\theta(y_T|\psi)
\]

(5.1)

is some positive measure with \(\varpi(d\theta) \) being some (prior) distribution for a set of static parameters, \(\Theta \), whose support is (a subset of) \(\Theta \). Furthermore, \(\Pi^\theta(d\psi) \) is a distribution on

\[
\Psi := \bigcup_{k=0}^{\infty} \{k\} \times T_k \times \mathbb{E}^k,
\]

where \(T_k := \{s_1, k \in T^k \mid s_1 < s_2 < \ldots < s_k\} \) is the support of \(k \) ordered jump times in \(T \). For the moment, we take \(E = \mathbb{R} \). The generalisation to \(E = \mathbb{R}^d \) is discussed Section 5.5.

The probability measure \(\Pi^\theta(d\psi) \) is the distribution of points – ordered according to the first component – which have been generated by a Poisson point process (PPP) on \(T \times E \) with intensity measure

\[
\eta^\theta(ds \times de) := \lambda [Leb|_T \otimes \nu^\theta](ds \times de),
\]

where we recall that \(\nu^\theta \) is a probability measure on \(E \) and the intensity parameter \(\lambda = l(\theta) \) is a function of the static parameters. Here and throughout, \(\mu|_C \) denotes the restriction of a measure \(\mu \) to a measurable set \(C \) and \(Leb \) denotes the Lebesgue measure on \(\mathbb{R} \). To simplify the presentation, we assume that the intensity measure \(\eta^\theta \) is assumed to be absolutely continuous with respect to the Lebesgue measure (on \(T \times E \)).

Finally, \(g^\theta(y_T|\psi) \) is the likelihood of the collection of observations \(y_T := (y_1, \ldots, y_P) \), which are recorded at times \(0 < \tilde{t}_1 < \ldots < \tilde{t}_P \leq T \). For simplicity, we will subsequently assume that \(\tilde{t}_P = T \). Moreover, we sometimes let \(y_{(s,t]} \) denote the subset of observations that have been recorded in the interval \((s,t] \).

5.2.2 Non-Centred Parametrisation

The reparametrisation adopted in this paper is based on a representation derived in Ferguson and Klass (1972). The use of this representation to derive a (partially) non-centred parametrisation for compound Poisson
processes was suggested by Roberts et al. (2004) and such reparametrisations were also extensively used by Griffin and Steel (2006) in the context of Lévy-driven stochastic volatility models. Alternative reparametrisations were suggested in Roberts et al. (2004) but were found to be inferior in the presence of efficient updates of the latent point process.

The basic idea is to take points distributed according to a unit-intensity PPP on \(T \times [0, \lambda] \), denoted \(\Theta \), where \(\lambda \) is some value in \([\lambda, \infty)\). First, we discard those points whose second components exceeds \(\lambda \) and divide the second component of the remaining points by \(\lambda \). This is sometimes called \textit{thinning} and leaves a set of points distributed according to a PPP on \(T \times [0, 1] \) with intensity measure \(\lambda \text{Leb}_{|T \times [0, 1]} \). These points are then transformed into realisations of points \(\Psi \sim \Pi^\theta \) by applying the inverse \textit{cumulative distribution function (CDF)} method to the second component. For completeness and to set up some notation, we outline the formal justification of this reparametrisation below.

Define the space

\[
\tilde{\Psi} := \bigcup_{k=0}^{\infty} (\{k\} \times T_k \times [0, \tilde{\lambda}])
\]

and let \(\tilde{\Pi}(d\tilde{\Psi}) \) be the distribution of points \(\tilde{\Psi} = (\tilde{K}, \tilde{S}_{1:K}, \tilde{E}_{1:K}) \) which are generated by a unit-intensity PPP on \(T \times [0, \tilde{\lambda}] \). Again these points are taken to be ordered according to their first components. In the following, we describe how \(\tilde{\Psi} \) is first thinned and then transformed to obtain the desired points \(\Psi \sim \Pi^\theta \).

Write \(N_n := \{ k \in \mathbb{N} \mid k \leq n \} \). Let

\[
H := \{ j \in \mathbb{N}_K \mid \tilde{E}_j \leq \lambda \}
\]

be the indices of points in \(\tilde{\Psi} \) whose second component does not exceed \(\lambda = l(\theta) \) and set \(\hat{K} := \#H \). Similarly, let

\[
\hat{H} := \{ j \in \mathbb{N}_K \mid \tilde{E}_j > \lambda \} = \mathbb{N}_K \setminus H
\]

be the set of the remaining indices and set \(\hat{K} := \#\hat{H} \). Collect the elements of \(H \) and \(\hat{H} \) in vectors \(h = h_{1:K} \) and \(\hat{h} = \hat{h}_{1:K} \), in increasing order. Note that \(H, \hat{H}, h \) and \(\hat{h} \) depend on \(\Theta \) through \(\lambda \).
Points $\Psi \sim \Pi^\theta$ are then the result of the one-to-one reparametrisation

$$\left(\Theta, \tilde{\Psi} \right) \leftrightarrow \left(\Theta, \Psi, \hat{\Psi} \right),$$

(5.2)

where the left hand side represents an NCP and the right hand side represents a centred parametrisation (CP), i.e.

1. $\tilde{\Psi} := (\tilde{K}, \tilde{S}_j: K, \tilde{E}_j: K)$ represents all the points under the NCP
2. $\Psi = (K, S_j: K, E_j: K)$ is a sample from the desired PPP under the CP
3. $\hat{\Psi} := (\hat{K}, \hat{S}_j: K, \hat{E}_j: K)$ are ‘artificial’ points added to Ψ under the CP

In the following, we specify the one-to-one transformation involved in Equation 5.2.

- For $j \in N_K$, the points in $\hat{\Psi}$ are related to those under the NCP via

 $$(\hat{S}_j, \hat{E}_j) := (\tilde{S}_j, \tilde{E}_j).$$

- For $j \in N_K$, the points in Ψ are related to those under the NCP via

 $$(S_j, E_j) = \phi^\theta(\tilde{S}_j, \tilde{E}_j).$$

Above, letting \bar{F}^θ denote the (generalised) inverse of the CDF F^θ associated with ν^θ, the function $\phi^\theta : T \times (0, \lambda] \to T \times E$ is defined by

$$\phi^\theta(\bar{s}, \bar{e}) := [\bar{s}, \bar{F}^\theta(1 - \bar{e}/\lambda)].$$

This function transforms the thinned points from the unit-intensity PPP $\tilde{\Psi}$ (under the NCP) – specifically, those points whose second component does not exceed λ – into the desired points Ψ which make up the compound Poisson process (under the CP). Since \bar{F}^θ is the (generalised) inverse of the CDF associated with ν^θ, the function ϕ^θ can be interpreted as applying the inverse CDF method.

Letting Ψ and $\tilde{\Psi}$ be related as in Equation 5.2, we obtain the following proposition, stated here for completeness.

5.2 Proposition. Let $\theta \in \Theta$ and $\tilde{\Psi} \sim \tilde{\Pi}$, then $\Psi \sim \Pi^\theta$.

142
5.2 Non-Centred Metropolis-Within-Gibbs Algorithm

Proof. The fact that \(\Psi \) is the set of ordered points distributed according to a \(\text{PPP} \) on \(T \times E \) follows by the independence property and the Mapping Theorem for \(\text{PPPs} \) (Kingman, 1993, p. 18). In particular, for \(A \in \mathcal{B}(T \times E) \), letting \(D \phi^\theta \) denote the Jacobian of \(\phi^\theta \),

\[
[\text{Leb}^{\otimes 2}|_{T \times (0, \lambda)} \circ (\phi^\theta)^{-1}](A) = \int_A |\det(D \phi^\theta)((\phi^\theta)^{-1}(s, e))|^{-1} ds \, de = \lambda \, [\text{Leb}^T \otimes \nu^\theta](A) = \eta^\theta(A).
\]

Thus, the \(\Psi \) is the set of ordered points distributed according to a \(\text{PPP} \) on \(T \times E \) with intensity measure \(\eta^\theta \).

5.2.3 Extended Target Distribution

In this subsection, we specify an extended distribution \(\tilde{\pi}(d\theta \times d\psi) \). First, this distribution admits the distribution of interest, \(\pi(d\theta \times d\psi) \), as a marginal. Second, a Gibbs sampler or Metropolis-within-Gibbs algorithm targeting this distribution makes use of an \(\text{NCP} \) based on the representation outlined above.

Centred Parametrisation. The original formulation of the model in Equation 5.3 uses a \(\text{CP} \) i.e. it implies prior dependence between \(\Theta \) and \(\Psi \). To permit the reparametrisation from Equation 5.2, we augment the target distribution \(\pi(d\theta \times d\psi) \) with

\[
\hat{\Psi} \sim \hat{\Pi}^\theta := \Pi|_{T \times (\lambda, \hat{\lambda})}.
\]

Here, \(\Pi|_{T \times (\lambda, \hat{\lambda})} \) is the distribution of points – again ordered according to the first component – that have been generated by a unit-intensity \(\text{PPP} \) on \(T \times (\lambda, \hat{\lambda}) \). We thus obtain a distribution \(\tilde{\pi} \propto \tilde{\gamma} \) over the parameters on the right hand side in Equation 5.2 defined by

\[
\tilde{\gamma}(d\theta \times d\psi \times d\hat{\psi}) := \gamma(d\theta \times d\psi)\hat{\Pi}^\theta(d\hat{\psi}).
\]

143
Non-Centred Parametrisation. Recall that \(y_T \) represents the collection of all available observations (in the interval \(T = [0, T] \)). With the abuse of notation induced by writing
\[
g^\theta(y_T|\tilde{\psi}) = g^\theta(y_T|\psi)
\]
whenever \(\psi \) and \(\tilde{\psi} \) are related according to Equation \(5.2 \), we can equivalently define an extended target distribution \(\bar{\pi} \propto \bar{\gamma} \) parametrised via
\[
\bar{\gamma}(d\theta \times d\tilde{\psi}) = \pi(d\theta) \bar{\Pi}(d\tilde{\psi}) g^\theta(y_T|\tilde{\psi}).
\]
This parametrisation represents an NCP because \(\Theta \) and \(\tilde{\Psi} \) are independent a-priori. If the observations are not too informative, then the dependence between \(\Theta \) and \(\tilde{\Psi} \) under \(\bar{\pi} \) should be smaller than the dependence between \(\Theta \) and \(\Psi \) under \(\bar{\pi} \). Hence, such a parametrisation is often beneficial in the context of Gibbs sampling.

5.2.4 The Algorithm

A single iteration of the non-centred MCMC algorithm proposed by Roberts et al. (2004) is given in Algorithm 5.3.

5.3 Algorithm (non-centred Metropolis-within-Gibbs).

1. Update \(\tilde{\Psi} \) by sampling // using the CP
 (i) (components of) \(\Psi \) using a \(\pi(d\psi|\theta) \)-invariant MCMC kernel,
 (ii) \(\hat{\Psi} \sim \hat{\pi}(d\tilde{\psi} | \theta, \psi) = \bar{\Pi}_{|\Gamma_\lambda}(d\tilde{\psi}). \)
2. Update \(\Theta \) using a \(\pi(d\theta|\tilde{\psi}) \)-invariant MCMC kernel. // using the NCP

5.4 Remark. Note that Step 1 is independent of the previously sampled points in \(\tilde{\Psi} \) as these are sampled again from their full conditional distribution. Furthermore, assuming that an Metropolis–Hastings (MH) kernel is used to update the parameters \(\Theta \), Step 2 is independent of those points in \(\tilde{\Psi} \) that lie in the set
\[
T \times (\lambda \lor \lambda^*, \tilde{\lambda}).
\]

Here, \(\lambda^* = l(\theta^*) \), where \(\theta^* \) is the value for \(\Theta \) proposed as part of the MH kernel applied in Step 1. Hence, we need not actually determine \(\tilde{\lambda} \) nor do
points in $T \times (\lambda \lor \hat{\lambda}, \hat{\lambda}]$ (under the NCPS) actually have to be sampled. Thus, the algorithm can also deal with models for which $\lambda = l(\Theta)$ is not bounded but only almost-surely finite.

The key reason for why this sampling scheme is often preferable to Algorithm 5.1 is that in Step 1 we are not fixing the points Ψ under our actual target distribution π. Instead, Ψ is a function of Θ and $\tilde{\Psi}$. This will often allow greater movement in the θ-direction in Step 2.

Even more so as pointed out by Roberts et al. (2004), Griffin and Steel (2006), the particular NCPS outlined above has another advantage: a decrease in $\lambda = l(\theta)$ coincides with the removal of those points from Ψ that are associated with the smallest jump sizes. Similarly, an increase in λ coincides with adding points to Ψ that have relatively small jumps. The above construction is therefore termed dependent thinning in Griffin and Steel (2006). Usually, adding or removing a single small jump has little impact on the posterior density. This property can further facilitate movement in the θ-direction compared to the other NCPS from Roberts et al. (2004) which add or remove jumps with arbitrary jump size.

5.3 Non-Centred Particle Gibbs Sampler

5.3.1 Motivation

The NCPS discussed in the previous section can help reduce the impact of correlation between Θ and Ψ on the efficiency of Algorithm 5.1 but it does not alleviate inefficiencies resulting from the correlation between individual components of Ψ if these are still updated one-at-a-time.

A strategy for systematically updating Ψ in one block is offered by the conditional sequential Monte Carlo (CSMC) kernels introduced by Andrieu et al. (2010) and described in Section 3.4 of this work. Simple sequential Monte Carlo (SMC) algorithms have been applied to latent point processes in Godsill and Vermaak (2004), Chopin et al. (2013). More sophisticated SMC algorithms based around the SMC-sampler framework (Del Moral et al., 2006) have been developed in Del Moral et al. (2007), Whiteley et al. (2011), Martin et al. (2013) and in Chapter 4 of this work. As pointed out in Whiteley et al. (2011) and further analysed in Chapter 4, the latter
class of SMC algorithms can introduce a substantial bias in the case of exponentially-distributed interjump times (as is the case here).

We therefore employ simple SMC algorithms even though these are potentially very inefficient (in the sense that sample impoverishment is severe). Our SMC algorithm slightly differs from that described in Chopin et al. (2013) in two ways. Firstly, following Chopin (2002), we allow for more than one observation to be included per SMC step in order to speed up the algorithm. Secondly, we employ a slightly different parametrisation which permits the use of the variance-reduction techniques: backward sampling (BS) and ancestor sampling (AS) (Whiteley, 2010; Lindsten et al., 2012) within PG samplers. These were described in Section 3.4.

Alternatively. There are, of course, alternatives to PG samplers for conducting inference in the models described here. For instance, we could use SMC-based pseudo-marginal MH algorithms known as particle marginal Metropolis–Hastings (PMMH) algorithms (Andrieu et al., 2010) or pseudo-marginal SMC algorithms based around PMMH updates known as SMC-squared (Chopin et al., 2013).

By construction, these methods are robust to strong correlation of \(\Theta \) and \(\Psi \) under \(\pi \). However, these methods tend to require large numbers of particles. For instance, Chopin et al. (2013) report the need for around 500 to 3,000 particles for a moderately-long time series in the simplest version of the Lévy-driven stochastic volatility model discussed in Section 5.4. We have found such numbers of particles to be prohibitively high for implementations in high-level programming languages such as R (R Development Core Team, 2014) or Matlab (The MathWorks, Inc., 2015). With smaller numbers of particles, pseudo-marginal MH kernels are well known to suffer from the so called ‘stickiness’ problem, i.e. from long periods of high rejection rates.

5.3.2 Conditional SMC Kernel

In this subsection, we describe some of the details of the (conditional) SMC algorithms which are needed to deal with the specific class of models analysed here (and in the previous chapter).

Step Size. For \(I \in \mathbb{N} \) we let \(0 = t_0 < t_1 < \ldots < t_I = T \). Here, \((t_{i-1}, t_i] \) is the time window of the latent compound Poisson process targeted at the
5.3 Non-Centred Particle Gibbs Sampler

ith SMC step. That is, at the ith SMC step, we both assimilate observations and propose jumps in the interval $(t_{i-1}, t_i]$.

Without loss of generality and to simplify the presentation, we assume that $(t_i)_{i \in \mathbb{N}_I}$ is a subsequence of $((\tilde{t}_p))_{p \in \mathbb{N}_P}$. Note that the commonly-used strategy of assimilating one observation per SMC step corresponds to the special case $(t_i)_{i \in \mathbb{N}_I} = ((\tilde{t}_p))_{p \in \mathbb{N}_P}$.

If the weights do not deteriorate too quickly over SMC steps, i.e. if the effective sample size does not decrease too steeply after a single SMC step, it can be preferable to increase this step size to reduce the computational cost of the algorithm (Chopin, 2002).

Reparametrisation. For the CSMC kernel, we need to apply a further reparametrisation to ensure that the computational cost of performing a single step of BS or AS does not grow with T (on average). This can be achieved by parametrising the compound Poisson process not in terms of jump sizes but in terms of the values of the process at the jump times. The latter coincides with the representation used in the previous chapter.

Recall that the compound Poisson process is denoted $L = (L_t)_{t \in \mathbb{T}}$. We can apply another one-to-one reparametrisation of the form

$$(\Theta, \Psi) \longmapsto (\Theta, \hat{\Psi}_{1:T}), \quad (5.3)$$

where

$$\hat{\Psi}_i := (K_i, S_{i:1:K_i}, \tilde{L}_{i,1:K_i})$$

denotes the points (as well as their number) of the latent compound Poisson process whose first component (the jump time) falls in the interval $(t_{i-1}, t_i]$. These points are again ordered according to their first component, i.e. $t_{i-1} < S_{i,1} < \ldots < S_{i,K_i} \leq t_i$. The second components, $\tilde{L}_{i,1:K_i}$, no longer represent the actual jump sizes but are now taken to be the values of the compound Poisson process L at the jump times. That is, $\tilde{L}_{i,j} := L_{S_{i,j}}$, for any $j \in \mathbb{N}_{K_i}$. This is corresponds to the terminology ‘jump size’ used in the previous chapter.

With this reparametrisation, we may write the distribution targeted by the (conditional) SMC algorithm as $\pi^\theta(d\hat{\Psi}_{1:T}) \propto \gamma^\theta(d\hat{\Psi}_{1:T})$, where

$$\gamma^\theta(d\hat{\Psi}_{1:T}) := \prod_{i=1}^T \hat{\Pi}_i^\theta(d\hat{\Psi}_1 | \hat{\Psi}_{1:i-1}) S^\theta(y_{(t_{i-1}, t_i]} | \hat{\Psi}_{1:i}, y_{(t_0, t_{i-1}]})$$.
Here, $\hat{H}^\theta_i(d\hat{\psi}_i|\hat{\psi}_{1:i-1})$ denotes the conditional prior distribution of the points in the interval $(t_{i-1}, t_i]$, $\hat{\psi}_i$, and we again slightly abuse notation by writing $g^\theta(y_T|\psi_1:T) = g^\theta(y_T|\psi)$ if Ψ and $\hat{\Psi}$ are related as in Equation 5.3. Note that the observations taken in disjoint intervals are not necessarily assumed to be independent given the PPP and given Θ. Indeed, in the example considered in Section 5.4, we analytically integrate out a subset of the static parameters which means that the observations in disjoint intervals are no longer conditionally independent given the PPP and given the remaining parameters.

The SMC algorithm then targets $\pi^\theta(d\psi)$ using a sequence of intermediate distributions

$$\pi^\theta_i(d\hat{\psi}_{1:i}) \propto \gamma^\theta_i(d\psi_{1:i}),$$

where

$$\gamma^\theta_i(d\hat{\psi}_{1:i}) := \prod_{j=1}^i \hat{H}^\theta_j(d\hat{\psi}_j|\hat{\psi}_{1:j-1})g^\theta(y_{(t_{j-1}, t_j]}|\hat{\psi}_{1:j}, y_{(t_0, t_{j-1})}).$$

5.3.3 Full Algorithm

The full PG sampler is outlined in Algorithm 5.5. Note that the comments made in Remark 5.4 fully apply to this algorithm, too. That is, $\lambda = l(\Theta)$ only needs to be almost-surely bounded.

5.5 Algorithm (non-centred particle Gibbs).

1. **Update $\hat{\Psi}$ by**
 // using the CP

 (i) reparametrisation $(\Theta, \Psi) \rightarrow (\Theta, \hat{\Psi}_{1:1})$,

 (ii) updating $\hat{\Psi}$ using a CSMC kernel (with RS/AS, if possible),

 (iii) reparametrisation $(\Theta, \hat{\Psi}_{1:1}) \rightarrow (\Theta, \hat{\Psi})$,

 (iv) sampling $\hat{\Psi} \sim \tilde{\pi}(d\hat{\psi}|\theta, \psi) = \tilde{\pi}|_{\lambda(\theta, \lambda)}(d\hat{\psi})$.

2. **Update Θ using a $\tilde{\pi}(d\theta|\hat{\psi})$-invariant MCMC kernel.** // using the NCP
5.4 Application to Lévy-Driven Stochastic Volatility Models

5.4.1 Model Description

In this section, we apply the above-mentioned PG sampler to a Lévy-driven stochastic volatility model and compare the algorithm’s performance with that of a non-centred RJMCMC algorithm.

Inference for the particular model considered here, which was introduced by Barndorff-Nielsen and Shephard (2001), has previously been performed via (non-SMC based) MCMC methods (Roberts et al., 2004, Griffin & Steel, 2006), particle MCMC methods (Andrieu et al., 2010) and via hierarchical (or pseudo-marginal) SMC samplers (Chopin et al., 2013).

Log-Asset Price Process. Under the model, the log-price of some asset evolves according to the stochastic differential equation

\[
\begin{align*}
\mathrm{d}X_t &= \left[\mu + \sum_{m=1}^{M} \beta^m \sqrt{V^m_t} \right] \mathrm{d}t + \sqrt{V_t} \mathcal{d}B_t + \sum_{m=1}^{M} \rho^m \mathcal{d}L^m_t.
\end{align*}
\]

(5.4)

Here, \(B := (B_t)_{t \geq 0} \) denotes standard Brownian motion, \(L^m := (L^m_t)_{t \geq 0} \), for \(m \in \mathbb{N}_M \), are independent Lévy processes, and \(L^m := (\tilde{L}^m_t)_{t \geq 0} \), with \(\tilde{L}^m_t := L^m_t - \mathbb{E}[L^m_t] \), represents the compensated process associated with \(L^m \). In addition, \(\beta^m, \rho^m \in \mathbb{R} \) are the risk-premium and linear-leverage parameters for the \(m \)th component process.

Latent Volatility Process. The (instantaneous) volatility process, denoted \(V := (V_t)_{t \geq 0} \), is given by

\[
V_t := \sum_{m=1}^{M} V^m_t,
\]

where the components \(V^1, \ldots, V^M \) are independent processes satisfying the Ornstein–Uhlenbeck stochastic differential equation

\[
\mathrm{d}V^m_t = -\kappa^m V^m_t \mathrm{d}t + \mathrm{d}L^m_t.
\]

Here, \(\kappa^m > 0 \) denotes the decay rate of the \(m \)th component-volatility process. As in Roberts et al. (2004), Griffin and Steel (2006) we assume,
for simplicity, that the marginally, V_m^t is gamma-distributed. This implies that L_m^t reduces to a compound Poisson process with some rate $\lambda^m > 0$ and exponential jump-size distribution with rate $\zeta > 0$, written Exp_ζ.

The stochastic differential equation admits the closed-form solution

$$V_m^t = V_m^0 \exp(-\lambda^m t) + \sum_{k=1}^{K_m} E_k^m \exp(-\lambda^m (t - S_k^m)) 1_{[0,t]}(S_k^m),$$

where $(K_m, S_k^m, L_k^m, E_k^m)$ is the number of jumps, the jump times and the jump sizes associated with the compound Poisson process driving the mth component-volatility process.

Observed Aggregate Log-Returns. Let Y_p denote the pth observation, i.e. the aggregate log-return over the time interval $(t_{p-1}, t_p]$. By the properties of Brownian motion, Equation (5.4) implies that conditional on the component processes up to time t_p, the pth aggregate log-return Y_p is distributed according to a normal distribution with mean $m(\mathbf{i}_{p-1}, t_p)$ and variance $V^*(t_{p-1}, t_p)$, which are defined by

$$m(\mathbf{s}, t) := (t - \mathbf{s}) \mu + \sum_{m=1}^M \beta^m V^m_{(s,t)} + \rho^m \overline{L}^m_{(s,t)},$$

$$V^*(\mathbf{s}, t) := \sum_{m=1}^M V^m_{(\mathbf{s}, t)} + \sum_{m=1}^M \int_0^t \overline{L}^m_s \frac{dW^m_s}{\sqrt{m}},$$

where $V^m_{(\mathbf{s}, t)} := V^m_{[\mathbf{s}, t]} - V^m_{[\mathbf{s}, \mathbf{s}]}$ and $\overline{L}^m_{(\mathbf{s}, t)} := L^m_{(\mathbf{s}, t)} - L^m_{(\mathbf{s}, \mathbf{s})}$, and with

$$V^m_{[\mathbf{s}, t]} := \int_0^t dV^m_s = \frac{1}{\lambda^m} \left(L^m_t + V^m_0 - V^m_t \right),$$

$$\overline{L}^m_{[\mathbf{s}, t]} := \int_0^t d\overline{L}^m_s = \int_0^t dL^m_s - \mathbb{E}[L^m_t] = L^m_t - \frac{t \lambda^m}{\zeta}.$$
5.4 Application to Lévy-Driven Stochastic Volatility Models

- $\Delta_k^m := \kappa^m - \sum_{l=1}^{m-1} \kappa^l$ is the difference between the decay rates in the mth and $(m - 1)$th component volatility processes, V_m^m and V_{m-1}^m.
- $w^m := \varepsilon^m / \varepsilon$ is a weight which governs the influence of the mth component volatility process, V_m^m, on the overall volatility process, V.
- $\xi := \varepsilon / \zeta$ and $\omega^2 := \varepsilon / \zeta^2$ represent the stationary mean and variance of the overall volatility process, V.

Let $\Gamma_{\alpha, \beta}$ be the gamma distribution with shape parameter α and scale parameter β. If we assume that $V_0^m \sim \Gamma_{w^m \xi / \omega^2, \omega^2 / \xi}$, then the latter distribution is the marginal distribution of V_t^m, $t \geq 0$, and hence the stationary distribution of the process V_m. This implies that $E[V_t^m] = w^m \xi$ and $\mathbb{V}[V_t^m] = w^m \omega^2$, for any $t \geq 0$. For the same reason, $V_t \sim \Gamma_{w \xi / \omega^2, \omega^2 / \xi}$ and hence $E[V_t] = \xi$ as well as $\mathbb{V}[V_t] = \omega^2$, for any $t \geq 0$.

As in Griffin and Steel (2006), we use a weakly informative prior on the static parameters, $(\Theta, \tilde{\Theta})$, where

$$
\Theta := (\Delta_1^1 : M, w_1^1 : M, \xi, \xi^{-1}),
$$

$$
\tilde{\Theta} := (\mu, \beta_1^1 : M, \rho_1^1 : M).
$$

A-priori, all parameters except $w_1^1 : M$ are independent. The differences in the component-specific decay-rate parameters are given the prior $\Delta_1^1 : M \sim \Gamma_{1, 1}$. This choice of priors imposes the identifiability constraint $\kappa^{m+1} > \kappa^m$ on the component processes to circumvent the so-called label-switching problem. In addition, $w_1^1 : M \sim \text{Dir}_1$, where Dir_α denotes the Dirichlet distribution with parameter vector α and $\mathbf{1}_m$ denotes a vector of ones of length m. Finally, a-priori, $\xi, \xi^{-1} \sim \Gamma_{2, 5}$.

The parameters of the observation equation (Equation 5.4) are given normal priors, i.e., a-priori, we have $\tilde{\Theta} \sim N_{\mu_0, \tilde{\Sigma}_0}$, where $\mu_0 := 0_{1, M+1}$ and where $\tilde{\Sigma}_0 := \text{diag}(100\mathbf{1}_{M+1})$. The parameters in $\tilde{\Theta}$ can then be integrated out and need not be sampled in the MCMC algorithm.

5.4.3 Algorithm Details

Particle Weight Updates. In this subsection, we derive the incremental importance weights and the BSAS weights for the Lévy-driven stochastic volatility model.
To simplify the notation, we write the mth integrated component volatility process and mth integrated compensated driving compound Poisson process as

$$V_{m}^{\cdot \cdot}, \bar{V}_{m}^{\cdot \cdot} := V_{(i_{p-1}, i_{p})}^{\cdot \cdot}, \bar{V}_{(i_{p-1}, i_{p})}^{\cdot \cdot}.$$

Furthermore, letting A^{T} denotes the transpose of some matrix A, we write

$$Z_{p} := (\tilde{t}_{p} - \tilde{t}_{p-1}, V_{1}^{\cdot \cdot}, \ldots, V_{M}^{\cdot \cdot}, \bar{L}_{1}^{\cdot \cdot}, \ldots, \bar{L}_{M}^{\cdot \cdot})^{T}.$$

Recall that $\tilde{\Theta} = (\mu, \beta^{1:M}, \rho^{1:M})$ are those static parameters that we want to integrate out while Θ denotes the remaining static parameters. Let i_{r} be the index such that $t_{i_{r}} = \tilde{t}_{r}$, and let $\tilde{\Theta}(d\tilde{\theta})$ denote the marginal prior distribution of $\tilde{\Theta}$. Letting

$$\mu_{p}(\tilde{\theta}) := Z_{p}^{T} \tilde{\theta},$$

$$\Sigma_{p} := \sum_{m=1}^{M} V_{m}^{\cdot \cdot},$$

denote the mean and variance of the pth observation (conditional on the volatility processes and conditional on the static parameters $\Theta, \tilde{\Theta}$), the incremental particle weights at the i_{r}th SMC step are then given by

$$g^{\tilde{\theta}}(y_{q:r}|\psi_{i_{r}}^{1:M}, y_{1:q-1})$$

$$= \int_{\tilde{\Theta}} \left[\prod_{p=q}^{r} N_{\mu_{p}(\tilde{\theta}), \Sigma_{p}}(y_{p}) \right] N_{\tilde{\mu}_{q-1}, \tilde{\Sigma}_{q-1}}(d\tilde{\theta})$$

$$\propto \left[\frac{\det(\tilde{\Sigma}_{q-1})}{\det(\tilde{\Sigma}_{r})} \prod_{p=q}^{r} \Sigma_{p} \right]^{-1/2}$$

$$\times \exp \left(-\frac{1}{2} \left[\sum_{p=q}^{r} \frac{y_{p}^{2}}{\Sigma_{p}} - \tilde{\mu}_{r}^{T} \tilde{\Sigma}_{r}^{-1} \tilde{\mu}_{r} + \tilde{\mu}_{q-1}^{T} \tilde{\Sigma}_{q-1}^{-1} \tilde{\mu}_{q-1} \right] \right).$$

Here, $\tilde{\mu}_{0}$ and $\tilde{\Sigma}_{0}$ are mean and variance of the Gaussian prior on $\tilde{\Theta}$. Furthermore, we define

$$\tilde{\Sigma}_{r} := \left[\sum_{p=q}^{r} \frac{Z_{p}Z_{p}^{T}}{\Sigma_{p}} + \tilde{\Sigma}_{q-1}^{-1} \right]^{-1} = \left[\sum_{p=1}^{r} \frac{Z_{p}Z_{p}^{T}}{\Sigma_{p}} + \tilde{\Sigma}_{0}^{-1} \right]^{-1}.$$
and

\[
\tilde{\mu}_r := \tilde{\Sigma}_r \left[\sum_{p=q}^{r} \frac{Z_p y_p}{\Sigma_p} + \tilde{\Sigma}_{q-1}^{-1} \tilde{\mu}_{q-1} \right]
\]

\[
= \tilde{\Sigma}_r \left[\sum_{p=1}^{r} \frac{Z_p y_p}{\Sigma_p} + \tilde{\Sigma}_0^{-1} \tilde{\mu}_0 \right].
\]

Backward and Ancestor Sampling Weights. Using the notation from above, the SMC weights at the \(i_r\)th step are given by the product of the above-mentioned particle weight at Step \(i_r\) multiplied by

\[
g^\theta(y_{1:r} | \hat{\psi}^{1:M}_{1:r})
\]

\[
\times \frac{\det(\tilde{\Sigma}_r)}{\det(\tilde{\Sigma}_P)} \left(\prod_{p=r+1}^{l_r} \Sigma_p \right)^{-1/2}
\]

\[
\times \exp \left(-\frac{1}{2} \left[\sum_{p=r+1}^{l_r} \frac{y_p^2}{\Sigma_p} - \tilde{\mu}_P^T \tilde{\Sigma}_P^{-1} \tilde{\mu}_P + \tilde{\mu}_r^T \tilde{\Sigma}_r^{-1} \tilde{\mu}_r \right] \right).
\]

where

\[
l_r^m := \min \{ p \in \mathbb{N}_P \mid \hat{\psi}^m_{i_r+1:I} \text{ has a jump in the interval } (\tilde{t}_r, \tilde{t}_p) \},
\]

\[
l_r := \max \{ l_r^m \mid m \in \mathbb{N}_M \}.
\]

We note that while \(\tilde{\mu}_P\) and \(\tilde{\Sigma}_P\) depend on the entire ‘future’ of the latent volatility processes, i.e. on \(\hat{\psi}^m_{i_r+1:I} , V^m_{p,*} \) and \(I^m_{p,*}\) are identical for all particles if \(p > l_r^m + 1\) and so the latter quantities need only be calculated once per MCMC iteration. To reduce the computation time, we only perform SMC at the \(i\)th step if the algorithm also resamples at that step. Recall that such adaptive BS or AS schemes are justified via an appropriate choice of the function \(Q_t\) in Section 3.4.

5.4.4 Simulation Study

One-Component Model. In this section, we first present a simulation study for a one-component Lévy-driven stochastic volatility model (i.e.
with $M = 1$) based on 500 synthetic observations. The parameters used for generating the data were $\mu = 0$, $\beta = 0.05$, $\rho = -1/2$, $\xi = 1$, and $\zeta = 0.5$. The initial values for the static parameters (except for those that are integrated out) were sampled from the prior distribution. For each algorithm, the initial points of the PPP were generated by an SMC algorithm.

Both algorithms used 100 Gaussian random-walk MH updates per iteration with standard deviations $(0.1, 0.25, 0.05)$ for the (log-transformed) components ($\log \kappa$, $\log \xi$, $\log \xi^{-1}$). The NCP was only used with probability 0.5. Otherwise, the CP was used. Such strategies for ‘interweaving’ NCPs and CPs have been studied in Yu and Meng (2011).

The algorithms differ only in the way that the points of the PPP were updated in each MCMC iteration. The first algorithm – the non-centred PG sampler – used a CSMC kernel with $N = 25$, $N = 50$ and $N = 100$ particles and ancestor sampling for this task. The particles where proposed from the prior; this type of ‘bootstrap particle filter’ was termed variable-rate particle filter in Godsill and Vermaak (2004). Resampling took place whenever the effective sample size dropped below $N/2$. The CSMC step size was set to $t_i - t_{i-1} = 5$. On average, a single CSMC run took around 2 seconds.

The second algorithm updated the points of the PPP using 400 RJMCMC moves per iteration. These can be (a) an update of the initial value V_0, (b) a birth move, adding a new jump uniformly at random in T and sampling the associated jump size from the prior, (c) a death move randomly deleting a jump, (d) a move for adjusting a randomly chosen jump time by sampling a new location uniformly at random between the previous and the next jump time, (e) a move for adjusting a randomly chosen jump size by sampling a new value from the prior. The probabilities for selecting one of the Moves a to e were $(0.05, 0.25, 0.25, 0.225, 0.225)$ if the PPP contained at least one jump and $(0.05, 0.95, 0, 0, 0)$, otherwise. On average, 400 such RJMCMC moves took around 2 seconds.

The algorithms were implemented in Matlab (The MathWorks, Inc., 2015) and run on a single core of an Intel®Core™i7-5820 CPU. Performance of the SMC algorithm in Matlab is rather poor compared to SMC algorithms for state-space models, for instance. This is because at each iteration, different particles comprise different numbers of jumps which hinders vectorisation. Alternative SMC algorithms, such as those de-
5.4 Application to Lévy-Driven Stochastic Volatility Models

Developed in Whiteley et al. (2013), which were also improved in Chapter 4 of this work, would be more amenable to vectorisation and parallelisation (at the cost of introducing a bias).

Marginal kernel density estimates and sample autocorrelations based on 100,000 iterations (of which the first 5,000 have been discarded as burn-in) are displayed in Figures 5.1 and 5.2 respectively. Both algorithms yield comparable results. The PG sampler also exhibits a slightly lower sample autocorrelation.

Two-Component Model. We conclude this section by applying the non-centred PG sampler to a two-component Lévy-driven stochastic volatility model and again compare its performance to that of a RJMCMC-based algorithm.

Both algorithms are designed as in the one-component model except that the SMC algorithm now uses the step size $t_i - t_{i-1} = 2$ and employs $N = 50$ particles while the RJMCMC-based scheme attempts 500 updates of the PPP per iteration. Furthermore, both algorithms now attempt 200 static-parameter updates per iteration. These are again Gaussian random-walk MH kernels each updating one of the blocks $\log \kappa^{1:2}$, w^1 or ($\log \xi$, $\log \xi^{-1}$). The MH proposal kernels are parametrised through the diagonal covariance matrices $\text{diag}([0.25, 1])$, 0.01, and $\text{diag}([0.25, 0.25])$. Here $\text{diag}(v)$ denotes a diagonal matrix which has a vector v as its diagonal.

We study two different settings. In both, we assume that the risk premium $\beta := \beta^1 = \beta^2$ is the same for both component processes. In the first setting, we additionally assume that the leverage parameters $\rho^{1:2}$ are known (and equal to 0). Studying models with such a slightly reduced number of parameters was motivated by the fact that we observed poor mixing of both algorithms unless extremely large number of observations (around 2000) were used.

For shorter time series, this poor mixing seems to be due to the fact that some of the static parameters are only weakly identifiable. In particular, as shown in Figure 5.3, the marginal posterior distribution of the static parameters is bimodal and these modes correspond to the component weights $w^{1:2} = (1, 0)$ or $w^{1:2} = (0, 1)$. This leads to the particularly high autocorrelation of the MCMC chain in this component as shown in Figure 5.4.
Figure 5.1 Estimated marginal posterior densities of the static parameters in the one-component Lévy-driven stochastic volatility model. Based on 500 observations taken every $\bar{t}_p - \bar{t}_{p-1} = 1$ time units and generated using true parameter values $(\xi, \zeta, \mu, \beta, \rho) = (1, 0.5, 0, 0.05, -0.5)$. Top row: $\kappa = 0.02$. Middle row: $\kappa = 0.1$. Bottom row: $\kappa = 0.2$. The estimates are obtained from 100,000 iterations of the non-centred particle Gibbs sampler with 25 particles (dotted line), 50 particles (dash-dotted line), and 100 particles (solid line), as well as from a non-centred RJMCMC algorithm with 400 attempted updates of the latent process in between static-parameter updates (dashed line). Vertical lines represent the true parameter values.
Figure 5.2 Autocorrelation of the static-parameter estimates in the one-component Lévy-driven stochastic volatility model. Based on 500 observations taken every $\tilde{t}_p - \tilde{t}_{p-1} = 1$ time units and generated using true parameter values $(\xi, \zeta, \mu, \beta, \rho) = (1, 0.5, 0, 0.05, -0.5)$. Top row: $\kappa = 0.02$. Middle row: $\kappa = 0.1$. Bottom row: $\kappa = 0.2$. The estimates are obtained from 100,000 iterations of the non-centred sampler with 25 particles (dotted line), 50 particles (dash-dotted line), and 100 particles (solid line), as well as from a non-centred algorithm with 400 attempted updates of the latent process in between static-parameter updates (dashed line).
Since $\lambda^m = w^m k^m / \sum_{n=1}^{M} \lambda^n / k^n$ these modes essentially imply no jumps in the second or first component process, respectively. This is a particular concern in the context of PG samplers because having fewer jumps increases the cost of computing the AS weights (as these then depend on the behaviour of the process much further into the future). To reduce the computational cost, we switch to RJMCMC updates whenever the total number of jumps in one of the component processes falls below 5. Nonetheless, we stress that these identifiability issues are not an artefact of our algorithm. Rather, they appear to be inherent in this class of models and, to our knowledge, they have not yet been pointed out in the literature.

5.5 Summary

Performance. In this chapter, we have combined particle Gibbs samplers with sophisticated NCPS to perform static-parameter estimation in statistical models based around compound Poisson processes. We have also applied our algorithm to a Lévy-driven stochastic volatility model. Some-what surprisingly, in this model, the PG sampler does not appear significantly more efficient than a large number of single-site updates as part of a more conventional MCMC kernel composed of RJMCMC updates. In addition, these models appears to be overparametrised unless a particularly large number of observations is available. To our knowledge, this has not been pointed out in the literature. A more formal analysis of these identifiability issues is left for future research.

Extensions. The approach presented in this chapter can be extended to more general settings. As noted in Roberts et al. (2004), an extension to a time-dependent rate parameter $\lambda_t = l(t, \theta)$ is straightforward but notationally cumbersome. The extension to non-continuous mark distributions on ν^θ is also straightforward as long as the generalised inverse of the CDF can be evaluated point-wise. For d-dimensional mark distributions the reparametrisation proceeds as above but takes \tilde{F}_θ to be the inverse CDF of a one-dimensional marginal distribution of ν^θ. The remaining mark components can then be generated one-at-a-time by inversion sampling from the inverse CDF of the relevant conditional distribution. This is sometimes called the Rosenblatt transformation.
Figure 5.3 Estimated marginal posterior densities of the static parameters in two-component Lévy-driven stochastic volatility models. Based on 500 observations taken every \(t_p - t_{p-1} = 1 \) time units and generated using true parameter values \((\kappa^{1:2}, w^{1:2}, \xi, \zeta, \mu) = (0.05, 0.5, 0.7, 0.3, 2, 0.7, 0)\). Top row: simplified model with \(\beta := \beta^1 = \beta^2 \) and assuming that \(\rho^1 = \rho^2 = 0 \) is known. Bottom row: simplified model with \(\beta := \beta^1 = \beta^2 \) but now with the true parameters \(\rho^{1:2} = (-0.5, -0.5) \) assumed to be unknown. The estimates are obtained from 100,000 iterations of the non-centred [PG] sampler with 50 particles (solid line) and from a non-centred [RJCMC] algorithm with 500 attempted updates of the latent process in between static-parameter updates (dashed line). Vertical lines represent the true parameter values.
Figure 5.4 Autocorrelation of the static-parameter estimates in two-component Lévy-driven stochastic volatility models. Based on 500 observations taken every \(t_p - t_{p-1} = 1 \) time units and generated using true parameter values \((\kappa^{1:2}, w^{1:2}, \xi, \zeta, \mu) = (0.05, 0.5, 0.7, 0.3, 2, 0.7, 0)\). Top row: simplified model with \(\beta := \beta^1 = \beta^2 \) and assuming that \(\rho^1 = \rho^2 = 0 \) is known. Bottom row: simplified model with \(\beta := \beta^1 = \beta^2 \) but now with the true parameters \(\rho^{1:2} = (-0.5, -0.5) \) assumed to be unknown. The estimates are obtained from 100,000 iterations of the non-centred \(\text{PG} \) sampler with 50 particles (solid line) and from a non-centred \(\text{RJMCMC} \) algorithm with 500 attempted updates of the latent process in between static-parameter updates (dashed line).
6 Pseudo-Marginal Monte Carlo Optimisation

6.1 Introduction

6.1.1 Motivation

In this chapter, we perform optimisation such as (marginal) maximum likelihood or maximum a-posteriori estimation in latent variable models. To that end, we present a flexible framework for combining the basic idea of the state augmentation for marginal estimation algorithm from Doucet, Godsill and Robert (2002), outlined in Section 6.2, with state-of-the-art Markov chain Monte Carlo kernels, such as pseudo-marginal Metropolis–Hastings (Subsection 6.3.2) or particle Gibbs kernels (Subsection 6.3.3). These ideas are also incorporated into population-based approaches in the form of sequential Monte Carlo samplers, as explained in Subsection 6.3.3. Finally, in Section 6.4, we demonstrate the effectiveness of our methods by performing maximum likelihood estimation in a number of challenging models.

Let Θ be some non-empty set, e.g. some subset of \mathbb{R}^d. In this chapter, we assume that we want to maximise some function $h: \Theta \to \mathbb{R}$, i.e. we assume that we want to find the set of (equivalent) global maxima $\Theta_h := \{ \theta' \in \Theta : \forall \theta \in \Theta : h(\theta') \geq h(\theta) \}$, or at least a subset thereof, assuming that Θ_h is well defined and in particular, assuming that the cardinality of Θ_h, $\#\Theta_h$, is finite.

As usual, minimising some function \hat{h} can be treated as a maximisation problem by considering the function $h := -\hat{h}$, instead.
6 Pseudo-Marginal Monte Carlo Optimisation

6.1 Example (ML/MAP estimation). Given some data, let \(L(\theta) \) denote the (marginal) likelihood of a parameter \(\theta \in \Theta \) under some statistical model. In the Bayesian paradigm, let \(\pi \in \mathcal{M}(\Theta) \) be a prior distribution with density \(\tilde{p} \) with respect to a suitable dominating measure, \(\mu \). Thus,

1. if \(h(\theta) := L(\theta) \), then \(\Theta_h \) is the **maximum likelihood (ML)** estimate;
2. if \(h(\theta) := L(\theta) \tilde{p}(\theta) \), then \(\Theta_h \) is the **(marginal) maximum a-posteriori (MAP)** estimate under the chosen parametrisation, determined by the decomposition of the prior distribution into the pair \((\mu, \tilde{p}) \).

Numerical Optimisation. For a sufficiently complicated objective function \(h \), \(\Theta_h \) cannot be found analytically and is usually approximated numerically. Unfortunately, numerical methods are not always reliable. They require strong regularity conditions on \(h \) and \(\Theta \) which are often difficult to verify. In practice, they are prone to get stuck in local maxima.

Monte Carlo Optimisation. For complicated optimisation problems – in particular, in the presence of multi-modality – approaches based around the Monte Carlo method can be more robust than (gradient-based) numerical methods. This robustness often justifies the usually higher computational cost associated with the former.

Let \(Z_p \) be a potentially large collection of auxiliary variables taking values in \(Z_p \). The idea of Monte Carlo optimisation is to define a sequence of finite measures \((\gamma_p)_{p \in \mathbb{N}} \), with \(\gamma_p \in \mathcal{M}(\Theta \times Z_p) \) such that the relevant marginal of \(\gamma_p \) becomes increasingly concentrated around the points in \(\Theta_h \). That is, for any \(A \in \mathcal{B}(\Theta) \), the probability measures \(\pi_p \propto \gamma_p \) satisfy

\[
\pi_p(A \times Z_p) \xrightarrow{p \to \infty} \sum_{\theta \in \Theta_h} w_h(\theta) \delta_\theta(A),
\]

where \(w_h : \Theta_h \to (0, 1] \) is a weighting function with \(\sum_{\theta \in \Theta_h} w_h(\theta) = 1 \).

We then use Monte Carlo algorithms to sample approximately from \(\pi_p \). For sufficiently small \(p \), the distribution \(\pi_p \) should be dispersed enough to allow Markov chain Monte Carlo (MCMC) algorithms or sequential Monte Carlo (SMC) samplers to traverse the state space and explore different modes. For sufficiently large \(p \), the samples should be concentrated around one point in \(\Theta_h \) when using MCMC methods or around (some of) the points in \(\Theta_h \) when using SMC or other population-based methods.
6.1 Introduction

6.1.2 Contribution

Throughout this chapter, we consider different instances of the generic measures γ_p all of which are chosen to concentrate around Θ_h as $p \to \infty$. These measures are generically represented as

$$\gamma_p(d\theta \times dz_p) := \mu(d\theta) M_p(\theta, dz_p) H_p(\theta, z_p).$$ \hspace{1cm} (6.2)

Here, $\mu \in \mathcal{M}_\sigma(\Theta)$ is some σ-finite measure on Θ which does not vanish in a neighbourhood of the points in Θ_h. Furthermore,

$$M_p \in \mathcal{K}_\sigma(\Theta, Z_p)$$

is a suitable σ-finite kernel and

$$H_p : \Theta \times Z_p \to [0, \infty)$$

is a suitable non-negative measurable function. All of these quantities will be specified such that Equation 6.1 holds.

Furthermore, we define an annealing schedule $(\beta_p)_{p \in \mathbb{N}}$. The values $\beta_p \in [0, \infty)$ are commonly interpreted as inverse temperatures. They are chosen to satisfy $\beta_p \leq \beta_{p+1}$, for $p \in \mathbb{N}$ and $\beta_p \to \infty$, as $p \to \infty$. This annealing schedule will be used to parametrise M_p and H_p in order to specify the speed at which the measures γ_p concentrate around Θ_h.

The remainder of this work discusses various ways of selecting suitable components M_p and H_p and devising efficient SMC algorithms to approximate the measures $(\gamma_p)_{p \in \mathbb{N}}$ and MCMC algorithms to (approximately) sample from their self-normalised versions $(\pi_p)_{p \in \mathbb{N}}$. A particular focus is on situations in which (suitable maximum-preserving transformations of) h cannot be evaluated point-wise. Our contributions are as follows.

1. We construct a generic framework for pseudo-marginal MCMC-based optimisation algorithms. We also combine existing optimisation schemes with modern, sophisticated multiple-proposal kernels such as (iterated) conditional sequential Monte Carlo (CSMC) kernels.

2. We incorporate both ideas into population-based approaches known as SMC samplers.

3. We verify these methods on a number of tractable toy examples and further demonstrate their effectiveness on challenging problems.
6.2 Background

6.2.1 Simulated Annealing

Assume that \(h \) can be evaluated point-wise. In classical simulated annealing (SA) (Kirkpatrick, Gelatt & Vecchi, 1983), the target measures \(\gamma_p^{\text{SA}} \in \mathcal{M}(\Theta \times \mathbb{Z}_p) \) are defined according to Equation 6.2 with \(\mathbb{Z}_p \equiv \emptyset \), \(H_p(\theta) = \exp(\beta_p h(\theta)) \). That is, the target measures of SA are defined by

\[
\gamma_p^{\text{SA}}(d\theta) := \exp(\beta_p h(\theta))\mu(d\theta).
\]

In the particular case that \(\mu = \text{Leb}^d \) is the Lebesgue measure on \(\Theta = \mathbb{R}^d \), \(h \) is three times continuously differentiable, and under further technical conditions on \(\Theta_h \), Hwang (1980) showed that this family of distributions concentrates around \(\Theta_h \) as formalised in Equation 6.1. The idea is then to approximate the distributions \((\pi_p^{\text{SA}})_{p \in \mathbb{N}} \), where \(\pi_p^{\text{SA}} \propto \gamma_p^{\text{SA}} \), using an inhomogeneous MCMC algorithm, i.e. using an MCMC chain whose target distribution changes over iterations. Under strong regularity conditions, converge of SA was established in Hajek (1988), Winkler (2003), Andrieu, Breyer and Doucet (2004).

Finally, Rubenthaler, Rydén and Wiktorsson (2009) studied improvements upon the annealing schedule and target measures in SA.

6.2.2 State Augmentation for Marginal Estimation

Motivation. Algorithms such as SA require point-wise evaluations of (maximum-preserving transformations of) \(h \). The rest of this work is concerned with situations in which such evaluations are impossible (to do efficiently) but in which we can find some space \(\mathbb{Z}_p \), some finite kernel \(M_p \), and some measurable function \(H_p \) (which we can evaluate) such that the measures \(\gamma_p \) satisfy Equation 6.1.

More specifically, we assume that there exists a measurable function \(H : \Theta \times X \to [0, \infty) \) and a stochastic kernel \(M \in \mathcal{K}_1(\Theta \times X) \) such that

\[
\gamma(\theta, d\mathbb{X}) := H(\theta, x)M(\theta, d\mathbb{X})
\]

defines a finite kernel and such that – recalling that \(1 \) is the unit function on an appropriate domain – the maxima of the integral

\[
\gamma(\theta, 1) := \int_X \gamma(\theta, d\mathbb{X}). \tag{6.3}
\]
6.2 Background

coincide with the maxima of \(h \), i.e.

\[
\Theta_h = \{ \theta' \in \Theta \mid \forall \theta \in \Theta : \gamma(\theta', 1) \geq \gamma(\theta, 1) \},
\]

(6.4)

For later use, we define the stochastic kernel \(\Pi_\beta \) by

\[
\Pi_\beta(\theta, dx) := \frac{H(\theta, x)^\beta M(\theta, dx)}{\int_X H(\theta, x)^\beta M(\theta, dx)}.
\]

(6.5)

6.2 Example (ML/MAP estimation, continued). Many statistical models are specified through an additional set of latent variables \(X \) taking values in some set \(X \). Under such a model, conditional on some \(\theta \in \Theta \), \(X \) is distributed according to \(M(\theta, \cdot) \). Let \(G(\theta, x) \) denote the completed likelihood, i.e. the likelihood of some observed data given the parameters and latent variables, \((\theta, x)\). Unfortunately, the marginal likelihood

\[
L(\theta) = \int_X G(\theta, x)M(\theta, dx)
\]

is often intractable. To still perform optimisation in this setting, we can take

1. \(H(\theta, x) := G(\theta, x) \) for the purpose of marginal ML estimation,
2. \(H(\theta, x) := G(\theta, x)\tilde{p}(\theta) \) for the purpose of marginal MAP estimation.

A [MCMC] algorithm for performing optimisation in such problems called state augmentation for marginal estimation (SAME) was introduced in an MCMC context by Doucet et al. (2002) (see also Gaetan & Yao, 2003; Jacquier, Johannes & Polson, 2007). Here, we describe the slightly more general construction developed by Johansen et al. (2008) which allows for non-integer inverse temperatures \(\beta_p \). Again, \((\beta_p)_{p \in \mathbb{N}}\) is a sequence in \([0, \infty)\) such that \(\beta_p \uparrow \infty \).

Extended Target Measure. At the \(p \)th iteration, the SAME algorithm augments the space with \([\beta_p]\) replicas of the random variable \(X = X_p \), i.e. \(Z_p := X^{1: [\beta_p]} \). The extended target distributions \(\pi_p^{\text{SAME}} \propto \gamma_p^{\text{SAME}} \) on \(\Theta \times Z_p \) with \(Z_p := X^{[\beta_p]} \), are then defined by letting \(\gamma_p^{\text{SAME}} \) be given by Equation with

\[
M_p(\theta, dz_p) := \prod_{i=1}^{[\beta_p]} M(\theta, dx_p^i),
\]
6 Pseudo-Marginal Monte Carlo Optimisation

and with

\[H_p(\theta, z_p) := H(\theta, x_\beta z_p) \prod_{i=1}^{\beta_p} H(\theta, x_i), \]

where \(\beta^d := \beta - \lfloor \beta \rfloor \). Whenever \(\beta_p \in \mathbb{N} \),

\[\int_{A \times z_p} \gamma_p^{\text{same}}(d\theta \times dz_p) = \int_A \gamma(\theta, 1)^{\beta_p} \mu(d\theta), \]

so that under suitable regularity conditions, by Equation 6.4, the \(\theta \)-
marginal of \(\pi_p^{\text{same}} \) concentrates around \(\Theta_h \) as \(p \to \infty \).

Algorithm. The \textbf{same} algorithm is usually implemented as an inhomogeneous Gibbs sampler or inhomogeneous Metropolis-within-Gibbs algorithm as summarised in Algorithm 6.3. Therein, \(Q_p \) denotes some \textbf{mcmc} kernel which is invariant with respect to the full conditional distribution of \(\Theta \) under \(\pi_p^{\text{same}} \) and \(R_p \) is an \textbf{mcmc} kernel targeting

\[
\begin{cases}
\Pi^\Theta_{\beta} (\theta, \cdot), & \text{if } \beta_p \in \mathbb{N}, \\
\Pi^\Theta_{\beta} \otimes \Pi^\beta_{\beta_p} (\theta, \cdot), & \text{otherwise},
\end{cases}
\]

where \(\Pi^\beta \) was defined in Equation 6.5. Furthermore,

\[S_p \in \mathcal{K}_1(\Theta \times X^{[\beta_{p-1}], X^{[\beta_p]-[\beta_{p-1}]}}, \]

is some suitable proposal kernel for augmenting the space with additional latent variables \(X^{[\beta_{p-1}]+1:[\beta_p]} \), whenever \(\lfloor \beta_p \rfloor > \lfloor \beta_{p-1} \rfloor \). To simplify the notation, we write the thus augmented vector of latent variables as

\[\tilde{Z}_{p-1} := X^{[\beta_p]} = (Z_{p-1}, X^{[\beta_{p-1}]+1:[\beta_p]}). \]

This random vector takes values in the set \(\tilde{Z}_{p-1} := X^{[\beta_p]} \).

6.3 Algorithm \textbf{same}.

At the \(n \)th iteration,

1. if \(\lfloor \beta_n \rfloor \geq \lfloor \beta_{n-1} \rfloor \), sample \(X^{[\beta_{n-1}]+1:[\beta_n]} \sim S_n((\theta_{n-1}, z_{n-1}), \cdot) \),
2. sample \(Z_n = X^{[\beta_n]} \sim R_n((\theta_{n-1}, \tilde{z}_{n-1}), \cdot) \),
3. sample \(\Theta_n \sim Q_n((\theta_{n-1}, z_n), \cdot) \).
Potential Drawbacks. Usually, the \textsc{same} algorithm is implemented as an inhomogeneous Gibbs sampler or Metropolis-within-Gibbs algorithm. This can lead to poor mixing of the MCMC chain for two reasons.

1. It is often impossible to update $X_1^1:\beta^1_p$ using a Gibbs step and devising another efficient form for the MCMC kernel R_p can be difficult, especially if X is high-dimensional.

2. If Θ and Z_p are highly correlated under π_p^{same}, then component-wise updates are known to be inefficient.

To alleviate the first potential drawback, we propose to combine the \textsc{same} approach with sophisticated multiple-proposal MCMC kernels such as (iterated) CSMC kernels (Andrieu et al., 2010; Whiteley, 2010). This is described in the next section. To alleviate the second potential drawback, we also present a sequence of further extended distributions. This permits the combination of the \textsc{same} approach with pseudo-marginal MCMC kernels (Beaumont, 2003; Andrieu & Roberts, 2009).

6.2.3 Optimisation Using SMC Samplers

Even if the objective function h (and also $\gamma(\cdot, 1)$) is unimodal, the introduction of the latent variables $X_1^1:\beta^1_p$ often leads to an extended measure γ_p^{same} with varying degrees of multimodality. This can hamper mixing of the inhomogeneous MCMC algorithms targeting the distributions π_p^{same}. Furthermore, if Θ_h contains multiple maxima, a single \textsc{same} chain will eventually become trapped around one of them.

To improve robustness, Johansen et al. (2008) devise a population-based version of the \textsc{same} idea. More precisely, they incorporate the \textsc{same} approach into the SMC sampler framework from Del Moral et al. (2006b, 2007), Peters (2005) which is summarised in Subsection 2.3.2. Such SMC samplers have already been successfully employed to realistic problems in air-traffic management (Kantas, Maciejowski & Lecchini-Visintini, 2009, 2010).

At the tth step, the SMC sampler uses (forward) proposal kernels which move the particles according to an MCMC kernel \tilde{P}_t, given by

$$\tilde{P}_t((\theta_{t-1}, \tilde{z}_{t-1}), d\theta_t \times dz_t) := R_t((\theta_{t-1}, \tilde{z}_{t-1}), dz_t) Q_t((\theta_{t-1}, z_t), d\theta_t).$$
This MCMC kernel is applied after having extended each particle via
\(S_t \in \mathcal{K}_t(\Theta \times Z_{t-1}, X^{[\beta_t]}_{t-1}) \), in the case that \([\beta_t] > [\beta_{t-1}] \). In
summary, recalling that \(\tilde{Z}_{p-1} = X^{1:[\beta_p]}_{p-1} \), the Step-\(t \) proposal kernel is

\[
P_t((\theta_{t-1}, z_{t-1}), dx_{t-1}^{[\beta_{t-1}]+1:[\beta_t]} \times d\theta_t \times dz_t)
:= S_t(\theta_{t-1}, z_{t-1}), dx_{t-1}^{[\beta_{t-1}]+1:[\beta_t]} \\
\times \tilde{P}_t((\theta_{t-1}, \tilde{z}_{t-1}), d\theta_t \times dz_t).
\]

As stressed in Johansen et al. (2008), this is not the most general SMC
implementation of the SAME idea; letting \(\tilde{P}_t \) be an MCMC kernel is often convenient but not actually necessary.

The SMC sampler marginally targets the measure \(\gamma_t^{\text{SAME}} \) by targeting
an extended measure constructed via backward Markov kernels,

\[
L_{t-1}((\theta_t, z_t), d\theta_{t-1} \times d\tilde{z}_{t-1})
:= \frac{\tilde{P}_t((\theta_{t-1}, \tilde{z}_{t-1}), \cdot)}{d\gamma_t^{\text{SAME}}(\theta_t, z_t)}(\theta_{t-1})y_t^{\gamma_{t-1}^{\text{SAME}}}(d\theta_{t-1} \times d\tilde{z}_{t-1}).
\]

In other words, this is the usual approximation to the optimal backward
kernel described in Example 2.15. This backward kernel is commonly
employed whenever MCMC kernels are used to move the particles within an SMC sampler.

With these backward kernels, and with \(U_t := (\Theta_t, Z_t, X^{[\beta_{t-1}]+1:[\beta_t]}_{t-1}) \),
the incremental importance weights at Step \(t \) are defined by

\[
G_t(u_{t:t}) := \frac{\tilde{y}_t}{\tilde{y}_{t-1} \otimes S_t(\theta_{t-1}, \tilde{z}_{t-1})}.
\]

This may also be derived by viewing the single step of the SMC sampler
as two consecutive SMC steps. The first step then changes the extended
target distribution (and potentially adds additional variables using the
proposal kernel \(S_t \)), leading to the above-mentioned incremental weight.
The second step simply applies the MCMC kernel \(\tilde{P}_t \) to the particles using
time-reversal backward kernels. As noted in Example 1.9, this second step
does not modify the weights.
6.3 Novel Methodology

6.3.1 Pseudo Gibbs Samplers

In this section, we present two approaches which can be interpreted as extensions of SAME. Both of these approaches employ an even larger number of replicas of the latent variable X than the standard SAME algorithm. Whilst this increases the number of random variables which need to be sampled at each iteration, these approaches are even more amenable to parallelisation than the standard SAME algorithm for whom this was already exploited in Zhao, Jiang and Canny (2014).

First, in this subsection, we assume that Gibbs sampling-type implementations of the SAME idea are desirable because correlation of Θ and Z_p under π_p^{SAME} is not too severe or because it can be circumvented using some reparametrisation, e.g. along the lines of the non-centred parametrisation from Papaspiliopoulos (2003), Papaspiliopoulos, Roberts and Sköld (2007).

Unfortunately, it is often impossible to sample directly from $\Pi_1(\theta, \cdot)$ (or $\Pi_2(\theta, \cdot)$) and letting R_p be a concatenation of Metropolis-within-Gibbs steps can be inefficient, in particular if X is high-dimensional. Below, we present a scheme that mimics the intractable Gibbs step (Step 2 in Gibbs-sampling implementations of Algorithm 6.3) by employing multiple-proposal MCMC kernels. Particularly useful instances of such multiple-proposal kernels are given by the (iterated) CSMC kernels from (Andrieu et al., 2010, 2013) which were described in Section 3.4

Conditional SMC-based optimisation. We target the standard SAME target distribution but rather than sampling from $\Pi_1(\theta, \cdot)$ (or $\Pi_2(\theta, \cdot)$), which is assumed to be infeasible, we apply some (multiple-proposal) instance of the generic MCMC kernel from Subsection 3.2.3 within Step 2 of Algorithm 6.3. Algorithm 6.5 summarises a single iteration of the resulting procedure if the specific instance of the generic MCMC kernel is one of the (iterated) CSMC kernels from Section 3.4, potentially with backward sampling or ancestor sampling. In this case, $X = X_p$ is to be understood as an entire particle trajectory.

6.4 Example (hidden Markov models). Though applicable much more widely, (conditional) SMC methods are often used to propose values for
the latent states in (general state-space) hidden Markov models (HMMs). Assume that we have observations up to some time \(T \in \mathbb{N} \). In this case, \(M(\theta, \cdot) \) represents the conditional prior distribution of the vector of latent states up to Time \(T \), denoted \(X \), given the static parameters \(\Theta \). Likewise, \(G(\theta, x) \) is the likelihood of the observations given the static parameters and the latent states.

We set \(R_p := R^\otimes_{p,1:[\beta_p]} \), where \(R_{p,l} \) is the plain (iterated) CSMC kernel (induced by Algorithm 3.23), the (iterated) CSMC kernel with backward sampling (induced by Algorithm 3.24) or the (iterated) CSMC kernel with ancestor sampling (induced by Algorithm 3.26). In each case, this kernel targets the probability measure

\[
\begin{cases}
\Pi_l(\theta, \cdot), & \text{if } l \leq \lfloor \beta_p \rfloor, \\
\Pi^\otimes_{\beta_p}(\theta, \cdot), & \text{if } l = \lceil \beta_p \rceil > \lfloor \beta_p \rfloor.
\end{cases}
\]

In addition, the space is augmented with extra replicas of the latent variable by sampling from the kernel \(S_p := S^\otimes_{p,1:[\beta_p]} \) whenever \(\lceil \beta_p \rceil > \lfloor \beta_{p-1} \rfloor \). Here, \(S_{p,k}(\theta, \cdot) \) denotes the marginal distribution of one particle trajectory under the extended target distribution

\(\tilde{\pi}_T(\theta, \cdot) \propto \tilde{\gamma}_T(\theta, \cdot) \)

associated with an SMC algorithm described in Chapter 2 (which may now depend on \(\theta \)), assuming that the SMC algorithm targets a measure proportional to

\[
\begin{cases}
\Pi_l(\theta, \cdot), & \text{if } k \leq \lfloor \beta_p \rfloor - \lfloor \beta_{p-1} \rfloor, \\
\Pi^\otimes_{\beta_p}(\theta, \cdot), & \text{if } k = \lceil \beta_p \rceil - \lfloor \beta_{p-1} \rfloor \text{ and } \beta_p \notin \mathbb{N}.
\end{cases}
\]

6.5 Algorithm (CSMC-based SAME). At the \(n \)th iteration,

1. if \(\lfloor \beta_n \rfloor > \lfloor \beta_{n-1} \rfloor \), sample \(X_{n-1}^{[\beta_{n-1}]+1:[\beta_n]} \sim S_{n}((\theta_{n-1}, z_{n-1}), \cdot) \),
2. sample \(Z_n = X_n^{[\beta_n]} \sim S_{n}((\theta_{n-1}, \tilde{z}_{n-1}), \cdot) \),
3. sample \(\Theta_n \sim Q_{n}((\theta_{n-1}, z_n), \cdot) \).

We stress that (iterated) CSMC kernels are only one possible instance of the generic MCMC kernel from Subsection 3.2.3. In many situations, it may be desirable to employ other instances of the generic MCMC kernel from Subsection 3.2.3 in Step 2.
6.3.2 Pseudo-Marginal Optimisation

Motivation. Component-wise updates within the SAME algorithm can induce poor mixing of the MCMC chain if Θ and X are correlated under \(\pi \propto \mu \otimes \gamma \) because then \(\Theta \) and \(Z_p \) are correlated under \(\pi_p \). However, recall that \(X \) has only been introduced because the integral in Equation 6.3 is intractable and this prohibits the use of some ‘ideal’ marginal SA algorithm targeting distributions on the marginal space \(\Theta \), e.g. targeting \(\pi_p(d\theta) \propto \gamma(\theta, 1)^{\beta_p} \mu(d\theta) \) at Iteration \(p \). It is well known that Monte Carlo methods are typically more efficient on a smaller space (unless better proposal distributions can be constructed on an extended space).

To mimic the behaviour of such an intractable marginal SA algorithm, we propose to adopt the pseudo-marginal framework (Beaumont, 2003; Andrieu & Roberts, 2009). To that end, we construct a different instance of the extended measure \(\gamma_p(d\theta \times dz_p) = \mu(d\theta)M_p(\theta, dz_p)H_p(\theta, z_p) \) from Equation 6.2, denoted \(\gamma_{p^m} \).

Generic Extended Target Measure. Recall that we want to find the values \(\theta \in \Theta \) that maximise \(\gamma(\theta, 1) \). To employ pseudo-marginal ideas, we augment the space with extra auxiliary variables (compared to the SAME approach). More specifically, let \(\tilde{X} := (X, K, X, Y) \) so that

\[
\tilde{\gamma}(\theta, d\tilde{x}) = \gamma(\theta, dx)\tilde{\Pi}((\theta, x), dk \times dx \times dy),
\]

is some instance of the generic MOSIS target measure from Section 4.4 (but which is now indexed by \(\theta \)). This generic target measure is thus obtained by extending the measure \(\gamma(\theta, dx) = H(\theta, x)M(\theta, dx) \) using a stochastic kernel \(\tilde{\Pi} \) as defined in Section 4.4. We recall that the normalised version of the thus extended measure, \(\tilde{\pi}(\theta, \cdot) \propto \tilde{\gamma}(\theta, \cdot) \), satisfies

\[
\tilde{X} \sim \tilde{\pi}(\theta, \cdot) \implies X^K \sim \pi(\theta, \cdot) \propto \gamma(\theta, \cdot).
\]

Also as in Section 4.4, we let

\[
\tilde{\psi}(\theta, d\tilde{x}) = \psi(\theta, dx \times dy)\xi((\theta, x, y), dk)\delta_{x,y}(dx)
\]

be some extended proposal distribution but whose components may now depend on \(\theta \), too. Furthermore, assuming that \(\tilde{\gamma}(\theta, \cdot) \ll \tilde{\psi}(\theta, \cdot) \), we define the Radon–Nikodým derivative

\[
\tilde{w}^\theta := \frac{d\tilde{\gamma}(\theta, \cdot)}{d\tilde{\psi}(\theta, \cdot)}.
\]
The extended target distribution of the pseudo-marginal algorithm is then written as $\pi_p \propto \gamma_p$, where γ_p is a measure on $\Theta \times Z_p$ with $Z_p := \bar{X}^{1:|\beta_p|}$. Writing $Z_p := \bar{X}^{1:|\beta_p|}$, where $\bar{X} := X \times K \times X \times Y$, the measure γ_p is defined by Equation 6.2 with

\[
M_p(\theta, dz_p) := \prod_{i=1}^{[\beta_p]} \tilde{\psi}(\theta, d\bar{x}_p^i),
\]

\[
H_p(\theta, z_p) := \bar{w}^\theta (\bar{x}_p^{[\beta_p]}) \beta_p \prod_{i=1}^{[\beta_p]} \bar{w}^\theta (\bar{x}_p^i).
\]

Above, we have again set $\beta^\sharp := \beta - \lfloor \beta \rfloor$.

Whenever $\beta_p \in \mathbb{N}$, since $\tilde{\gamma}(\theta, \cdot)$ admits $\gamma(\theta, \cdot)$ as a marginal,

\[
\int_{A \times Z_p} \gamma_p^{\text{PM}}(d\theta \times dz_p) = \int_{A \times \bar{X}^{1:|\beta_p|}} \gamma_p^{\text{SAME}}(d\theta \times dx_p^{1:|\beta_p|})
\]

\[
= \int_A \gamma(\theta, 1)^\beta_p \mu(d\theta).
\]

Hence, under suitable regularity conditions, by Equation 6.4 the marginal of π_p in the θ-component concentrates around Θ_h as $p \to \infty$.

Implementation. As in Subsection 4.3, we may again set

\[
\tilde{T}(\theta, \cdot) := \tilde{\psi}(\theta, \cdot) \circ (\bar{w}^\theta)^{-1}.
\]

This reparametrisation allows us to turn the potentially high-dimensional target measure γ_p^{PM} into a measure $\tilde{\gamma}_p^{\text{PM}}$ on the often lower-dimensional space $\Theta \times V^{1:|\beta_p|}$, where $V := [0, \infty)$. The measure $\tilde{\gamma}_p^{\text{PM}}$ is given by

\[
\tilde{\gamma}_p^{\text{PM}}(d\theta \times dv^{1:|\beta_p|}) := \mu(d\theta)(v^{[\beta_p]} \prod_{i=1}^{[\beta_p]} v^i) \prod_{i=1}^{[\beta_p]} \tilde{T}(\theta, dv^i).
\]

Pseudo-marginal optimisation schemes then target $(\tilde{\pi}_p^{\text{PM}})_{p \in \mathbb{N}}$ using some instance of the generic MCMC kernel from Subsection 3.2.3.
In particular, if we target these distributions using MH kernels, we obtain the pseudo-marginal MH-based optimisation scheme which is outlined in Algorithm \ref{alg:psm}, where \(Q_p \in \mathcal{K}_1(\Theta, \Theta) \) is some suitable proposal kernel for \(\Theta \).

6.6 Algorithm (pseudo-marginal MH-based SAME). At Step \(n \),

1. If \([\beta_n] > [\beta_{n-1}] \), sample \(V_n^{[\beta_{n-1}] + 1:[\beta_n]} \sim \tilde{T}(\Theta([\beta_n] - [\beta_{n-1}]), (\theta_{n-1}, \cdot)) \).
2. Propose \(\tilde{\theta} \sim Q_n(\theta_{n-1}, \cdot) \) and \(W^{1:[\beta_n]} \sim \tilde{T}(\Theta([\beta_n]), (\tilde{\theta}, \cdot)) \).
3. Set \((\Theta_n, V_n^{1:[\beta_n]}) := (\tilde{\theta}, W^{1:[\beta_n]}) \) with probability

\[
1 \wedge \frac{\mu(d\tilde{\theta}) Q_n(\tilde{\theta}, d\theta_{n-1}) \prod_{i=1}^{[\beta_n]} \frac{w^i_{[\beta_n]}}{v^i_{[\beta_n]}}}{\mu(d\theta_{n-1}) Q_n(\theta_{n-1}, d\theta) \prod_{i=1}^{[\beta_n]} \frac{w^i_{[\beta_n]}}{v^i_{[\beta_n]}}} \frac{\theta_{n-1}^\beta}{\theta_{n-1}^\beta}.
\]

otherwise, set \((\Theta_n, V_n^{1:[\beta_n]}) := (\Theta_{n-1}, V_{n-1}^{1:[\beta_n]}) \).

6.7 Example (hidden Markov models, continued). Assume that the goal is to perform ML estimation in an HMM. Then \(\gamma(\theta, \cdot) \) is proportional to the conditional posterior distribution of the latent states given some data and given the parameter \(\theta \). Similarly, \(\mu \otimes \gamma \) can be interpreted as (being proportional to) the joint posterior distribution of the parameters and the latent states. If \(\beta_n = 1 \) and if \(\tilde{T}(\theta, \cdot) \) and \(\psi(\theta, \cdot) \) represent the extended target measure and extended proposal distribution of the generic SMC algorithm presented in Chapter 2 (but now indexed by \(\beta \)), the pseudo-marginal SAME kernel from Algorithm 6.6 reduces to a standard particle marginal Metropolis–Hastings (PMMH) kernel. In particular, this means that \(W^i \) is equal to the normalising-constant estimate obtained from the SMC algorithm. In constrast, if \(\beta_n > 1 \), then the pseudo-marginal SAME kernel employs \([\beta_n] \) SMC algorithms and \(W^i \) is equal to the normalising-constant estimate obtained from the \(i \)th SMC algorithm.

Pseudo-marginal MH kernels are well known to suffer from the so-called ‘stickiness’ problem. That is, a high variance of \(V^i \) can lead to long periods during which the algorithm rejects the proposed values at every iteration. This happens when one or more of the \(V^i \)'s in the denominator of the above acceptance probability takes a particularly large value.

To improve mixing, Beaumont (2003) proposes the Monte Carlo within Metropolis (MCWM) algorithm (so named in O’Neill et al. (2000)) which
samples new values for the V_i’s at every iteration. While this introduces bias, it can sometimes improve mixing of the algorithm (Medina-Aguayo, Lee & Roberts, 2015). Moreover, the bias may be less problematic here because we are essentially only trying to find the mode. A single iteration of an optimisation scheme incorporating the MCWM idea is summarised in Algorithm 6.8.

6.8 Algorithm (MCWM-based SAME). At Step n,

1. propose $\vartheta \sim Q_n(\theta_{n-1}, \cdot)$,
2. Sample $V_1^{[\beta_n]} \sim \tilde{T}^{[\beta_n]}(\theta_{n-1}, \cdot)$ and $W^{[\beta_n]} \sim \tilde{T}^{[\beta_n]}(\vartheta, \cdot)$.
3. Set $\Theta_n := \vartheta$ with probability

$$1 \wedge \frac{\mu(d\vartheta)Q_n(\vartheta, d\theta_{n-1})}{\mu(d\theta_{n-1})Q_n(\theta, d\vartheta)} \left[\frac{[\beta_n]}{\prod_{i=1}^{w} w_i^{v_i}} \right] \left[\frac{[\beta_n]}{\prod_{i=1}^{w} v_i^{w_i}} \right].$$

otherwise, set $\Theta_n := \Theta_{n-1}$.

Finally, as shown in Part I of this work, particular instances of the generic measure $\tilde{T}(\theta, \cdot)$ allow us to use a wide range of proposal distributions $\tilde{T}(\theta, \cdot)$ within this framework, e.g. we may use SMC algorithms sample the variables V^i. In this case, Algorithm 6.6 is essentially an inhomogeneous PMMH algorithm with multiple independent sets of particles.

We can also employ other, more general instances of the MOSIS approach to devise the pseudo-marginal target distribution π_{ϑ}^p (or, equivalently, \tilde{T}_{β_n}). Additionally, it is not necessary to target this distribution via MH kernels. Any other instance of the generic MCMC kernel from Subsection 3.2.3 can be used instead.

Relation With SAME. While we have constructed the pseudo-marginal MCMC optimisation schemes as a generalisation of the SAME approach (on the space $\Theta \times X$), its extended target distribution may also be viewed as a special case of distribution targeted by the SAME algorithm (on the extended space $\Theta \times \tilde{X}$), i.e. as a SAME algorithm with latent variable $X = \tilde{X}$, and with

$$H(\theta, \tilde{x}) = \bar{w}^{\theta} (\tilde{x}),$$

$$M(\theta, \cdot) = \tilde{\psi}(\theta, \cdot).$$

174
6.3.3 Incorporation Into SMC Samplers

In this subsection, we briefly describe how the MCMC kernels devised in this section can be incorporated into SMC samplers.

Incorporating the CSMC-based SAME algorithm (Algorithm 6.5) into an SMC sampler can be achieved exactly as described in Subsection 6.2.3 but with the particular choice of the kernels \(Q_t, R_t \) and \(S_t \) specified in Subsection 6.3.3.

Incorporating pseudo-marginal SAME (Algorithm 6.6) into an SMC sampler proceeds again as in Subsection 6.2.3 but now with \(P_t \) being defined by Steps 2 and 3 of Algorithm 6.6 (with \(n = t \)). Furthermore, in this case, the kernel for augmenting the space with additional latent variables, \(S_t \in \mathcal{K}_1(\Theta, X^{[\beta_t]}-[\beta_{t-1}]) \) is defined by

\[
S_t(\theta_{t-1}, \cdot) := \mathcal{T}^\Theta([\beta_t]-[\beta_{t-1}]) (\theta_{t-1}, \cdot).
\]

6.4 Applications

6.4.1 Student-t Toy Model

As a first application of the pseudo-marginal SAME idea, we perform ML estimation the Student-t toy model from Gaetan and Yao (2003).

Model. In this case, the objective function is the (marginal) likelihood associated with observations \(y = y_{1:4} = (-20, 1, 2, 3) \) which are assumed to have been generated from a non-central Student-t distribution with (known) \(v := 0.05 \) degrees of freedom and unknown location parameter \(\theta \in \Theta := \mathbb{R} \). This distribution is denoted \(t_{v, \theta} \) and we use the same symbol for its Lebesgue-density. That is, the objective function is

\[
h(\theta) = \prod_{t=1}^{4} t_{v, \theta}(y_t) \propto \prod_{t=1}^{4} \left[1 + \frac{(y_t - \theta)^2}{v} \right]^{-(v+1)/2}
\]

Let \(\text{Gam}_{\alpha, \beta} \) denote the gamma distribution with shape parameters \(\alpha \) and scale parameter \(\beta \) and let \(N_{m, v^2} \) denote the normal distribution with mean \(m \in \mathbb{R} \) and variance \(v^2 > 0 \). Again, we use the same symbols for Lebesgue-densities of these distributions. It is well known and can easily
6 Pseudo-Marginal Monte Carlo Optimisation

![Figure 6.1 Log-objective function, i.e. loglikelihood, in the Student-t toy model.](image)

be checked that the Student-t distribution arises if a gamma prior is placed over the precision (the reciprocal variance) of a normal distribution and if the precision-parameter is then integrated out, i.e.

\[
t_{\nu, \theta}(y_t) = \int_{\mathbb{R}} N_{\theta, 1/\tilde{x}_t}(y_t) \text{Gam}_{\nu/2, \nu}(d\tilde{x}_t).
\]

Recall that we want to approximate the maximum likelihood (ML) estimate of \(\theta \). Thus, in the notation from this chapter, \(h(\theta) = \gamma(\theta, 1) = \int_X H(\theta, x) M(\theta, dx) \), where \(X = \bar{X}_{1:4} \) takes values in \(X = \mathbb{R}^4 \), and with

\[
H(\theta, x) := \prod_{t=1}^{4} N_{\theta, 1/\tilde{x}_t}(y_t),
\]

\[
M(\theta, dx) := \prod_{t=1}^{4} \text{Gam}_{\nu/2, \nu}(d\tilde{x}_t).
\]

In this case, due to the conjugacy outlined above, the objective function \(h \) can actually be evaluated point-wise. As illustrated in Figure 6.1, it has a global maximum at around 1.997 and has further local maxima at around -19.993, 1.086, and 2.906. However, to test the methods developed in the previous section, we pretend that we cannot evaluate \(h \) point-wise, i.e. we pretend that we cannot solve the integral \(h(\theta) = \gamma(\theta, 1) \) analytically.

Algorithms. We compare a number of algorithms which are listed below. Within the pseudo-marginal type algorithms, \(X^i := (\bar{X}_{p, i:1}, \ldots, \bar{X}_{p, i:N}) \) denotes the all the latent variables associated with the \(i \)th replica at
Iteration p, i.e. $i \in \mathbb{N}_{[\beta_p]}$. Furthermore, $N \in \mathbb{N}$ is the number candidates in a multiple-proposal MCMC kernel or the number of pseudo-marginal replicas, i.e. the number of candidates involved in the construction of the ith weight in the acceptance probability, V^i_p.

(i) The first algorithm is a pseudo-Gibbs sampling implementation of \textcolor{red}{SAME} which updates the latent variables using the forced-move kernel from Subsection 3.3.1.

(ii) The second algorithm is a pseudo-marginal MH version of \textcolor{red}{SAME}.

(iii) The third algorithm is an \textcolor{red}{MCWM-type} version of \textcolor{red}{SAME}.

(iv) The fourth algorithm is an ‘idealised’ Gibbs-sampling implementation of \textcolor{red}{SAME} whose performance Algorithm i seeks to mimic.

(v) The fifth algorithm is the ‘idealised’ marginal \textcolor{red}{SA} algorithm whose performance Algorithms ii and iii seek to mimic.

For Algorithms i to iii, we compare the performance of two different proposal distributions for the latent variables.

(a) The first proposal simply entails sampling the latent variables from their prior distribution, i.e.

$$
\psi(\theta, \mathbf{dx}_p^i) := \prod_{t=1}^{4} \prod_{n=1}^{N} \Gamma_{\nu/2,2/\nu}(d\mathbf{x}_{p,t}^{i,n}).
$$

Intuitively, this proposal distribution is inefficient because it takes neither the current value of θ nor the observations into account.

(b) Into the second proposal, we incorporate information about θ and about the observations. More precisely, letting Exp_λ denote the exponential distribution with rate $\lambda > 0$, we instead take

$$
\psi(\theta, \mathbf{dx}_p^i) := \prod_{t=1}^{4} \prod_{n=1}^{N} \text{Exp}_{1/(1+|y_t-\theta|)}(d\mathbf{x}_{p,t}^{i,n}).
$$

The algorithms are all initialised by sampling values for θ from the distribution $\mu \in \mathcal{M}_1(\Theta)$ which we take to be the uniform distribution on $[-50,50]$ and which could be interpreted as the prior in the Bayesian.
paradigm. The specific form of this distribution on the estimates of Θ_h should diminish as $p \to \infty$.

We use 5,000 iterations. The inverse temperature increases linearly from $\beta_1 = 0.1$ to $\beta_{4,000} = 5$ and then remains constant for the last 1,000 iterations. At the nth iteration, θ is updated using a Gaussian random-walk [MH] kernel with variance $10/\beta_n$.

Results. We run each of these algorithms 200 times. Figure 6.2 shows the behaviour of the first three algorithms as the number of forced-move candidates/pseudo-marginal replicas, N, increases. Increasing N is clearly beneficial in each algorithm. Also beneficial is the incorporation of information about θ and about the observations into the proposal distribution for the latent variables (which is done in Algorithms II and V).

Figure 6.3 shows the estimates obtained from Algorithms II to III. Interestingly, for large N and when using an efficient proposal distribution for the latent variables, the [MCWM] type algorithm outperforms the ‘exact’ pseudo-marginal [MH]-type algorithms.

The Gibbs-sampling implementation of [SAME] (Algorithm IV) and the marginal [SA] algorithm (Algorithm V) perform even better. However, we stress that these algorithms rely on structure which is not available in more complicated scenarios. That is, [SA] requires point-wise evaluation of (a maximum-preserving) transformation of the objective function h while the Gibbs-sampling implementation of [SAME] requires the full conditional distributions of X under π^SAME_p to be tractable. These algorithms are only included here as a benchmark because they represent, in some sense, idealised algorithms whose behaviour Algorithms II to III seek to mimic.

6.4.2 Linear Gaussian State-Space Model

Model. In this subsection, we apply the algorithms developed in the previous section to perform ML estimation in a linear Gaussian [HMM] given by $X_0 \sim N_0, 1$ and for $t \in \mathbb{N}$,

$$\tilde{X}_t = A\tilde{X}_{t-1} + B\varepsilon_t,$$

$$Y_t = C\tilde{X}_t + D\eta_t,$$

where $\varepsilon_t, \eta_t \sim N_{0, 1}$ are [IID] and where we set $C = 1$ to ensure identifiability. We assume that we have obtained observations $\hat{Y}_{1:T} = y_{1:T}$.

178
Figure 6.2 Traces of the first 50 runs of Algorithms i to iii in the Student-t toy model with varying numbers of forced-move candidates/pseudo-marginal replicas, N. The dashed line represents the location of the global maximum.
6 Pseudo-Marginal Monte Carlo Optimisation

Figure 6.3 ML estimates from 200 runs of Algorithms i to iii with varying numbers of forced-move replicas/pseudo-marginal replicas, \(N \), and from 200 runs of Algorithms iv and v in the Student-t toy model. For each MCMC chain, an estimate is obtained by averaging over the last 1,000 iterations. The horizontal solid line and dotted lines represent the location of the global maximum and of local maxima, respectively.

180
6.4 Applications

We want to find \(\theta := \theta_{1:3} := (A, \log B, \log D) \in \Theta := \mathbb{R}^3 \) which maximises the (marginal) likelihood \(h(\theta) = \gamma(\theta, 1) = \int_X H(\theta, x)M(\theta, dx) \)
where the latent states \(X := \tilde{X}_{0:T} \) take values in \(X := \mathbb{R}^{T+1} \) and where

\[
H(\theta, x) := \prod_{t=1}^{T} N_{\tilde{x}_t, D}(y_t),
\]

\[
M(\theta, dx) := N_{0,1}(d\tilde{x}_0) \prod_{t=1}^{T} N_{\tilde{x}_{t-1}, B}(d\tilde{x}_t).
\]

Finally, we define the dominating measure \(\mu \in \mathcal{M}_1(\Theta) \) as follows. Under \(\mu \), the components of \(\Theta \) are independent and we take \(1/B^2 \sim \text{Gam}_{1,5,1} \) as well as \(1/D^2 \sim \text{Gam}_{1,5,1} \). Additionally, we assume that the Markov chain \((X_t)_{t \in \mathbb{N}} \) is non-explosive (i.e. \(|A| < 1 \)) and therefore restrict the support of \(A \) to \((-1, 1)\) by taking \(A \sim \text{Unif}_{(-1,1)} \). Again, the effect of \(\mu \) on the estimates of \(\Theta \) should diminish as \(p \to \infty \).

Algorithms. We compare the following five algorithms based around SMC methods with a constant number of particles, \(\tilde{N} := N_1 = \ldots = N_T \).

(i) The first algorithm mimics an ‘idealised’ Gibbs-sampling implementation of SAME by updating the latent variables using an iterated CSMC algorithm with ancestor sampling (AS) and using \(N = 100 \) particles.

(ii) The second algorithm is a PMMH version of SAME in which we propose the latent variables by running an SMC algorithm with \(N = 100 \) particles. It seeks to mimic an ‘idealised’ marginal SA algorithm.

(iii) The third algorithm is an MCWM-type version of Algorithm ii but with only \(N = 500 \) particles to account for the fact that this algorithm requires running twice as many SMC algorithms.

(iv) The fourth algorithm is the ‘idealised’ Gibbs-sampling implementation of SAME which samples the latent states \(\tilde{X}_{1:T} \) from their full conditional posterior distribution via standard forward–backward recursions (Rauch et al., 1965).

(v) The fifth algorithm is the ‘idealised’ marginal SA algorithm which exploits the fact that the latent variables can actually be integrated out analytically in this model. The recursions needed to calculate these integrals are known as the Kalman filter (Kalman, 1960).
In Algorithms i to iii, the SMC algorithm used to generate the latent variables propose the Step-t particles from the conditional prior distribution of the tth state, \tilde{X}_t, given $\tilde{X}_{1:t-1} = \tilde{x}_{1:t-1}$, i.e. from $\mathcal{N}(\tilde{x}_{t-1}, B)$. The resulting algorithm is often called a ‘bootstrap’ particle filter.

The algorithms are all initialised by sampling values for θ from the ‘prior’ distribution. We use 5,000 iterations. The inverse temperature increases linearly from $\tilde{\beta}_1 = 1$ to $\tilde{\beta}_{4,000} = 10$ and then remains constant for the last 1,000 iterations.

In each algorithm, at the nth iteration, the parameters θ are updated using a mixture Gaussian random-walk MH kernel. The underlying normal distribution has diagonal covariance matrix diag([1, 1, 1])/50, with probability 0.8 and has covariance matrix diag([1, 1, 1])/50, with probability 0.2. Here, diag(v) denotes a diagonal matrix whose diagonal is equal to the vector v. The support of the first component in the proposal kernels is restricted to $(-1, 1)$. In Algorithms i and Algorithms iv, we perform 100 such θ-updates at each iteration as these are relatively cheap.

Results. We obtain $T = 200$ observations from the model with true parameters $A = 0.9$ and $B = D = 1$. However, for a finite number of observations, the ML estimate does generally not coincide with the true parameter value.

We run the algorithms 15 times. Trace plots of the resulting Markov chains are shown in Figure 6.4. In addition, Figure 6.5 illustrates the variability in the estimates obtained from these algorithms.

6.4.3 Simple Stochastic Volatility Model

Model. In this subsection, we perform ML estimation in a simple univariate stochastic volatility model (Jacquier, Polson & Rossi. 1994). This model is given by $\tilde{X}_1 \sim \mathcal{N}(\gamma_{-1,1})$ and, for $t > 1$, we have

$$\begin{align*}
\tilde{X}_t &= \alpha + \delta \tilde{X}_{t-1} + \sigma \varepsilon_t, \\
Y_t &= \exp(\tilde{X}_t/2) \eta_t.
\end{align*}$$

where $\varepsilon_t, \eta_t \sim \mathcal{N}(0,1)$ are again IID. We assume that we have obtained observations $Y_{1:T} = y_{1:T}$, for some $T \in \mathbb{N}$.

Assuming the model to be non-explosive, i.e. assuming that $|\delta| < 1$, we want to find $\theta := \theta_{1:3} := (\alpha, \delta, \sigma) \in \Theta := \mathbb{R} \times (-1, 1) \times (0, \infty)$ maximising the (marginal) likelihood $h(\theta) = g(\theta, 1) = \int_y H(\theta, y) M(\theta, dy)$.
Figure 6.4 Traces obtained from 15 runs of Algorithms i to v in the linear Gaussian HMM. The dashed line represents the location of the global maximum.
6 Pseudo-Marginal Monte Carlo Optimisation

\[\begin{array}{c}
\text{Figure 6.5} \text{ML estimates obtained from 15 runs of Algorithms I to V in the linear Gaussian HMM. The horizontal line represents the location of the global maximum.}
\end{array} \]

In this model, the states \(X := \tilde{X}_{1:T} \) take values in \(X := \mathbb{R}^T \) and

\[
H(\theta, x) := \prod_{t=1}^{T} N_{\text{exp}(\tilde{x}_t)}(y_t),
\]

\[
M(\theta, dx) := N_{-\gamma,1}(d\tilde{x}_1) \prod_{t=2}^{T} N_{\alpha + \delta \tilde{x}_{t-1}, \sigma^2}(d\tilde{x}_t).
\]

Finally, we define the dominating measure \(\mu \in \mathcal{M}_1(\Theta) \) following ‘prior’ distribution. Under \(\mu, \alpha, \delta \) and \(\sigma \) are independent and \(\alpha \sim N_{0,100}, \delta \sim \text{Unif}_{(-1,1)} \) and \(1/\sigma \sim \text{Gam}_{5,1} \).

Algorithms. We compare the following three algorithms, all based around a simple bootstrap particle filter with \(N \) particles.

(i) The first algorithm mimics an ‘idealised’ but intractable Gibbs-sampling implementation of \(\text{SAME} \) by updating the latent variables using an iterated \(\text{CSMC} \) algorithm with \(\text{AS} \) and using \(N = 100 \) particles.

(ii) The second algorithm is \(\text{PMMH} \) version of \(\text{SAME} \) using \(N = 1,000 \) particles. It aims to mimic an intractable ‘idealised’ marginal \(\text{SA} \) algorithm.

(iii) The third algorithm is an \(\text{MCWM} \) type version of Algorithm i with only \(N = 500 \) particles to account for the fact that this algorithms requires running twice as many \(\text{SMC} \) algorithms as the second.
The algorithms are all initialised by sampling values for \(\theta \) from the 'prior' distribution \(\mu \). We use 5,000 iterations. The inverse temperature increases linearly from \(\beta_1 = 1 \) to \(\beta_{4,000} = 3 \) and then remains constant for the last 1,000 iterations.

In each algorithm, at the \(n \)th iteration, the parameters \(\theta \) are updated using a Gaussian random-walk MH kernel with diagonal covariance matrix \(\text{diag}(1, 1, 1)/2\beta_n \). In Algorithm \(i \), we again perform 100 such updates at each iteration as these are comparatively cheap relative to the latent-variable updates.

Results. We obtain \(T = 500 \) observations from the model with true parameters \(\alpha = -0.363, \delta = 0.95, \) and \(\sigma^2 = 0.26 \). We run the algorithms 30 times. Trace plots \(\theta \)-components of the resulting Markov chains are shown in Figure 6.6.
6.5 Discussion

In this chapter, we have presented methods for performing optimisation in latent-variable settings with the help of sophisticated modern Monte Carlo methods such as (iterated) CSMC and pseudo-marginal kernels.

Previously, Poyiadjis, Doucet and Singh (2011), Olsson, Cappé, Douc and Moulines (2008), Yildrim, Singh and Doucet (2013), Nemeth, Fearnhead and Mihaylova (2015) have developed alternative algorithms for SMC-based optimisation. However, their methods are essentially gradient-based and it is not clear how they fare in settings in which the objective function is multimodal. Furthermore, these methods are restricted to parameter estimation in HMMs and then typically require point-wise evaluation of densities of the transition kernels associated with the latent states. Closed-form expressions for these densities are often unavailable in realistic models.

In contrast, the approaches presented here only require the ability to sample from the transition kernels which is often feasible. A number of examples of such models can be found in Ionides, Bretó and King (2006). In addition, our methods can deal with much broader settings, e.g. with marginal ML or MAP estimation in non-Markovian models.

Work on the algorithms presented in this chapter is ongoing:

1. Assume that the distribution of the individual weights W^i in Algorithm 6.6 does not depend on the parameter θ and that their variance $\text{Var}[W^i] =: \sigma^2_N$ decreases linearly in the parameter N which governs the number of 'candidates' in some underlying MOSIS scheme, e.g. N may be the number of particles when SMC algorithms are used to sample the weights. For simplicity, we assume that $\sigma^2_N = \sigma^2 / N$, for some $\sigma^2 > 0$. Meanwhile, assume that the computational cost of sampling W^i increases linearly in N (as is typically the case for standard IS or SMC algorithms).

In this setting, for $\beta^i = 1$, Sherlock et al. (2015), Doucet et al. (2015) show that for maximal efficiency of pseudo-marginal MH kernels, N should be chosen in such a way that σ^2_N is around 1 (though more precisely, Andrieu and Vihola (2014) demonstrate that the variance of the weight is not always the right quantity by which to rank the efficiency of different pseudo-marginal MH kernels).
6.5 Discussion

For inverse temperatures $\beta_n \in \mathbb{N} \setminus \{1\}$, the ‘combined’ weight in the pseudo-marginal kernel is given by the product $\prod_{i=1}^{\beta_n} W^i$. For any $\theta \in \Theta$, its (conditional) variance is given by

$$
\text{Var}\left[\prod_{i=1}^{\beta_n} W^i \mid \Theta = \theta\right] = \mathbb{E}\left[\prod_{i=1}^{\beta_n} (W^i)^2\right] - \left(\mathbb{E}\left[\prod_{i=1}^{\beta_n} W^i\right]\right)^2
$$

$$
= \prod_{i=1}^{\beta_n} (\text{Var}[W^i] + \mathbb{E}[W^i]^2) - \prod_{i=1}^{\beta_n} \mathbb{E}[W^i]^2
$$

$$
= (\sigma^2/N + 1)^{\beta_n} - 1,
$$

since the weights are conditionally independent given $\Theta = \theta$, since their (conditional) distribution is constant in θ, and since we can assume that $\mathbb{E}[W^i] = 1$ without loss of generality.

Solving Equation 6.6 for N suggests that we should take

$$
N = \Theta\left(\frac{\sigma^2}{2^{1/\beta_n} - 1}\right),
$$

i.e. effectively increase N linearly in β_n, to keep the variance of the ‘combined’ weight in the pseudo-marginal kernel at around 1 as the inverse temperature increases. We are currently working on schemes for adaptively choosing N in this respect.

(2) We are currently also working towards extending the convergence analysis carried out in Andrieu et al. (2001) to the pseudo-marginal setting.

(3) Finally, we are currently implementing the algorithms used in the examples in Section 6.4 within SMC samplers as described in Subsection 6.3.3. Furthermore, we are also currently applying our optimisation schemes to perform estimation in some of the more complicated Lévy-driven stochastic volatility models which were described in Chapter 5.
Conclusion

Summary

In this thesis, we have introduced a number of sophisticated non-standard Monte Carlo algorithms (1) for conducting inference in a challenging class of statistical models based around point processes, (2) for performing optimisation in latent-variable settings. These are based on a combination of Markov chain Monte Carlo (MCMC) methods, sequential Monte Carlo (SMC) methods and pseudo-marginal ideas.

To ease the explanation of the wide array of complex algorithms employed in this work, we have also presented a unifying Monte Carlo framework which is best described as marginalised one-sample importance sampling (MOSIS). Following Andrieu and Roberts (2009), Andrieu et al. (2010), Lee, Andrieu and Doucet (in prep.), Lee, Murray and Johansen (in prep.), this framework admits essentially any Monte Carlo scheme, including MCMC and SMC methods, as a special case.

Repeatedly applying MOSIS also justifies nesting SMC within MCMC or SMC within SMC (as in pseudo-marginal SMC algorithms). Furthermore, MOSIS forms the heart of a generic MCMC kernel which admits essentially any MCMC kernel as a special case, including (randomised) Metropolis–Hastings (MH) kernels and their extension to multiple proposals.

Further exploiting the MOSIS framework, this thesis has also presented new insights into the relationship between a number of modern Monte Carlo schemes. For instance, we have formally established the relationship

- between the discrete particle filter from Fearnhead (1998), Fearnhead and Clifford (2003) and other more conventional SMC methods,
- between the particle MCMC methods from Andrieu et al. (2010) and the ensemble MCMC methods from Neal (2011),
- between backward sampling (Whiteley, 2010) and ancestor sampling (Lindsten et al., 2012) for particle Gibbs samplers.
Conclusion

Contributions

Part I. Specifically, this thesis comprises the following novel contributions. In Part I, we have constructed the generic MOSIS framework which admits essentially all Monte Carlo schemes as special cases when viewing them on a suitably extended space. We have successfully applied this framework to analyse and enhance a number of existing algorithms.

Chapter 1 constructed the generic MOSIS framework. The structure of MOSIS estimators is not new. Indeed, they are based on the importance sampling (IS) schemes from Andrieu and Roberts (2009), Andrieu et al. (2010). However, our novel contribution in Part I has been to demonstrate that this framework represents the extended state-space justification of essentially all Monte Carlo schemes.

Chapter 2 presented a generic SMC algorithm and showed that it, too, represents a special case of MOSIS. Again, the justification of SMC methods as (one-sample) IS on an extended space is not new. It was already used in Andrieu et al. (2010) and extended to non-exchangeable and adaptive resampling schemes in Lee, Murray and Johansen (in prep.). In light of this, our contribution has been threefold.

- We have extended the construction from Lee, Murray and Johansen (in prep.) to also allow for ‘biased’ resampling schemes.
- We have shown that the discrete particle filter from Fearnhead (1998) is a special case of the generic SMC algorithm.
- We have slightly generalised the ‘importance tempering’ approach from Gramacy et al. (2010) to re-use all the particles generated by an SMC sampler for approximating integrals. The resulting scheme may be viewed as a ‘doubly’ Rao–Blackwellised version of the recycling scheme from Nguyen et al. (2014).

Chapter 3 showed that MCMC algorithms, too, can be viewed as a special case of MOSIS. Employing the same framework at a lower level, we have also devised a generic MCMC kernel which admits essentially any MCMC kernel as a special case. Again, this generic kernel is not entirely new. It can be viewed as an extension of the approach from Tjelmeland (2004) and similar constructions can be found in Lee, Andrieu and Doucet (in prep.).
Our first contribution has therefore been pedagogical. We have shown that special cases of the generic MCMC kernel include MH kernels (Metropolis et al., 1953, Hastings, 1970), randomised MH kernels (Ceperley & Dewing, 1999; I. Murray et al., 2006), Barker’s kernel (Barker, 1965), forced-move kernels (Chopin & Singh, 2013), ensemble MCMC kernels (Neal, 2011), and (iterated) conditional sequential Monte Carlo (CSMC) kernels (Andrieu et al., 2010). Our second contribution is to have established connections between various complex MCMC kernels. Specifically, we have shown the following.

- Iterated CSMC algorithms with backward sampling (BS) (Andrieu et al., 2010; Whiteley, 2010) and with ancestor sampling (AS) (Lindsten et al., 2012) share the same extended target distribution.
- The ensemble MCMC method from Shestopaloff and Neal (2013) is a pseudo-marginal MH kernel and more specifically, it can be viewed as a non-standard particle marginal Metropolis–Hastings (PMMH) kernel (Andrieu et al., 2010) in which all the parent indices are analytically integrated out in order to form the unbiased estimate of the normalising constant.

Part II. In Part II we have combined a number of ideas from Part I to analyse, improve, and extend Monte Carlo schemes for a number of challenging problems.

Chapter 7 performed inference on the static parameters and latent variables in a class of piecewise deterministic processes via particle Gibbs (PG) samplers, based around a novel reformulation of the SMC filter from Whiteley et al. (2011). Specifically, our methodological contributions have been threefold.

- We have provided new insight into the approximation induced by this SMC filter and by related algorithms used in Del Moral et al. (2006b, 2007), Martin et al. (2013). We have also suggested a way of ensuring the existence of the importance weights.
- We have derived a new representation of this SMC filter which permits the use of BS and AS within PG samplers for piecewise deterministic processes.
Conclusion

- We have devised a novel \textbf{PG} step for rejuvenating a subset of the potentially large number of auxiliary variables used in an \textbf{SMC} filter. This reduces the impact of these auxiliary variables on the mixing of the \textbf{PG} chain while often also lowering the computational cost.

\textit{Chapter 5} performed \textbf{PG}-based inference on the static parameters (and latent variables) in a similar class of point-process models as \textit{Chapter 4}. However, whereas \textit{Chapter 4} dealt with improving the underlying \textbf{SMC} algorithm, \textit{Chapter 5} focussed on reducing correlation in order to improve mixing of the (particle) Gibbs chain. Our contributions can be summarised as follows.

- We have combined a \textbf{PG} sampler with a \textcolor{red}{non-centred parametrisation} introduced by Roberts et al. (2004).
- We have applied the algorithms to a particularly challenging Lévy-driven stochastic volatility model.

\textit{Chapter 6} devised sophisticated Monte Carlo algorithms for performing optimisation in latent-variable settings, i.e. in situations in which the objective function cannot be evaluated point-wise. Such settings include marginal maximum likelihood and marginal maximum a-posteriori estimation. Specifically, we have extended the \textcolor{red}{state augmentation for marginal estimation (SAME)} algorithm from Doucet et al. (2002) in a number of directions which, among other benefits, allows \textbf{SMC} algorithms to be used as proposal distributions. Our contributions can be summarised as follows.

- We have combined \textcolor{red}{SAME} with multiple-proposal type \textbf{MCMC} kernels such as (iterated) \textbf{CSMC} kernels. The resulting algorithm can be viewed as mimicking an intractable ‘idealised’ Gibbs-sampling implementation of \textcolor{red}{SAME}.
- We have combined \textcolor{red}{SAME} with pseudo-marginal \textbf{MCMC} kernels such as \textcolor{red}{PMMH} kernels. The resulting algorithm can be viewed as mimicking an intractable ‘idealised’ marginal \textcolor{red}{simulated annealing} algorithm.
- We have proposed population-based versions of these approaches by incorporating them into \textcolor{red}{SMC} samplers.

192
Future Directions

Throughout Part I, we have shown that the generic MOSIS framework is particularly useful for structuring and comparing various Monte Carlo schemes. It also guarantees unbiased estimates of integrals with respect to a user-supplied target measure.

However, as we have stressed throughout this work, this construction is fundamentally importance sampling based on a single sample point. It therefore does not guarantee consistency. In particular, knowing that MCMC and SMC methods are a special case of the MOSIS framework does not abolish the need to check that MCMC kernels are ergodic or that SMC algorithms are stable in a suitable sense.

It would therefore be desirable to establish conditions under which a more general MOSIS-based estimator is consistent. This would be a step towards a unifying mathematical framework for analysing convergence properties of Monte Carlo approximations.

In addition, the work in this thesis suggests the following more specific avenues of further research.

- As mentioned in Subsection 3.4.3, the fact that (iterated) CSMC algorithms with BS and AS both target the same extended distribution could perhaps be exploited to analyse and compare the convergence properties of these algorithms. This could potentially be achieved by slightly generalising the approach taken in Andrieu et al. (2013).

- As pointed out in Section 4.6, it would be desirable to extend the reformulation of the SMC filter for piecewise deterministic processes to allow for multiple-birth-moves. Such an extension would reduce or even remove the bias introduced by using only single-birth moves.

- As discussed in Section 5.5, it would be useful to more formally characterise the identifiability issues in multiple-component Lévy-driven stochastic volatility models for which these properties we empirically observed in Section 5.4.4.

- As stressed in Section 6.5, it would be beneficial to analyse the convergence properties of the SAME algorithm and the various extensions to it proposed in Section 6.3. For instance, it would be of interest to gain some more formal insight into the relationship between the choice of temperature schedule and the number of particles and to choose the latter automatically and adaptively.
In this appendix, we summarise a number of widely used resampling schemes for SMC algorithms. For completeness, we also state the conditional versions of the resampling schemes as derived in Andrieu et al. (2010), Whiteley et al. (2010), Lee, Murray and Johansen (in prep.). These are required for sampling from CSMC kernels, e.g. within particle Gibbs kernels.

A full comparison of resampling schemes was undertaken in Douc, Cappé and Moulines (2005). We only present schemes with a fixed number of particles. Resampling schemes which induce a random number of particles have been developed in Crisan et al. (1998).

To simplify the presentation, we drop the dependence on $Z_{1:t-1}$ from all subsequent notation. We note that when using an unbiased resampling schemes (such as multinomial, stratified, and systematic resampling) at Step t and if $\kappa_t(u_{1:t}, \cdot) = \text{Unif}_{N_t}$, then use of the time-reversal kernel from Assumption 2.9 implies

$$
\Lambda_t((u_{1:t}, o_{t-1}, a_{t-1}^k), \{k\}) = \frac{\tilde{R}_{t-1}^u(k, \{a_{t-1}^k\})}{W_{t-1}^{a_{t-1}^k}}.
$$

As a result, the ‘marginal’ resampling distribution $\tilde{R}_{t-1}^u(k, \{a_{t-1}^k\})$ cancels out in the expression of the particle weights in Equation 2.5 and does not actually have to be computed.

A.2 Multinomial Resampling

Multinomial resampling was employed within the first SMC algorithms (Stewart & McCarty Jr, 1992; Gordon et al., 1993). In this case, the joint
A Resampling Schemes

resampling scheme factorises as

$$\tilde{R}_{t-1} := \text{Mul}_{W_{t-1}}^{\otimes N_t},$$

where $W_{t-1} := (W_{t-1}^1, \ldots, W_{t-1}^{N_t-1})$ denotes the vector of Step-$(t - 1)$ self-normalised weights and Mul_p represents the multinomial distribution for some vector of probabilities, p.

By (conditional) independence, the marginal distribution associated with the parent index of the kth offspring is then defined by

$$\tilde{R}_{t-1}^{sk}(k, \cdot) := \text{Mul}_{W_{t-1}}.$$

The conditional resampling distribution given the kth parent index is then given by the product of the remaining $N_t - 1$ marginals.

A.3 Stratified Resampling

Stratified resampling (Kitagawa, 1996) generates the vector of parent indices according to

$$\tilde{R}_{t-1}^{sk}(\{a_{t-1}\}) := \int v(du) \prod_{n=1}^{N_t} \sum_{l=1}^{N_{t-1}} \mathbb{1}_{D_l}(u^n + n - 1)\delta_l(\{a_{t-1}^n\}),$$

where $U := U^{1:N_t}$, $v := \text{Unif}_{[0,1]}^{\otimes N_t}$, and

$$D_l := N_t\left(\sum_{m=1}^{l-1} W_{t-1}^m \cdot \sum_{m=1}^{l} W_{t-1}^m\right).$$

Hence, by (conditional) independence of the elements in the vector U, the marginal resampling distribution simplifies to

$$\tilde{R}_{t-1}^{sk}(k, \{a_{t-1}^k\})$$

$$= \int \text{Unif}_{[0,1]}(du) \sum_{l=1}^{N_{t-1}} \mathbb{1}_{D_l}(u + k - 1)\delta_l(\{a_{t-1}^k\})$$

$$= \text{Leb}(D_{a_{t-1}^k} \cap (k - 1, k)).$$

For the same reason, the conditional resampling distribution given the kth parent index is again the product of the remaining $N_t - 1$ marginals.
A.4 Systematic Resampling

Systematic resampling (Carpenter, Clifford & Fearnhead, 1999) induces a similar joint distribution over the parent indices as stratified resampling, except that we now take

$$ \nu(du) := \text{Unif}_{[0,1]}(du) \prod_{n=2}^{N_t} \delta_{u_n}(du^n). $$

The marginal resampling distribution is then the same as in the case of stratified resampling.

However, in contrast to stratified resampling, the parent indices are not conditionally independent. To sample from the conditional resampling distribution given the kth parent index, A_{k-1}, we may simply extend the space to include U^1 in the marginal resampling distribution. Then the conditional distribution of U^1 under this distribution is

$$ \frac{\text{Leb}_{[0,1]}(du) \sum_{l=1}^{N_t} 1_{D^l}(u + k - 1)\delta_l(\{a_{l-1}^k\})}{\text{Leb}(D^{a_{k-1}^k} \cap (k - 1, k])} $$

$$ = \text{Unif}_{\{u \in [0,1] | u + k - 1 \in D^{a_{k-1}^k} \cap (k - 1, k]\}}(du). $$

Having determined U^1 (and, by extension, $U^{2:N_t}$) the remaining parent indices A_{t-1}^{-k} are then determined.

A.5 Optimal Finite-State Resampling

In this section, we describe the resampling scheme for the discrete particle filter from Fearnhead (1998) (and whose conditional version was derived by Whiteley et al. (2010)) which is also briefly summarised in Subsection 2.3.4.

Having used Fearnhead (1998) Algorithm 5.2 to solve

$$ \sum_{n=1}^{N_{t-1}} [1 \land C_{t-1} W_{t-1}^n] = M_t, $$

for $C_{t-1} > 0$,

- define $L_e := \# \{ n \in K_{t-1} | W_{t-1}^n > 1/C_{t-1} \}$ and $H_t := K_{t-1} \setminus L_t$,
- let $l_t : \mathbb{N}_{L_t} \rightarrow L_t$ and $h_t : \mathbb{N}_{H_t} \rightarrow H_t$ be the functions which map m to the mth largest element in L_t and H_t, respectively.
A Resampling Schemes

Writing \(I := (I_1, \ldots, I_{M_t-#L_t}) \), \(l := \mathbb{N}_{#H_t} \), and \(I := |M_t-#L_t| \), the joint resampling distribution can be represented as

\[
\tilde{R}_{t-1}(|a_{t-1}|) := \left[\prod_{n=1}^{#L_t} \delta_{l_t(n)}(|a_{t-1}|) \right] \\
\times \left[\sum_{i \in I} \tilde{R}_{t-1}(|i|) \prod_{n=1}^{M_t-#L_t} \delta_{h_t(i)}(|a_{t-1}+n|) \right] \\
\times \prod_{n=2}^{K} \delta_{a_{t-1}^{M_t}}(|a_{t-1}^{(n-1)M_t+1:nM_t}|), \tag{A.1}
\]

where \(\tilde{R}_{t-1} \) represents a systematic resampling scheme for generating parent indices associated with \(M_t-#L_t \) offspring based on \(#H_t \) parents which are associated with the re-normalised weights \(\tilde{W}_{t-1}^{#H_t} \), defined via

\[
\tilde{W}_{t-1}^{n} := \frac{W_{t-1}^{h_t(n)}}{\sum_{m \in H_t} W_{t-1}^{m}} = \frac{C_{t-1}W_{t-1}^{h_t(n)}}{M_t-#L_t},
\]

for \(n \in \mathbb{N}_{#H_t} \), where the last equality is due to the definition of \(C_{t-1} \).

The marginal resampling distribution for generating the parent index for the \(k \)th offspring is thus given by \(\tilde{R}_{t-1}^{m}(k, \cdot) = \delta_{l_t(k)} \), in the case that \(k \mod M_t \leq #L_t \). Else, if \(k \mod M_t > #L_t \), by the properties of systematic resampling,

\[
\tilde{R}_{t-1}^{m}(k, |a_{t-1}^{k}|) = \text{Leb}(\tilde{D}_{t-1}^{h_t^{-1}}(a_{t-1}^{k}) \cap D_k), \tag{A.2}
\]

where \(h_t^{-1} \) is the inverse \(h_t \) and

\[
D_k := ((k \mod M_t)-#L_t-1, (k \mod M_t)-#L_t],
\]

\[
\tilde{D}^{t} := (M_t-#L_t) \left[\sum_{m=1}^{l-1} \tilde{W}_{t-1}^{m} \cdot \sum_{m=1}^{l} \tilde{W}_{t-1}^{m} \right].
\]

As in Subsection 2.3.4 we take \(\kappa_t(u_{1:2}, \cdot) \) to be the uniform distribution on \(Z_{(u_{1:2}, M_t+1, u, M_t)} \). By Assumption 2.9 we then have

\[
\Lambda_t((u_{1:2}, o_{t-1}, a_{t-1}^{k}), \{k\}) = \frac{\tilde{R}_{t-1}^{m}(k, |a_{t-1}^{k}|)}{1 \wedge C_{t-1}^{a_{t-1}^{k}}},
\]

198
A.5 Optimal Finite-State Resampling

Note that only the denominator is therefore needed to calculate the particle weights in an SMC algorithm.

In a CSMC algorithm, to sample a particular particle index $B_t = K$ conditional on knowing the associated parent index A^K_{t-1} and to perform conditional resampling in order to generate the remaining the parent indices, we proceed as follows.

- If $C_{t-1} W^a_{t-1} > 1$, we set $k := l_t^{-1}(a^K_{t-1})$, where l_t^{-1} denotes the inverse of l_t, and sample the remaining parent indices according to the right hand side in Equation A.1 (ignoring the kth factor in the first product).
- If $C_{t-1} W^a_{t-1} < 1$, we sample $K = k$ according to the distribution proportional to right hand side in Equation A.2 (interpreted as a measure in k). We then only need to perform a conditional version of the systematic resampling scheme R_{t-1}. This proceeds as described in Section A.4

The remaining parent indices $A^M_t + : N_t$ are then also determined.
Notation

\(\ll \) \quad 'is absolutely continuous with respect to'
\(\\equiv, \cong \) \quad 'is defined as', 'defines'
\(\sim, \propto \) \quad 'is distributed according to', 'is proportional to'
\(\min, \land; \max, \lor \) \quad minimum; maximum
\(\inf, \sup \) \quad infimum, supremum
\(\otimes \) \quad tensor product
\(\#A \) \quad cardinality of a set \(A \)
\(\Psi_g(\mu) \) \quad Boltzmann–Gibbs transformation of a measure \(\mu \) under \(g \)
\(\mathbf{E}, \mathbf{V}; \mathbf{E}_\mu, \mathbf{V}_\mu \) \quad expectation, variance under \(\mathbb{P} \); under \(\mu \)
\(\mathbf{id} \) \quad identity function
\(1_A, \mathbb{I} \) \quad indicator function of a set \(A \), unit function
\(\mathcal{O}, \mathcal{O}_P \) \quad 'big O', 'big O in probability' asymptotic notation
\(\mathbb{N}, \mathbb{Z}, \mathbb{R} \) \quad set of positive integers, integers, real numbers
\(\mathbb{N}_k \) \quad set of positive integers up to \(k \) (\(\{n \in \mathbb{N} \mid n \leq k\} \))
\(\mathbb{Z}_{k,l} \) \quad set of integers from \(k \) to \(l \) (\(\{z \in \mathbb{Z} \mid k \leq z \leq l\} \))
\(\mathcal{B}(X) \) \quad Borel \(\sigma \)-algebra on \(X \)
\(\mathcal{F}(X,Y) \) \quad set of \(\mathcal{B}(X)/\mathcal{B}(Y) \)-measurable functions
\(\mathcal{L}(\mu), \mathcal{L}^p(\mu) \) \quad set of \(\mu \)-integrable, \(p \)-times \(\mu \)-integrable real functions
\(\mathcal{M}_\sigma(X), \mathcal{M}(X) \) \quad set of positive \(\sigma \)-finite and positive finite measures on \(X \)
\(\mathcal{M}_1(X) \) \quad set of probability measures on \(X \)
\(\mathcal{K}_\sigma(X,Y), \mathcal{K}(X,Y) \) \quad set of positive \(\sigma \)-finite, positive finite kernels from \(X \) to \(Y \)
\(\mathcal{K}_1(X,Y) \) \quad set of stochastic kernels from \(X \) to \(Y \)
\(\delta_x \) \quad Dirac measure/point mass centred at \(x \)
\(\text{Exp}_\lambda \) \quad exponential distribution with rate \(\lambda \)
\(\text{Dir}_\alpha \) \quad Dirichlet distribution with parameter vector \(\alpha \)
\(\text{Gam}_{\alpha,\beta} \) \quad gamma distribution with shape, scale parameters \(\alpha, \beta \)
\(\text{Leb} \) \quad Lebesgue measure on \(\mathbb{R} \)
\(\text{Mul}_p \) \quad multinomial distribution with probabilities \(p \)
\(\mathcal{N}_{\mu,\Sigma} \) \quad normal distribution with mean \(\mu \), covariance matrix \(\Sigma \)
\(\text{t}_{v,\mu,\sigma} \) \quad non-central Student-t distribution with \(v \) degrees of freedom
\(\text{Unif}_A \) \quad uniform distribution on a set \(A \)
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>ancestor sampling</td>
</tr>
<tr>
<td>BS</td>
<td>backward sampling</td>
</tr>
<tr>
<td>CDF</td>
<td>cumulative distribution function</td>
</tr>
<tr>
<td>CLT</td>
<td>central limit theorem</td>
</tr>
<tr>
<td>CP</td>
<td>centred parametrisation</td>
</tr>
<tr>
<td>CSMC</td>
<td>conditional sequential Monte Carlo</td>
</tr>
<tr>
<td>DPF</td>
<td>discrete particle filter</td>
</tr>
<tr>
<td>ESS</td>
<td>effective sample size</td>
</tr>
<tr>
<td>FFBS</td>
<td>forward filtering–backward smoothing</td>
</tr>
<tr>
<td>HMM</td>
<td>(general state-space) hidden Markov model</td>
</tr>
<tr>
<td>IID</td>
<td>independent and identically distributed</td>
</tr>
<tr>
<td>IS</td>
<td>importance sampling</td>
</tr>
<tr>
<td>MAP</td>
<td>maximum a-posteriori</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov chain Monte Carlo</td>
</tr>
<tr>
<td>MCWM</td>
<td>Monte Carlo within Metropolis</td>
</tr>
<tr>
<td>MH</td>
<td>Metropolis–Hastings</td>
</tr>
<tr>
<td>ML</td>
<td>maximum likelihood</td>
</tr>
<tr>
<td>MOSIS</td>
<td>marginalised one-sample importance sampling</td>
</tr>
<tr>
<td>NCP</td>
<td>non-centred parametrisation</td>
</tr>
<tr>
<td>PDP</td>
<td>piecewise deterministic process</td>
</tr>
<tr>
<td>PG</td>
<td>particle Gibbs</td>
</tr>
<tr>
<td>PMMH</td>
<td>particle marginal Metropolis–Hastings</td>
</tr>
<tr>
<td>PPP</td>
<td>Poisson point process</td>
</tr>
<tr>
<td>RJMCMC</td>
<td>reversible-jump Markov chain Monte Carlo</td>
</tr>
<tr>
<td>RS陈某</td>
<td>reformulated sequential Monte Carlo</td>
</tr>
<tr>
<td>SA</td>
<td>simulated annealing</td>
</tr>
<tr>
<td>SAME</td>
<td>state augmentation for marginal estimation</td>
</tr>
<tr>
<td>SIR</td>
<td>sequential importance resampling</td>
</tr>
<tr>
<td>SLLN</td>
<td>strong law of large numbers</td>
</tr>
<tr>
<td>SMC</td>
<td>sequential Monte Carlo</td>
</tr>
<tr>
<td>VRPF</td>
<td>variable-rate particle filter</td>
</tr>
</tbody>
</table>
References

References

References

References

References

References

References

References

Neal, R. M. (2011, January 2). MCMC using ensembles of states for problems with fast and slow variables such as Gaussian process regression. arXiv:1101.0387v1

References

References

References

