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Summary

This thesis develops computationally e�cient methodology in two areas.
Firstly, we consider a particularly challenging class of discretely observed
continuous-time point-process models. For these, we analyse and im-
prove an existing �ltering algorithm based on sequential Monte Carlo

(smc) methods. To estimate the static parameters in such models, we
devise novel particle Gibbs samplers. One of these exploits a sophisticated
non-centred parametrisation whose bene�ts in a Markov chain Monte

Carlo (mcmc) context have previously been limited by the lack of block-
wise updates for the latent point process. We apply this algorithm to a
Lévy-driven stochastic volatility model. Secondly, we devise novel Monte
Carlo methods – based around pseudo-marginal and conditional smc
approaches – for performing optimisation in latent-variable models and
more generally. To ease the explanation of the wide range of techniques
employed in this work, we describe a generic importance-sampling frame-
work which admits virtually all Monte Carlo methods, including smc and
mcmc methods, as special cases. Indeed, hierarchical combinations of
di�erent Monte Carlo schemes such as smc within mcmc or smc within
smc can be justi�ed as repeated applications of this framework.
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Introduction

Context

Since its invention in the 1940s, the idea of approximating integrals by
random samples, known as the Monte Carlo method, has served as a
vital tool for scienti�c discovery in a wide range of disciplines such as
biology (Wilkinson, 2011), econometrics (Greenberg, 2012; Durbin & Koop-
man, 2012), engineering (Cappé, Moulines & Rydén, 2005), epidemiology
(Gibson & Renshaw, 1998; O’Neill & Roberts, 1999), operations research
(Fishman, 1996), physics (Spanier & Gelbard, 1969; Sokal, 1997; Lapeyre,
Pardoux & Sentis, 2003), and political science (Gelman et al., 2013)

In addition, the Monte Carlo method has spurred technological pro-
gress appreciable in everyday life. For instance, it now aids the tracking
and positioning of mobile robots (Dellaert, Fox, Burgard & Thrun, 1999),
produces weather forecasts (Epstein, 1969; Leith, 1974), predicts elec-
tions (‘FiveThirtyEight’, 2015), prices complicated �nancial instruments
(Glasserman, 2004), and generates visual e�ects in blockbuster movies
from animation studios such as Pixar (Veach & Guibas, 1995; Lokovic &
Veach, 2000) – even leading to a Technical Oscar for Thomas Lokovic
and Eric Veach (‘The 86th Scienti�c & Technical Awards’, 2014).

This thesis is largely concerned with developing sophisticated instances
of the Monte Carlo method tailored to particular challenging real-world
problems. To that end, we combine, extend, and improve a number of
existing algorithms. As a by-product, we provide a unifying Monte Carlo
framework which admits new insight into the relationship between the
vast array of complex Monte Carlo algorithms that exist today.

Throughout, we view the Monte Carlo method as a technique for ap-
proximating measures and, by extension, as a technique for approximating
integrals. Hence, we make heavy use of measure-theoretic notation. We
hope that the reader is not discouraged by this presentation. In fact, this
thesis only uses basic undergraduate-level mathematical techniques.
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Introduction

Outline

This thesis is divided into two parts. Part I provides some background on
various Monte Carlo algorithms. Novel methodology is mostly, but not
exclusively, con�ned to Part II.

Part I. In the �rst part, we brie�y review basic Monte Carlo methodology,
such as importance sampling (is), sequential Monte Carlo (smc) methods,
and Markov chain Monte Carlo (mcmc) methods. To provide the reader
with a better intuition for such a plethora of techniques, we present a gen-
eric is framework, best described as marginalised one-sample importance

sampling (mosis), which admits essentially all instances of the Monte
Carlo method, including those mentioned above, as special cases.
Chapter 1 reviews is as a particularly useful interpretation of the Monte

Carlo method. We also describe self-normalised is as well as state-space
extension and state-space reduction techniques. Combining these ideas,
we then develop the generic mosis framework which forms the heart
of any Monte Carlo algorithm. We also show that this framework can,
for instance, be used to justify pseudo-marginal approaches.

Chapter 2 devises a generic smc scheme and demonstrates that it admits
essentially any smc algorithm as a special case, including, for instance,
the discrete particle �lter which could hitherto not be viewed as a stand-
ard smc algorithm. In turn, we show that the generic smc algorithm is
itself a special case of mosis. In addition, we generalise and improve
existing schemes which approximate integrals by recycling all particles
generated by an smc sampler.

Chapter 3 shows that mcmc methods, too, can be viewed as mosis and
that a repeated, hierarchical application of mosis forms the basis of all
mcmc kernels, including pseudo-marginal, randomised, and ensemble
mcmc kernels as well as multiple-proposal Metropolis–Hastings and
conditional sequential Monte Carlo kernels. This circumvents the need
for checking su�cient conditions such as detailed balance individually
for each of these kernels. We also prove the hitherto unknown res-
ult that the variance-reduction techniques for conditional sequential
Monte Carlo kernels: backward sampling and ancestor sampling share
the same extended target distribution. Finally, we comment on the rela-
tionship between particle mcmc and ensemble mcmc methods which,
to our knowledge, has also not been investigated in the literature.

xx



Notation

Part II. In the second part, we develop novel Monte Carlo methodology
for two problems. Firstly, we devise methods for �ltering and static-
parameter estimation in a class of discretely observed continuous-time
piecewise deterministic processes. These may also be viewed as partially-
observed point processes. Secondly, we construct e�cient Monte Carlo
algorithms for optimisation in latent-variable models and more generally.
Chapter 4 motivates the use of piecewise deterministic processes and

reviews, analyses and improves an existing smc-based �lter for such
models. Around it, we also devise a particle Gibbs sampler – with a
novel auxiliary-variable rejuvenation step – to perform static-parameter
estimation.

Chapter 5 considers static-parameter estimation in partially-observed
piecewise deterministic processes driven by compound Poisson pro-
cesses. To improve mixing of the particle Gibbs chain, we adopt a
non-centred parametrisation. The resulting algorithm is applied to a
particularly challenging Lévy-driven stochastic volatility model.

Chapter 6 develops a framework for performing optimisation, e.g. for
maximum likelihood or maximum a-posteriori estimation in latent-
variable models. Speci�cally, we devise generic smc and mcmc optim-
isation schemes within which sophisticated Monte Carlo approaches
such as pseudo-marginal methods or particle Gibbs samplers can be
incorporated.

A detailed list of novel contributions can be found on Page 190.

Notation

It may be helpful to clarify some notational conventions used throughout
this work although non-standard notation is also explained in the main
text on the �rst use. For easy reference, we also provide a list of frequently
used symbols on Page 201 along with a list of acronyms on Page 203.

Sets. We denote by R � Z � N , respectively, the sets of real numbers,
integers and positive integers. We often make use of the following subsets
of the latter two: Zk;l WD f z 2 Z j k � z � l g and Nl WD Z1;l .
Furthermore, #A denotes the cardinality of some countable set A. Finally,
A�1Wn WD�

n
pD1Ap WD A1 � � � � � An represents the Cartesian product of

sets A1; : : : ; An.
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Vectors. We write x1WN
t WD .x1

t ; : : : ; x
N
t / and xn1WT WD .xn1 ; : : : ; xnT /. To

avoid ambiguity, we often use the bold face notation xt WD x1WN
t when

both sub- and superscripts need to be vector valued. In this case, we often
let x�kt WD .x1Wk�1

t ; xkC1WNt / be the vector x without its kth component.
Finally, AT denotes the transpose of some matrix A.

Measures. All measures considered in this work will be positive. We
write M¢.X/ � M.X/ � M1.X/ for the sets of (positive) ¢-�nite, �nite,
and probability measures on some measurable space .X;X/. Whenever
possible, we take, X DW B.X/, where B.X/ is the Borel ¢-algebra on X.
In this case, we refer to elements of the above-mentioned sets as measures
‘on X’. In particular, Leb 2 M¢.R/ denotes the Lebesgue measure on
R. For �; � 2 M¢.X/, we write � � � if � absolutely continuous with
respect to � and in this case, d�=d� denotes the corresponding Radon–
Nikodým derivative, i.e. � D Œd�=d���. It is sometimes convenient to
abuse the notation for Radon–Nikodým derivatives and to alternatively
write Œd�=d��.x/ DW �.dx/=�.dx/.

Functions. For measurable spaces .X;X/ and .Y;Y/, endowed with suit-
able ¢-algebras X and Y, we de�ne

F .X;Y/ WD
˚
f W X! Y

ˇ̌
f is X=Y-measurable

	
:

Furthermore, we let idX 2 F .X;X/ denote the identity function and let
1B 2 F .X; f0; 1g/ represent the indicator function of B � X, i.e.

1B.x/ WD

(
1; if x 2 B ,
0; if x 2 X n B .

If B D X, we set 1X DW 1. For any function f W X! Y, and B � Y, the
preimage of B under f is denoted f �1.B/ WD f x 2 X j f .x/ 2 B g. For
functions f and g with domain X and Y, respectively, we use the tensor-
product notation Œf ˝ g�.x; y/ WD .f .x/; g.y//, for .x; y/ 2 X � Y.
Furthermore, if X D Y, we write fg.x/ WD f .x/g.x/, for x 2 X, as usual.

Integrals. For any � 2M¢.X/ and any p 2 Œ0;1/, we let

Lp.�/ WD
˚
f 2 F .X;R/

ˇ̌
�.jf jp/ <1

	
denote the set of p-times �-integrable real-valued functions with the
convention that L1.�/ DW L.�/, and with the following convenient
shorthand for integrals: �.f / WD

R
X f d�.
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Kernels. For measurable spaces .X;X/ and .Y;Y/, a (positive) ¢-�nite
kernel is a function K W X � Y ! Œ0;1/ if it satis�es both the following
properties:

8A 2 Y W K. � ; A/ 2 F .X; Œ0;1//;
8 x 2 X W K.x; � / 2M¢.Y/:

We call K , �nite if K.x; � / 2 M.Y/, and stochastic if K.x; � / 2 M1.Y/,
for any x 2 X. We denote by K¢.X;Y/ � K.X;Y/ � K1.X;Y/ the sets
of ¢-�nite, �nite, and stochastic transition kernels from .X;X/ to .Y;Y/.
For suitable kernels K 2 K¢.X;Y/ and L 2 K¢.Y;Z/, we may de�ne a
kernel K ˝ L 2K¢.X;Y � Z/ by

ŒK ˝ L�.x; A � B/ WD K.x; 1AL. � ; 1B//;

for all .x; A;B/ 2 X � Y �Z, and de�ne a kernel KL 2K¢.X;Z/ by

KL.x;B/ WD ŒK ˝ L�.x;Y � B/;

for all .x; B/ 2 X �Z.
By extension, we setK˝1Wn WD

Nn
pD1Kp WD K1 ˝ � � � ˝Kn, for suitable

kernels K1; : : : ; Kn. In particular, if K1 D � � � D Kn D K , we use the
shorthand K˝1Wn DW K˝n.

The same conventions for (tensor)products apply to measures by view-
ing them as kernels which are constant in their �rst argument. Finally,
especially in Part II, we write a stochastic kernel K 2 K1.X;Y/ as
K.x; dy/ D K.dyjx/, for x 2 X. In particular, the distribution K.dyjx/
is then sometimes implicitly de�ned to be the full conditional distribution
of the second component under the probability measure K 2M1.X � Y/.

Distributions. We generally work with some underlying probability
space .Ω;A;P / and let E�;V� denote expectation and variance under
some probability measure �, with the convention that EP D E and
V P D V . Hence, for a random variable X 2 F .Ω;Rd / with distribution
� WD P ıX�1 2M1.X/, whereX�1.A/ is the preimage ofA underX , and
for f 2 L.�/, we have the usual identity �.f / D E�Œf � D EŒf .X/�.
For this work, important probability measures are N�;˙ , the normal
distribution with mean � and covariance matrix ˙ , and •x , the Dirac
measure or point mass centred at x, de�ned by •x.A/ WD 1A.x/. For a
full list of standard distributions used in this work, see Page 201.
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1 Elementary Monte Carlo Tools

1.1 Importance Sampling

1.1.1 Motivation

In this chapter, we describe tools that form the basis of all known Monte

Carlo algorithms. In Sections 1.1 and 1.2, we justify importance sampling and

self-normalised importance sampling. In Section 1.3, we describe state-space

extension techniques and also ways of reducing the dimension of the state

space (i.e. Rao–Blackwellisation). Finally, Section 1.4 combines the ideas

from the preceding sections into a generic importance-sampling framework

which admits essentially all known Monte Carlo schemes as a special case.

Let .Ω;A;P / be some probability space and let M.X/ denote the set
of �nite positive measures on some measurable space .X;B.X//. For
 2M.X/, assume that we want to calculate integrals

.f / WD

Z
X
f d; (1.1)

for all test functions f 2 F � L./ WD ff W X! R j f is -integrable g.
1.1 Remark. Let M¢.X/ denote the set of ¢-�nite (positive) measures on

.X;B.X//. Note that any �nite integral Q. Qf / with respect to Q 2M¢.X/
may be written in the form of Equation 1.1 by applying the change of measure

 WD Qf Q (where
Qf Q.A/ WD Q. Qf 1A/, for A 2 B.X/), and setting f � 1.

Analytical computation of such integrals is often too costly or even
impossible. Instead, numerical integration methods such as quadrature
rules may be used. Unfortunately, the error of these methods is typically
of order O.N�c=d ), where d is the dimension of the state space X, c > 0,
and N is the number of grid points. The need for N to be exponentially
large in d is known as the curse of dimensionality (Bellman, 1957). It
prohibits the use of standard numerical integration methods in higher
dimensions.
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1 Elementary Monte Carlo Tools

1.1.2 Change of Measure

To apply the methods developed in this work, we need to turn .f / into
an integral with respect some probability measure. This can always be
achieved as follows. Let M1.X/ denote the set of probability measures on
.X;B.X// and select  2M1.X/ such that  �  . In this case,

.f / D  .wf / D E Œwf �;

where w denotes the Radon–Nikodým derivative w WD d=d .

1.2 Remark. It su�ces that f  �  . However, we make the stronger

requirement:  �  , here because it is independent of the particular test

function and we are usually concerned with approximating .f / for a large

class of test functions, F.

1.1.3 Sampling-Based Approximation

Given a vector of independent and identically distributed (iid) draws
X WD X 1WN from , (a suitable version of) the Glivenko–Cantelli theorem
(Billingsley, 2012, Theorem 20.6) justi�es using the empirical measure of
these samples to approximate the probability measure  ,

 mc;N
WD

1
N

NX
nD1

•Xn :

Here, •x 2M1.X/ is the point mass (or Dirac measure) located at x 2 X.
We may thus approximate the integral .f / D  .wf / D E Œwf � by

 mc;N .wf / D

Z
X
wf d mc;N

D
1
N

NX
nD1

wf .Xn/;

i.e. we estimate the expectation by the corresponding sample mean.
Approximating integrals with respect to some probability measure in

this way – usually by generating X on a computer using pseudo-random
numbers – is known as the Monte Carlo method. It was developed during
the 1940s by John Von Neumann, Stanislav M. Ulam, Nicholas C. Metro-
polis and other mathematicians and physicists working on the Manhattan

2



1.1 Importance Sampling

Project at the Los Alamos Scienti�c Laboratory, New Mexico. Some of the
earliest available references include Goertzel and Kahn (1949), Metropolis
and Ulam (1949). Historical accounts can be found in Metropolis (1987),
Eckhard (1987), Rota (2008).

Note that we may also view the Monte Carlo method as a procedure for
approximating the measure  by the following (random) unnormalised
weighted empirical measure,

 is;N
WD

1
N

NX
nD1

w.Xn/•Xn;

where w.Xn/ is known as an unnormalised importance weight.

1.3 Remark. Throughout this work, for simplicity, we refer to the unnor-

malised importance weights w.Xn/ simply as ‘weights’ or ‘importance

weights’ and we refer to  is;N
as a ‘weighted empirical measure’, even

though

PN
nD1w.X

n/ ¤ 1, in general.

This view of the Monte Carlo method is known as importance sampling (is)
(Goertzel & Kahn, 1949). Though, initially, it was also referred to as quota
sampling (Goertzel, 1949). Plugging in the test function, it clearly leads to
the same estimator for .f / as above, i.e.  is;N .f / D  mc;N .wf /. One
of the goals of Part I of this work is to demonstrate that essentially every
Monte Carlo algorithm can be seen as a special case of is which, in turn,
is merely a convenient re-interpretation of the Monte Carlo method.

The is-interpretation of the Monte Carlo method is useful because
we are usually concerned with approximating .f / for a large class of
test functions, F, but without selecting and sampling from a di�erent
proposal distribution  for each f 2 F as this tends to be costly. The is-
interpretation helps separating the in�uence of the test function f from
the in�uence of the proposal distribution  on the estimator  is;N .f /

through the oscillations of w.

1.1.4 Theoretical Properties

It is easy to see that  is;N .f / is an unbiased estimator for .f / and
the strong law of large numbers (slln) (Billingsley, 2012, Theorem 22.1)
ensures that it converges almost surely to .f /, as N !1. De�ne the

3



1 Elementary Monte Carlo Tools

set Li. / WD f f W X ! R j f i is  -integrable g. If wf 2 L2. /, so
that the asymptotic variance � 2.f / WD V  Œf � exists, a simple central

limit theorem (clt) (Billingsley, 2012, Theorem 27.1) guarantees that
p
N
�
 is;N .f / � .f /

� N!1
�! Z � N0;�2.f /;

in distribution. In particular, the Monte Carlo error j is;N .f / � .f /j

vanishes at a rate OP .N
�1=2/ which is independent of the dimension d .

1.2 Self-Normalised Importance Sampling

1.2.1 Motivation

Assume that we wish to approximate �.f /, for some probability measure
� 2M1.X/ and f 2 L.�/. In many applications, the Radon–Nikodým
derivative zw WD d�=d can only be evaluated up to some unknown
constant z > 0. That is, we can evaluate w WD z zw point-wise but not zw.

The intractability of z renders (standard) is inapplicable because we
can then only approximate the measure  2M.X/, de�ned by

 WD w D z�

and  ¤ � , except in the trivial case that z D 1. Self-normalised is
exploits fact that if � is a probability measure then z D .1/. Based
on this identity, we may use standard is to separately approximate the
numerator and denominator in the identity � D =z as described in the
next subsection.

We conclude this subsection by noting that the intractability of z usually
arises because the target distribution � or the proposal distribution  are
constructed via non-linear transformations of some other measures on X.
More precisely, for � 2M¢.X/ and g 2 L.�/, de�ne the Boltzmann–Gibbs

transformation of � under g, ‰g , by

‰g.�/ WD g�=�.g/:

Assume that � is constructed via � D ‰g.$/ and  is constructed via
 D ‰h.�/, for some $; � 2 M¢.X/, g 2 L.$/, and h 2 L.�/. In
this case, we often have that z D $.g/=�.h/ and this ratio is usually
intractable.

4



1.2 Self-Normalised Importance Sampling

1.4 Example (Bayesian posterior). In Bayesian statistics, � may be the

posterior distribution given some prior distribution$ and some data y with

associated likelihood Qg. � ; y/ DW g D L, i.e. � D ‰L.$/. The ‘model

evidence’ or ‘marginal likelihood’,$.L/, is then typically intractable.

1.2.2 Sampling-Based Approximation

The idea of self-normalised is is to separately approximate the numerator
and denominator on the right hand side in the identity � D =z via
standard is. That is, we approximate the measure  by

 is;N
D

1
N

NX
nD1

w.Xn/•Xn

and the integral z D .1/ by

zis;N
WD  is;N .1/ D

1
N

NX
nD1

w.Xn/:

Let W n.X/ WD w.Xn/=zis;N denote the nth self-normalised importance

weight. Combining the previous two approximations then de�nes the
self-normalised is approximation of � ,

� is?;N
D
 is;N

zis;N D

NX
nD1

W n.X/•Xn :

Again, we can approximate the integral �.f / by

� is?;N .f / D

NX
nD1

W n.X/f .Xn/:

1.2.3 Theoretical Properties

The estimator � is?;N .f / is biased but strongly consistent, i.e. � is?;N .f /

converges almost surely to �.f /, as N ! 1. As shown by Geweke
(1989), for instance, the estimator again satis�es a clt, i.e.

p
N
�
� is?;N .f / � �.f /

� N!1
�! Z � N0;�2.f /;

5



1 Elementary Monte Carlo Tools

in distribution, if we assume that w;wf 2 L2. / to ensure that the
asymptotic variance � 2.f / WD �. zwŒf � �.f /�2/ exists. More precisely,
Liu (2001, p. 35) proves that

E
�
� is?;N .f /

�
D �.f /C

�. zwŒf � �.f /�/

N
CO.N�2/;

V
�
� is?;N .f /

�
D
�. zwŒf � �.f /�2/

N
CO.N�2/:

In particular, zis;N is again an is estimate of z and thus unbiased.
Finally, even though � is?;N .f / is biased, its mean-square error can

sometimes be smaller than that of a standard is estimate � is;N .f / (as-
suming that zw can be evaluated). Intuitively, the former can obtain vari-
ance reductions by exploiting the fact that � is a (random) probability
measure. Indeed, � is?;N is a (random) probability measure but � is;N is
not, in general, because its weights do not sum to 1.

1.2.4 E�ective Sample Size

From the expression for the asymptotic variance � 2.f / above, it is clear
that the performance of self-normalised is is determined by how closely
the target distribution � resembles the proposal distribution  , at least if
we neglect the contribution from the oscillations of f .

Several criteria have been proposed to measure the e�ciency of is
approximations, such as the e�ective sample size (ess), de�ned by Kong,
Liu and Wong (1994) as

ESS WD
N

V . zw/C 1
D

Nz

�.w/
; (1.2)

if w is �-integrable. The e�ective sample size takes values in .0; N �. If
 D � then zw � 1 so that ESS D N . On the other hand, ESS decreases
the more  and � di�er.

Unfortunately, the ess cannot be calculated analytically because the
di�culty of computing integrals of the form �.w/ is one of the reasons
for turning to importance sampling in the �rst place. We thus have to
resort to estimating it by

ESS
N
WD

Nzis;N

� is?;N .w/
D
Œ
PN
nD1w.X

n/�2PN
mD1Œw.X

m/�2
D

1PN
nD1ŒW

n.X/�2
: (1.3)
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1.3 State-Space Extension and Reduction

This estimate of the e�ective sample size ranges from 1 (all self-normalised
importance weights are zero except one) to N (all importance weights
are identical).

Care must be taken when interpreting this estimate. For �nite N , it
is easy to construct examples in which the self-normalised is estimator
has a high variance despite it being very likely that all self-normalised
importance weights are roughly identical. This is the case if the proposal
distribution is likely to miss high-probability regions under � .

1.3 State-Space Extension and Reduction

1.3.1 Enlarging the Space

Assume again that we are interested in approximating (integrals with
respect to) a measure  2M.X/ by is, using some proposal distribution
 2M1.X/ such that  �  . Sometimes, we cannot evaluate the Radon–
Nikodým derivative w WD d=d point-wise – not even up to some
unknown proportionality constant. Thus, direct is approximations of
 and, by extension, self-normalised is approximations of a probability
measure � /  are not available.

However, in some cases, the intractability of the importance weights
can be circumvented by approximating a measure N on an extended space
which admits  as a marginal. More precisely, assume that
(1) there exists a measure N 2M.xX/ on some space xX WD X � Z which

admits  as a marginal, i.e. .A/ D N.A � Z/, for any A 2 B.X/,
(2) we can sample from a distribution N 2M1.xX/ satisfying N � N ,
(3) we can evaluate xw WD d N=d N point-wise.

In this case, we can simply construct an is approximation N is;N of N .
As shown below, the relevant marginal of N is;N then approximates  .

1.5 Example (Bayesian posterior, continued). Many models are spe-

ci�ed through extra latent (unobserved) parameters Z so that � is a mar-

ginal of the joint posterior distribution N� WD ‰xL. x$/ associated with the

joint prior x$ 2 M1.xX/ and the ‘joint’ likelihood for both parameters,

Qg..x; z/; y/ DW xL.x; z/. is on the marginal space X is then often impossible.

In this case, we need to devise a suitable extended proposal distribution N .

7



1 Elementary Monte Carlo Tools

1.6 Example (complex proposal distributions). Even if w D d=d 
can be evaluated, it can often be desirable to work on some extended space xX
on which a more e�cient proposal distribution N can be constructed (and

the additional auxiliary variables Z included in N cannot be integrated

out). In this case, we need to devise a suitable extended measure N .

1.3.2 Importance Sampling on the Joint Space

In the setting described above, we can perform self-normalised is on the
joint space xX. Let xXn D .Xn; Zn/ where xX 1; : : : ; xXN are iid samples
distributed according to N . Given an is approximation

N is;N
WD

NX
nD1
xw. xXn/• xXn

of N , we then immediately obtain an approximation of the marginal
measure  in the form of

N WD

NX
nD1
xw. xXn/•Xn :

The approximation N of the marginal measure  is sometimes referred
to as random-weight is (Fearnhead, Papaspiliopoulos, Roberts & Stuart,
2010). This is because the weights are still random even after conditioning
on the sample points X 1; : : : ; XN which determine the location of the
point masses used in the construction of N . Special cases of this include
is-squared (Tran, Scharth, Pitt & Kohn, 2014), for instance.

Unfortunately, performing is on an extended space xX D X � Z is
generally less e�cient than working directly on the (smaller) marginal
space X. However, the fact that working on the marginal space might be
impossible (as in Example 1.5) or that we might be able to construct more
e�cient proposal distributions by working on an extended space (as in
Example 1.6) often justi�es this approach.

When working on an extended space, there is often a considerable
degree of freedom in constructing N and N . Modern methodological
research on Monte Carlo algorithms can be viewed as almost exclusively
dealing with optimising the choice of these measures even though this is
not always immediately obvious as the examples in Subsection 1.3.4 show.
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1.3 State-Space Extension and Reduction

1.3.3 Rao–Blackwellisation

In the preceding subsections we mentioned the utility of performing is on
an extended space. However, approximating distributions on large spaces
comes at a cost. Even though the order of the Monte Carlo convergence
rate, OP .N

�1=2/, is independent of the dimension of the state space, the
number of sample points, N , usually needs to grow exponentially with
its dimension in order to guarantee a constant Monte Carlo error.

As many components as possible (of the target measure  ) should
therefore be integrated out analytically as advocated by Trotter and Tukey
(1956). By performing Monte Carlo approximations only on a smaller
space, substantial variance reductions can be attained.

More precisely, let  2M.X/ be some �nite measure on X WD zX�Z and
let f 2 L.X/ be some test function with domain X. Assume that  is;N

is an is approximation of  based on iid samples X 1; : : : ; XN which
are drawn from some suitable proposal distribution and which can be
decomposed asXn D . zXn; Zn/, where zXn takes values in zX andZn takes
values in Z.

It is then preferable to use the Rao–Blackwellised estimator

�0.f / WD E
�
 is;N .f /

ˇ̌
zX 1WN �;

(if we can calculate this integral) rather than �1.f / WD  is;N .f / itself.
This is because by Jensen’s inequality, the former is dominated by the
latter in the convex order, i.e. for any convex function � W R! R such
that the following integrals are well de�ned,

EŒ�.�0.f //� � EŒ�.�1.f //�:

Note that this result implies V Œ�0.f /� � V Œ�1.f /� and the same ordering
holds for the mean-square error since EŒ�0.f /� D EŒ�1.f /�.

This result does not generally carry over to self-normalised is ap-
proximations. That is, �0.f /=�0.1/ is not necessarily dominated by
�1.f /=�1.1/ in the convex order (Liu, 2001, p. 38).

1.7 Remark. Note that �0.f / is just a standard is estimate of the integral

Q.1/, where Q.A/ WD .f 1A�Z/, for A 2 B.zX/, is the target measure

(which is lower-dimensional than  ). This justi�es using the term ‘margin-

alisation’ as a synonym for ‘Rao–Blackwellisation’ in the next section.
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1 Elementary Monte Carlo Tools

1.3.4 Examples

A main thread throughout this work is that most seemingly-complicated
Monte Carlo algorithms can be viewed as special cases of is on a suitably
extended space (and thus as instances of the Monte Carlo method). For
example, it is well known that sequential importance sampling (the idea
of which dates at least as far back as (Hammersley & Morton, 1954; M. N.
Rosenbluth & Rosenbluth, 1955) and special cases of it such as annealed
importance sampling (Jarzynski, 1997b, 1997a; Neal, 2001) may be viewed
as standard is.

In this subsection, we show, by example, that this also applies to many
other algorithms. First, as shown in Example 1.8, rejection sampling (also
referred to as accept–reject method) �rst described in Kahn (1949), may
be viewed as a special case of (self-normalised) is on an extended space.
This was pointed out in Y. Chen (2005), for instance.

1.8 Example (rejection sampling). Rejection sampling is usually viewed

as generating a random number of iid samples from some distribution

� 2M1.X/, as follows.

(1) Propose iid samples X 1; : : : ; XN
from some distribution  2M1.X/

satisfying � �  .

(2) Assume there exists z > 0 such that w WD zd�=d � 1 and such that

w can be evaluated.

(3) For n 2 NN WD fn 2 N j n � N g, independently ‘accept’ Xn
with

probability w.Xn/ and set K WD fn 2 NN j X
n
is ‘accepted’ g. Then

marginally, .Xn/n2K is an iid sample from � .

Rejection sampling thus entails generating iid samples xX 1; : : : ; xXN
from

an extended proposal distribution

N WD  ˝ Unif Œ0;1� 2M1.xX/;

where xX WD X � Œ0; 1�. These proposals are then used to form an is approx-

imation N is;N
of the extended measure

N WD  ˝ L 2M.xX/;

where L.x; dz/ WD 1Œ0;w.x/�.z/dz. The importance weights are therefore

de�ned by xw. Nx/ WD Œd N=d N �.x; z/ D 1Œ0;w.x/�.z/. The resulting marginal
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1.3 State-Space Extension and Reduction

self-normalised is approximation of � can then easily be seen to be

�N WD .#K/�1
X
n2K

•Xn;

where #K denotes the cardinality of the set K . In particular, N is;N .1/ is an

unbiased estimate of the marginal acceptance probability, z.

Finally, a standard is approximation of  D z� on the marginal space X
(with proposal distribution  ) can be viewed as a Rao–Blackwellisation of

the rejection-sampling approximation. That is,

 is;N .f / D
1
N

NX
nD1

wf .Xn/ D E
�
N is;N .f ˝ 1Œ0;1�/

ˇ̌
X
�
:

Note that we are �xing the number of proposed samples, N , in the

rejection-sampling scheme. A Rao–Blackwellisation in the case where rejec-

tion sampling is performed until a certain number of accepted samples has

been obtained was developed in Casella and Robert (1996).

Many other algorithms that seem to be generalisations of is, at a �rst
glance, can actually also be viewed as standard is on an extended space,
as shown in Examples 1.9 and 1.10.
1.9 Example (generalised importance sampling). Let x	 2 K1.X;X/
be some -invariant stochastic kernel, i.e. such that  x	 D  . As shown in

MacEachern, Clyde and Liu (1999, Theorem 6.1) it is possible to apply such a

kernel to the weighted sample used to construct an is approximation of 

without having to adjust the weights.

Even though this procedure is sometimes referred to as ‘generalised’ im-

portance sampling (e.g. Robert & Casella, 2004, Section 14.2), as pointed out

in Doucet and Johansen (2011) (see also Del Moral, Doucet & Jasra, 2006b),

it may be viewed as standard importance sampling on the extended space

xX WD X2
(i.e. Z D X in the notation of this section), with extended proposal

distribution N WD  ˝	 and extended target measure N WD  ˝˘ , where

˘.x0; dx/ WD
d	.x; � /

d	
.x0/.dx/ D

d	.x; � /
d

.x0/.dx/

represents the time-reversal kernel of 	 associated with  . Indeed writing
xX D .X;X 0/, the weights xw. Nx/ D Œd N=d N �. Nx/ D Œd=d �.x/ do not

depend on the second component.
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1 Elementary Monte Carlo Tools

1.10 Example (dynamic weighting). The dynamically weighted Monte
Carlo-framework (Wong & Liang, 1997; Liu, Liang & Wong, 2001; Liang,

2002) designs an extended measure

Q.dx � dv/ WD vg.dx; dv/;

on zX WD X � Œ0;1/. Here, g 2 P .zX/, zX WD X � Œ0;1/, is said to be

correctly weighted with respect to  if Q admits  as a marginal, i.e. if

.A/ D Q.A � Œ0;1// for any A 2 B.X/.
In this case, an iid sample

zX 1; : : : ; zXN
� Q WD g;

where zXn D .Xn; V n/, can be used to approximate  by standard is.

The method is called ‘dynamic’ importance sampling because the nth

importance weight, zw. zXn/ D V n, is not necessarily deterministic given

Xn
. It is also referred to as ‘generalised’ importance sampling in Liu (2001,

pp. 36–37), Liang (2002) because taking

g.dx � dv/ WD  .dx/•w.x/.dv/;

wherew WD d=d , leads back to a direct is approximation of the marginal

 using  as a proposal distribution.

However, this approach is clearly no more than standard is on an extended

space. Indeed, let N 2 M.xX/ be some other extended measure on a space

xX D X � Z such that (1) N admits  as a marginal, (2) N has a density xw

with respect to some probability measure N 2M1.xX/. Using the proposal
distribution N , we can then construct an is approximation

N is;N
WD

1
N

NX
nD1
xw. xXn/• xXn

of N and hence obtain an approximation N of the marginal  .

Note, however, that Z and thus xX D X � Z is often a high-dimensional

space which can render the preceding is scheme ine�cient. Since we are only

interested in the marginal measure  , the key insight here is that we can

turn this is scheme into an is scheme on the potentially lower-dimensional

space zX D X � V, with V WD Œ0;1/, with extended target Q and proposal

Q D g as follows.
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1.4 Marginalised One-Sample Importance Sampling

De�ne � WD idX ˝ xw, Q D g WD N ı ��1, then we can see that the

marginal approximations of  based on performing is using the pair . Q; Q /

and using the pair . N; N / coincide, i.e.

N D
1
N

NX
nD1
xw. xXn/•Xn D

1
N

NX
nD1
zw. zXn/•Xn D

1
N

NX
nD1

V n•Xn;

where xXn D .Xn; Zn/.

The transformation � used in Example 1.10 to interpret the marginal of
an is approximation of a measure N on a potentially high-dimensional
space xX � Z as the marginal of an is approximation of a measure Q on
the potentially lower-dimensional space zX is also the main justi�cation of
pseudo-marginal Monte Carlo approaches (Andrieu & Roberts, 2009) the
general idea of which is described in Subsection 1.4.3.

1.4 Marginalised One-Sample Importance

Sampling

1.4.1 Extended Target Measure

In this section, we present a generic extended measure which admits the
target measure,  , as a marginal. It is based on the is framework intro-
duced in Andrieu and Roberts (2009), Andrieu, Doucet and Holenstein
(2010) which was also extensively analysed in Lee (2011).

As shown in the next two chapters, virtually all known Monte Carlo
schemes, e.g. Markov chain Monte Carlo (mcmc) methods, sequential
Monte Carlo (smc) methods, and even generalisations of the latter such as
Divide-&-Conquer smc (Lindsten, Johansen et al., 2014), can be regarded
as Rao–Blackwellised is approximations – based on a single sample –
targeting this measure (or as self-normalised versions thereof).

A repeated, hierarchical application of this framework justi�es employ-
ing one such Monte Carlo scheme into another, e.g. using standard is
within standard is (Tran et al., 2014), smc within mcmc (Andrieu et al.,
2010), mcmc within smc (Gilks & Berzuini, 2001; Del Moral et al., 2006b),
or smc within smc (Johansen, Whiteley & Doucet, 2012; Chopin, Jacob
& Papaspiliopoulos, 2013; Vergé, Dubarry, Del Moral & Moulines, 2013).
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1 Elementary Monte Carlo Tools

As before, we want to approximate an integral .f /, where  2M.X/
is some �nite measure and f 2 F is some -integrable test function.

To that end, we de�ne an extended target measure N 2 M.xX/ and
an extended proposal distribution N 2 M1.xX/ such that xw WD d N=d N 
exists and can be evaluated (point-wise). Here, xX WD X� xZ is an extended
space such that if xX D .X; xZ / � N , then xZ can be decomposed as
xZ D .K;Z / D .K;X ; Y /, where
� K is some discrete index taking values in a �nite space K,
� X represents the elements of a ‘pool’ of candidates for each of the

components of the vector X � � WD =.1/ such that the set of
candidate components indexed by K , denoted XK , takes values in X
(see Remark 1.11 below for more details),
� Y is some set of other auxiliary variables taking values in a space Y.

1.11 Remark. The de�nition of xX D .X;K;Z / is left deliberately vague

so that the framework covers a wide range of Monte Carlo schemes.

(1) To simplify the notation and without loss of generality, we restrict our

exposition in this section to the case: K D NN and X D XN , for some

N 2 N n f1g. In other words, XK
is the Kth element out of a pool of

N candidates, X D X 1WN
, for X .

(2) More generally, let X D X1Wt have t components for each of which we

have a pool of N 0 candidates. We could then consider an index vector

K1Wt taking values in .NN 0/
t
such that .X

K1
1 ; : : : ; X

Kt
t / takes values

in X. This is the case in smc algorithms outlined in the next chapter.

However, by applying a suitable reparametrisation and by introducing

some additional conditionally degenerate copies of the components in

the pool, we can always reduce such a seemingly more complex setting

to the case in which we only have a one-dimensional index K taking

values in NN , here N D .N
0/t .

(3) We could also consider a random number of candidates, e.g. smc al-

gorithms with random numbers of particles (Crisan, Del Moral & Lyons,

1998). However, we refrain from doing so in order to work on a product

space xX D X � K � Z which greatly simpli�es the notation.

We are now ready to de�ne the extended target measure N . Take some
stochastic kernel x̆ 2 K1.X; xZ/. The distribution x̆ .x; � / can then be

14



1.4 Marginalised One-Sample Importance Sampling

used to de�ne the full conditional distribution of xZ under the extended
target distribution N� WD N= N.1/, where we call

N.d Nx/ WD .dx/ x̆ .x; dNz/

the extended target measure. Clearly, N admits  as a marginal. In addition
to admitting  as a marginal, we make the following minimal assumption
on this extended target measure.

1.12 Assumption. The stochastic kernel x̆ 2K1.X; xZ/ is such that

xX � N� ) XK
D X; almost everywhere.

Similarly, de�ne an extended proposal distribution

N .d Nx/ WD  .dz/�.z; dk/•xk.dx/;

where the probability measure  2 M1.Z/ and the stochastic kernel
� 2K1.Z;K/ are chosen such that N � N .

1.4.2 Generic Estimator

Let xw WD d N�=d N . Using xX D .X; xZ / D .X;K;Z / drawn from N , we
may approximate the extended measure N by N is;1 WD xw. xX/• xX . This
represents an is approximation of N based on a single sample. De�ne the
kth ‘weight’

wk.Z / WD E
�
xw. xX/ 1fkg.K/

ˇ̌
Z
�
;

then we may analytically integrate out (‘marginalise out’) some subvector
of xX which includes .X;K/ – for simplicity, we only integrate out .X;K/,
here – to yield the following marginalised one-sample importance sampling

(mosis) approximation of the marginal measure  ,

mosis;N .A/ WD E
�
N is;1.A � xZ/

ˇ̌
Z
�

D

X
k2K

wk.Z /•Xk.A/;

15



1 Elementary Monte Carlo Tools

for any A 2 B.X/. If desired, a self-normalised is approximation of �
may then be constructed as

�mosis?;N
WD

mosis;N

zmosis;N D
X
k2K

W k.Z /•Xk ;

where W k.Z / WD wk.Z /=zmosis;N will be called the kth self-normalised
weight and zmosis;N WD mosis;N .1/ is a standard is estimate of the nor-
malising constant, z, and is therefore clearly unbiased.

The estimate of the normalising constant is a key quantity and its
variance is strongly connected with the e�ciency of the mosis scheme
due to the following result.

1.13 Proposition. Let �.z; fng/ D W n.z/, for any .n; z/ 2 K � Z, then

xw. Nx/ D zmosis;N ; for any Nx 2 xX.

Proof. This follows immediately from the de�nition of wn.z/. �

We stress that while this framework ensures unbiasedness, it does
not necessarily ensure consistency because for any N 2 N , we are still
performing is with only one sample point. The following trivial counter
example demonstrates this problem.

1.14 Example. For some distribution q 2M1.X/ with  � q, set

x̆ .x; dNz/ WD UnifK.dk/•x.dxk/
Y

n2Knfkg

•xk.dxn/;

 .dx/ WD q.dx1/

NY
nD2

•x1.dxn/;

and �.z; dk/ WD UnifK.dk/. Then, writing w WD d=dq, the estimator

mosis;N .f / is almost surely equal to wf .X 1/, for any N 2 N . It is

therefore unbiased but clearly not consistent.

E�ective Sample Size. Finally, we may use this framework to obtain
an approximation of the ess, which, in this case, is de�ned according to
Equation 1.2 as ESS D Nz2= N. xw/. An approximation of ESS is thus

ESS
N
D
N.EŒ N is;1.1/jZ �/2

EŒ N is;1. xw/jZ �
D

NŒ
P
k2Kw

k.Z /�2P
k2KŒw

k.Z /�2=�.Z ; fkg/
:

16



1.4 Marginalised One-Sample Importance Sampling

If �.z; � / D UnifNN
, for any z 2 Z, then this reduces to

ESS
N
D

1P
k2KŒW

k.Z /�2
:

1.4.3 Pseudo-Marginal Interpretation

Assume now that the target measure, extended target measure and exten-
ded proposal distribution depend on some parameter � 2 Θ. We indicate
this by writing them as suitable kernels, i.e. by writing .�; � /, N.�; � /,
N .�; � / and d N.�; � /=d N .�; � / D xw� . Furthermore, let $ 2 M.Θ/ be

some �nite measure.
Suppose that we want to approximate the following ‘marginal’ measure

under the measure $ ˝  , de�ned by

?.A/ WD $.1A. � ; 1// D Œ$ ˝ �.A � X/;

for all A 2 B.Θ/. Unfortunately, the function . � ; 1/ is often intractable.
We must therefore resort to approximating it via mosis (often within
some other Monte Carlo scheme). More precisely, we use some other
Monte Carlo scheme to target the extended measure$˝ N (which admits
? as a marginal) or a normalised version thereof.

1.15 Example (Bayesian posterior, continued). If � is the (marginal)

posterior distribution of some parameter�, thenL.�/ D .�; 1/ is its (mar-

ginal) likelihood. This is often intractable if the model is speci�ed through

additional latent variables, X , which need to be integrated out to obtain

.�; 1/. However, in order to approximate � D ‰L.$/ D L$=$.L/

it usually su�ces to approximate the (unnormalised) measure L$ D ?.

This approximation su�ces for a self-normalised is approximation of � . Or,

within mcmc schemes, the normalising constant $.L/ D ?.1/ cancels

out in the ‘acceptance probabilities’ (see Chapter 3).

Write zT .�; � / WD N .�; � /ı. xw�/�1, where . xw�/�1 denotes the preimage
under xw� , then, for all A 2 B.Θ/, we have the identity

?.A/ D Œ$ ˝ N�.A � xX/

D Œ$ ˝ zT �.1A ˝ idŒ0;1//

17



1 Elementary Monte Carlo Tools

D

Z
A�V

$.d�/.�; 1/ zT .�; dv/
v

.�; 1/

D

Z
A

?.d�/E

�
V

.�; 1/

�
;

where V � zT .�; � / and V WD Œ0;1/. Note that for any � 2 Θ, the
random variable V is an (unbiased) is estimate of .�; 1/ and hence

E

�
V

.�; 1/

�
D 1:

We may thus use some other Monte Carlo scheme to approximate $ ˝ N
(or its normalised version), based on the proposal distribution q ˝ N for
some q 2M1.Θ/ satisfying ? � q. Ideally, we would like work on the
marginal space and approximate the marginal ? using samples from q.
However, this is impossible here because the ‘marginal’ Radon–Nikodým
derivative Œd?=dq�.�/ involves .�; 1/ and is therefore intractable.

Instead, we work on the extended space Θ � xX and target $ ˝ N .
Then any realisation .�; Nx/ of .�; xX/ � q ˝ N implies a corresponding
realisation v D xw�. Nx/ of V � zT .�; � /. As a result,

d$
dq
.�/ xw�. Nx/ D

d?

dq
.�/

v

.�; 1/

can be viewed as a ‘noisy’ but often tractable (because xw� is tractable)
evaluation of the intractable Radon–Nikodým derivative Œd?=dq�.�/.

The interpretation as a noisy evaluation of an intractable marginal dens-
ity has led to such constructions being termed pseudo-marginal methods.
They were introduced by Beaumont (2003), Andrieu and Roberts (2009),
extended by Andrieu et al. (2010) and are usually applied within mcmc
methods. However, the pseudo-marginal target measure $ ˝ N can be
approximated by other types of mosis schemes, too. For instance, some
pseudo-marginal smc algorithms are mentioned in Subsection 2.3.5.

As mentioned in Example 1.10, an approximation of the marginal meas-
ure ? obtained from performing is on the potentially high-dimensional
space Θ � xX (with proposal distribution q ˝ N ) can be interpreted as
an approximation obtained from performing is on the potentially lower-
dimensional space Θ � V.
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1.4 Marginalised One-Sample Importance Sampling

1.4.4 Application to Standard Importance Sampling

By construction, mosis is obviously a special case of (Rao–Blackwellised)
is on the extended space xX. However, to demonstrate the power of this
approach, this subsection shows that mosis may also be viewed as a
generalisation of is on the original space, X.

LetN 2 N , K D NN , X D XN , and write xZ D .K;X/with the pool of
candidates X D X 1WN . That is, we do not use further auxiliary variables,
Y , here. Take

x̆ .x; dNz/ WD �.dk/•x.dxk/q˝.N�1/.dx�k/; (1.4)

where X�n WD .X 1Wn�1; XnC1WN / denotes the pool of candidates from
which the nth element has been removed, and set � WD UnifK. For
 � q 2M1.X/, de�ne the extended proposal distribution via WD q˝N
and �.z; � / WD UnifK, for any z 2 Z.

The importance weight is then given by xw. Nx/ D Œd=dq�.x/ DW w.x/.
Thus N is;1 WD xw. xX/• xX represents an is approximation of N based on
a single sample point xX � N . However, we are only interested in ap-
proximating the marginal measure  . Noting that wk.z/ D w.xk/=N ,
we may analytically integrate out .X;K/ to obtain a Rao–Blackwellised
estimator, for any A 2 B.X/ de�ned by

mosis;N .A/ D E
�
N is;1.A � Z/

ˇ̌
Z
�

D

X
k2K

wk.Z /•Xk.A/

D
1
N

NX
nD1

w.Xn/•Xn.A/

D  is;N .A/:

Hence, is can be viewed as a special case of mosis. In particular, the
approximation of the ess reduces to the expression in Equation 1.3,

ESS
N
D
Œ
P
k2Kw

k.Z /�2P
k2KŒw

k.Z /�2
D
Œ
PN
nD1w.X

n/�2PN
mD1Œw.X

m/�2
:
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1 Elementary Monte Carlo Tools

1.5 Summary

Of course, the mosis-framework presented in this chapter is not neces-
sary for justifying a standard is approximation as that given above.

Its power resides in the fact that it still guarantees unbiased estimates
of .f / when ‘generalising’ standard is to settings in which
(1) the candidates X 1; : : : ; XN are not necessarily independently or

identically proposed, i.e.  ¤ q˝N for any distribution q,
(2) we can evaluate xw D d N=d N but not necessarily the Radon–Nikodým

derivative of  with respect to a suitable marginal under the joint
proposal distribution  .

1.16 Remark. Equation 1.4 shows that in the example considered in this

subsection, the extended target measure, N , is constructed by extending the

actual target measure,  , using the full conditional distribution of the N � 1
candidates X�k under the joint proposal distribution  . The importance

weights therefore force us to evaluate (densities with respect to) the marginal
distribution of the kth candidate under  . This makes it di�cult to use

complex joint proposal distributions, e.g. joint proposal distributions under

which the candidates are dependent.

The major innovation due to Andrieu and Roberts (2009) – which has

received surprisingly little attention and is rarely exploited outside of particle

mcmcmethods – is the realisation that the extended target measure can also

be constructed by extending  di�erently. This permits a much more �exible

choice of joint proposal distribution. More precisely, following Andrieu

and Roberts (2009), we can construct N in such a way that the importance

weights only require us to evaluate (densities with respect to) the conditional
distribution of the kth candidate under  .

Combined with the introduction of the auxiliary variable Y in Andrieu

et al. (2010), this realisation turns the mosis approach into an extremely

powerful instance of the Monte Carlo method.

Other instances of the mosis framework – more complicated than the
standard is approximation described in the previous subsection – will
be described in the next two chapters. In particular, we show that smc
(Chapter 2) and mcmc (Chapter 3) methods may be viewed as special
cases of mosis. One possible way of viewing the relationship between
is, mosis and their special cases is outlined in Figure 1.1.
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Monte Carlo
method

is

random-weight
is

dynamic
weighting

pseudo-marginal
is

is-squared

sequential
is

annealed
is

generalised
is

rejection
sampling mosis

smc

mcmc

divide-and-conquer
smc

Figure 1.1 Relationship between various instances of the Monte Carlo method
mentioned in Chapters 1, 2, and 3.
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2 Sequential Monte Carlo Methods

2.1 Introduction

2.1.1 Motivation

In this chapter, we describe sequential Monte Carlo methods. Section 2.1

outlines a generic sequential Monte Carlo algorithm which admits essentially

all known sequential Monte Carlo algorithms as a special case. In Section 2.2,

we show that this generic algorithm can itself be viewed as a special case of

the marginalised one-sample importance sampling framework introduced in

Chapter 1 and thus as importance sampling. This was already established in

Andrieu et al. (2010) and extended to non-exchangeable resampling schemes

in Lee, Murray and Johansen (in prep.). We extend the latter construction

to also allow for biased resampling schemes. In Section 2.3, we interpret a

number of sequential Monte Carlo algorithms, such as the discrete particle

�lter, as special cases of this framework. In Subsection 2.3.3 we generalise and

improve existing schemes for re-using all particles to approximate integrals.

Finally, in Section 2.4, we show that forward �ltering–backward smoothing,

too, is a special case of importance sampling.

Sequential Monte Carlo (smc) methods are a class of Monte Carlo
schemes suitable for approximating a sequence of related measures. Dat-
ing at least as far back as Stewart and McCarty Jr (1992), Gordon, Salmond
and Smith (1993), Del Moral (1995), smc methods were originally de-
veloped to approximate the optimal �ltering problem in discrete-time
target tracking applications, e.g. in non-linear or non-Gaussian (general

state-space) hidden Markov models (hmms) (sometimes called state-space

models). In this particular setting, they are often called ‘particle �lters’.
Today, it is well known – and has been formalised in Del Moral et

al. (2006b) – that smc methods are more widely applicable. They have
been used for estimating (ratios of) normalising constants (Neal, 2001),
for inference in ‘static’ models (Chopin, 2002), for rare-event estimation
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(Cérou, LeGland, Del Moral & Lezaud, 2005), for inference in continuous-
time models (Fearnhead et al., 2010), for optimisation (Johansen, Doucet &
Davy, 2008), for model selection (Peters, 2005; Jasra, Doucet, Stephens &
Holmes, 2008; Yan Zhou, Johansen & Aston, 2013), and for approximately
solving inverse problems (Kantas, Beskos & Jasra, 2014).

A tutorial-style introduction to the area can be found in Doucet and
Johansen (2011). A book-length treatment of their application tohmms can
be found in Cappé et al. (2005). A comprehensive theoretical framework
was developed in the monographs Del Moral (2004, 2013) – see also, Del
Moral and Doucet (2014) for a gentle introduction to this framework in
the case of �nite state spaces.

Various kinds of smc algorithms have been developed, each tailored to
individual problems. We detail some of these in Section 2.3. Essentially
any such algorithm can be viewed as special cases of the generic smc al-
gorithm presented in the next subsection. In turn, as shown in Section 2.2,
the generic smc algorithm can itself be viewed as no more than a special
case of the marginalised one-sample importance sampling (mosis) scheme
described in Chapter 1.

The basic idea of smc methods is as follows. Assume that we want to
approximate (integrals with respect to) a family of positive �nite measures
. Qt/t2T; usually, T D NT , for T 2 N or T D N . In this case, we can de�ne
a sequence of extended measures .t/t2T, where t 2M.X�1Wt/, such that
t admits Qt as a marginal. As described in Section 1.3 in the previous
chapter, working on such a product space X�1Wt WD�tsD1 Xs , which typically
includes all random variables generated over the course of the algorithm,
is usually necessary to circumvent the calculation of intractable integrals
related to the importance weights.

At Step t � 1, the algorithm approximates t�1, and thus Qt�1, by
weighted samples. To obtain an approximation of t , and thus Qt , smc
methods can be thought of as extending and re-weighting an existing
collection of sample points, often called ‘particles’.

2.1 Remark. To reduce the notational burden, we assume here that the

number of particles generated at Step t , Nt 2 T, is deterministic. However,

all developments in this chapter still hold if it was made a (non-degenerate)

random variable as, for instance, in Crisan et al. (1998), Jasra, Lee, Yau and

Zhang (2013), Lee, Andrieu and Doucet (in prep.).
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2.1.2 Particles and Parent Indices

Let Xt WD X 1WNt
t denote the collection of Nt particles which takes values

in Xt WD XNtt . These are generated at Step t of an smc algorithm targeting
a measure t 2M.X�1Wt/, where X�1Wt WD�tsD1 Xs . The nth particle at Step s,
Xn
t , will be considered as the o�spring of the Ant�1th particle generated at

Step t � 1. We therefore call Ant�1 the nth parent index sampled at Step t .
For simplicity, we collect the parent indices in vectors At�1 WD A1WNt

t�1
taking values in At�1 WD KNtt�1, where Kt WD NNt .

To simplify the notation, we collect all random variables generated by
the smc algorithm at Step t in a vector Zt . That is, we write Z1 WD X1
and Zt WD .Ot�1;At�1;Xt/, for t > 1. These take values in the spaces
Z1 WD X1 and Zt WD Ot�1 � At�1 � Xt , for t > 1. Here, Ot�1 is an
auxiliary variable taking values in some space Ot�1. It will parametrise
the proposal and resampling kernels and hence allow us to formalise
adaptive resampling schemes, for instance.

After Step t�1, we have already sampledZ1Wt�1 based on which we have
constructed an approximation of t�1 given by the weighted empirical
measure


smc;N1Wt�1
t�1 WD

Nt�1X
nD1

wnt�1.Z1Wt�1/•X
Bn1Wt�1jt�1
1Wt�1

:

Here, we have used the following notation.
� X

b1Wt
1Wt D .X

b1
1 ; : : : ; X

bt
t / denotes the particle path or trajectory associ-

ated with some particle indices b1Wt .
� Bn1Wt jt D .B

n
1jt ; : : : ; B

n
t jt
/ represents the particle indices formed by tra-

cing back the nth ancestral lineage at Step t (as determined by the
parent indices A1Wt�1 D .A1; : : : ;At�1/), i.e. Bn

t jt
D n and

Bnsjt D A
BnsC1jt
s ; for s < t .

� wnt�1.z1Wt�1/ 2 Œ0;1/ is a weight associated with the nth particle path
at Step t . As before, we use this terminology even though these ‘weights’
do not sum to 1, in general. The corresponding self-normalised weights
are denoted W n

t�1.z1Wt�1/ WD w
n
t�1.z1Wt�1/=Œ

PNt�1
nD1 w

m
t�1.z1Wt�1/�.
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2 Sequential Monte Carlo Methods

At Step t , to obtain an approximation of t ,


smc;N1Wt
t WD

NtX
nD1

wnt .Z1Wt/•X
Bn1Wtjt
1Wt

;

smc algorithms sample additional particles, parent indices and potentially
other auxiliary random variables, all collected in the ordered set Zt , from
a particular stochastic kernel 	t 2 K1.Z�1Wt�1;Zt/ de�ned below. The
extended set of samples Z1Wt is then used to construct a new collection
of weights, .wnt .z1Wt//n2Kt . In many cases, the computational cost of
sampling the additional random variables and of computing the new
weights is constant in t . This constant cost per step makes smc methods
particularly bene�cial in settings in which sequences of measures need
to be approximated under computational constraints, e.g. in real-time
object-tracking applications.

The conditional distribution of the random variables generated at Step t
is then given by the stochastic kernel

	t.z1Wt�1; dzt/ WD St�1.z1Wt�1; dot�1/Rt�1..z1Wt�1; ot�1/; dat�1/
�Qt..z1Wt�1; ot�1; at�1/; dxt/:

The individual components of this kernel are as follows. Some examples
of these quantities are discussed in Section 2.3.
� Rt�1 2 K1.Z�1Wt�1 � Ot�1;At�1/ generates the parent indices At�1,

a process usually known as resampling (see Remark 2.2 in the next
subsection for a more precise explanation of the terminology).
� Qt 2K1.Z�1Wt�1 � Ot�1 � At�1;Xt/, for t > 1, generates new particles

at Step t . It is commonly referred to as the (particle) proposal kernel.
At Step 1, X1 is sampled from some suitable proposal distribution
q1 2M1.X1/.
� St�1 2 K1.Z�1Wt�1;Ot�1/ generates an auxiliary variable Ot�1 which

governs the type of resampling or proposal kernel chosen at Step t .

2.1.3 Resampling

2.2 Remark. We use the convention that ‘not resampling’ at Step .s C 1/
of an smc algorithm refers to the case that Rs..z1Ws; os/; � / D •.1;:::;Ns/
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(assuming that Ns D NsC1). Otherwise, the non-degenerate distribution
zRs.z1Ws; � / from which the parent indices As are sampled will be called a

resampling scheme. The latter could also depend on the auxiliary variable

Os but we do not make this explicit to keep the notation concise.

Some common resampling schemes, such as multinomial, strati�ed, and
systematic resampling, are outlined in Appendix A and Cappé, Godsill
and Moulines (2007) provide an overview. The following de�nition are
given by (e.g. Andrieu et al., 2010, Equations 23 and 24).

2.3 De�nition. Let As � zRs.Z1Ws; � /.

(1) The resampling scheme zRs is called unbiased if

E

�NsC1X
nD1

1fmg.A
n
s /

ˇ̌̌̌
Z1Ws; Os

�
D NsC1W

m
s .Z1Ws/;

for all m 2 Ks .

(2) The resampling scheme zRs is called exchangeable if

E
�
1fmg.A

n
s /
ˇ̌
Z1Ws; Os

�
D E

�
1fmg.A

k
s /
ˇ̌
Z1Ws; Os

�
;

for all .m; n; k/ 2 Ks � K2
sC1.

2.4 Remark. Informally, unbiased resampling schemes yield a new set of

samples which still target the same measure as before but whose weights are

all equal. In contrast, in our terminology, ‘biased’ resampling schemes do not

lead to equally weighted samples. We stress that using ‘biased’ resampling

schemes does not jeopardise the unbiasedness of smc-based estimates of

integrals of the form t.f / (as long as the post-resampling weights take the

resampling scheme into account).

Although unbiased resampling schemes are common in practice, the
generic framework developed in this chapter shows that neither unbiased-
ness nor exchangeability is actually needed for valid smc algorithms, i.e.
needed for smc algorithms that yield unbiased estimates of integrals of
the form t.f /. Indeed, unbiasedness may not even be desirable, as the
following examples show.
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2.5 Example (‘biased’ resampling schemes). In the some situations, it

can be bene�cial to use biased resampling schemes (as stressed in Remark 2.4,

their use does not introduce any bias into smc-based estimates).

(1) The discrete particle �lter from Fearnhead (1998) described in Subsec-

tion 2.3.4 employs a biased resampling scheme which is optimal for �nite

state spaces.

(2) A biased resampling scheme called ‘chopthin’ resampling was introduced

in Gandy and Lau (2015) and is related to that of Fearnhead (1998). It

appears to empirically outperform ‘unbiased’ resampling schemes such

as systematic resampling in simple state-space models. Intuitively, the

‘unbiasedness’ property (i.e. yielding evenly-weighted samples) may be

stronger than what is actually needed to ensure stability of the algorithm

and may require the introduction of too much Monte Carlo error. Further

theoretical investigation of this issue is clearly needed.

(3) Assume the number of particles is constant, i.e. Nt D N for some

N 2 N . If the weights at the end of Step t do not depend on Zt , then it

can be bene�cial to use a resampling scheme which is biased, in the sense

that it is based on the particle weights from the current step, W n
t .Z1Wt/,

rather than those from the previous step,W n
t�1.Z1Wt�1/, e.g. a resampling

scheme such that for any m 2 Ks ,

E

� NX
nD1

1fmg.A
n
t�1/

ˇ̌̌̌
Z1Wt�1; Ot�1

�
D NW m

t .Z1Wt/:

This is often viewed as ‘switching the order’ of sampling and resampling.

(4) More generally, biased resampling schemes permit incorporating ‘future

information’ into the particle system (Wang, Chen & Guo, 2002; Lin,

Chen & Liu, 2013). Other potential bene�ts are mentioned in Liu (2001,

p. 73).

2.1.4 Generic Algorithm

Let Ft be a collection of t -integrable test functions and assume that
we want to approximate t.ft/. In this subsection, in Algorithm 2.6,
we summarise the generic smc scheme developed above. As already
mentioned, essentially any smc algorithm can be viewed as a special case
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2.2 Interpretation as Importance Sampling

of this algorithm. The next section shows that this algorithm can itself be
viewed as a special case of the mosis scheme from the previous chapter.

2.6 Algorithm (sequential Monte Carlo). At Step t 2 N ,

(1) sample Zt � 	t.z1Wt�1; � /,

(2) calculate the (updated) weights .wnt .Z1Wt//n2Kt ,

(3) approximate t.ft/ by 
smc;N1Wt
t .ft/, for ft 2 Ft .

As in the previous chapter, the usual smc approximation of the prob-
ability measure �t D t=t.1/ results from taking the self-normalised
version of  smc;N1Wt

t and hence approximating �t by

�
smc?;N1Wt
t WD


smc;N1Wt
t


smc;N1Wt
t .1/

D

NtX
nD1

W n
t .Z1Wt/•X

Bn1Wtjt
1Wt

;

recalling that W n
t .z1Wt/ D w

n
t .z1Wt/=z

smc;N1Wt
t is the nth self-normalised

Step-t particle weight. Furthermore,

z
smc;N1Wt
t WD 

smc;N1Wt
t .1/ D

NtX
nD1

wnt .Z1Wt/

is the usual smc estimate of the normalising constant. This estimate
is unbiased – a famous result �rst proved by Del Moral (1996) using
martingale techniques. However, this result also follows trivially from
the interpretation of smc as is described in the next section.

In the remainder of this chapter, we show that a number of well-known
smc algorithms can be viewed as special cases of the generic algorithm
presented in this section. First, however, we show that the generic smc
algorithm is itself a special case of mosis.

2.2 Interpretation as Marginalised

One-Sample Importance Sampling

2.2.1 Extended Proposal Distribution

In this section, we introduce smc methods as a special case of the mosis
framework described in Chapter 1. Given a target measure t 2M.X�1Wt/,
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2 Sequential Monte Carlo Methods

we construct an extended target measure Nt 2 M.xXt/ and extended
proposal distributions N t 2M1.xXt/ such that
� Nt admits t (and hence Qt ) as a marginal,
� we can sample from N t ,
� xwt WD d Nt=d N t exists and can be evaluated point-wise.

The usual smc approximation of t ,  smc;N1Wt
t , can then be obtained by

Rao–Blackwellising N is;1
t , where the latter is an is approximation of Nt

based on a single sample point xXt � N t .
This interpretation of smc methods as a special case of mosis was

developed – though not stated explicitly – in the seminal work by Andrieu
et al. (2010). The explicit construction here closely follows Lee, Murray and
Johansen (in prep.) whose work allows for adaptive resampling schemes
and removes the need for resampling schemes to be exchangeable. Here,
we take an even more general approach which also abolishes the need
for resampling schemes to be unbiased. For instance, this was suggested
as a desirable extension by R. Chen (2010). We show that the approach
preserves exactness of the algorithm in the sense of unbiasedly estimating
integrals with respect to the unnormalised target distribution, i.e. integrals
of the form t.ft/.

First, in this subsection, we construct the extended proposal distribution,
N t 2 M1.xX/, where xXt WD X�1Wt � K�1Wt � Z�1Wt . This extended proposal

distribution will be such that sampling

xXt D .U1Wt ; B1Wt ;Z1Wt/ � N t

can be achieved by
(1) sampling Z1Wt by running an smc algorithm up to Step t ,
(2) sampling a Step-t particle index Bt and setting B1Wt�1 WD B

Bt
1Wt�1jt ,

(3) setting U1Wt equal to the Bt th particle trajectory, i.e. U1Wt WD X
B1Wt
1Wt .

We �rst note that the distribution of all random variables generated by
an smc algorithm up to Step t is given by  t WD q1 2M1.Z1/, if t D 1,
and, for t > 1,

 t WD  t�1 ˝ 	t D  1 ˝ 	
˝
2Wt 2M1.Z�1Wt/: (2.1)
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2.2 Interpretation as Importance Sampling

The extended proposal distribution can then be de�ned as

N t WD  t ˝�t 2M1.xXt/:

Here, �t 2K1.Z�1Wt ;X�1Wt � K�1Wt/ is a stochastic kernel given by

�t.z1Wt ; du1Wt � db1Wt/

WD �t jt.z1Wt ; dbt/
� t�1Y
sD1

•
a
bsC1
s

.dbs/
�
•xb1Wt1Wt

.du1Wt/; (2.2)

where �t jt 2K1.Z
�
1Wt ;Kt/ is some stochastic kernel used for sampling the

Step-t particle index, Bt .
As shown later in this section, the smc approximation of t is obtained

through a Rao–Blackwellisation step which analytically integrates out
.B1Wt ; U1Wt/ given Z1Wt . By Equation 2.1 we therefore actually only need to
sample Zt � 	t.z1Wt�1; � / at Step t and this typically has computational
complexity O.Nt�1 _Nt/.

2.2.2 Extended Target Measure

In this subsection, we de�ne an extended measure Nt under a normalised
version of which a collection of random variables U1Wt – which coincides
with the particle path with indicesB1Wt at Step t – is marginally distributed
according to �t D t=t.1/. Write xZt WD .B1Wt ;Z1Wt/. With some abuse
of notation pertaining to the order of the components of xXt , the extended
target measure is

Nt.d Nxt/ D t.du1Wt/ x̆ csmc
t .u1Wt ; dNzt/; (2.3)

where the stochastic kernel x̆ csmc
t 2 K1.X�1Wt ; xZt/, for xZt WD K�1Wt � Z�1Wt ,

is given by

x̆ csmc
t .u1Wt ; dNzt/ WD x̆ csmc

1jt .u1Wt ; db1 � dz1/

�

tY
sD2

x̆ csmc
sjt ..u1Wt ; b1Ws�1; z1Ws�1/; dbs � dzs/ (2.4)
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2 Sequential Monte Carlo Methods

with
x̆ csmc
1jt .u1Wt ; db1 � dz1/
WD �1.u1; db1/•u1.dx

b1
1 /q

c
1 ..b1; x

b1
1 /; dx

�b1
1 /

and
x̆ csmc
sjt ..u1Wt ; b1Ws�1; z1Ws�1/; dbs � dzs/
WD Ss�1.z1Ws�1; dos�1/•bs�1.da

bs
s�1/•us.dxbss /

��s..u1Ws; z1Ws�1; os�1; a
bs
s�1/; dbs/

�Rc
s�1..z1Ws�1; os�1; bs; a

bs
s�1/; da

�bs
s�1 /

�Qc
s ..z1Ws�1; os�1; as�1; bs; x

bs
s /; dx�bss /:

Here, we have de�ned the following quantities.
� �s 2 K1.X�1Ws � Z�1Ws�1 � Os�1 � As�1;Ks/ induce a distribution over

the particle indices B1Wt . A common, valid choice for these kernels is
given in Assumption 2.9 in the next subsection.
� Rc

s�1..z1Ws�1; os�1; n; a
n
s�1/; � / is the conditional distribution of the par-

ent indices A�ns�1 WD .A1Wn�1
s�1 ; A

nC1WNs
s�1 / under Rs�1..z1Ws�1; os�1/; � /

given that the nth parent index equals ans�1.
� Qc

s ..z1Ws�1; os�1; as�1; n; x
n
s /; � / is the conditional distribution of the

particles X�ns WD .X 1Wn�1
s ; XnC1WNs

s / under Qs..z1Ws�1; os�1; as�1/; � /

given that the nth particle is equal to xns . The conditional distribution
qc1 is similarly de�ned.

2.7 Remark. The kernel x̆ csmc
t is a so-called conditional sequential Monte

Carlo (csmc) kernel introduced by Andrieu et al. (2010). Though, despite this

name, neither x̆ csmc
t .u1Wt ; � / nor any of its marginals are usually conditional

distributions relative to t . Using this kernel frees us from having to evaluate

(a density with respect to) the marginal proposal distribution of a single

particle path –which is usually intractable –when evaluating the importance

weights in the next subsection (see Remark 1.16).

Sampling according to the kernel x̆ csmc
t is necessary within particle

Gibbs samplers described in Section 3.4. More importantly, though, Equa-
tion 2.3 demonstrates that x̆ csmc

t is a crucial ingredient in the particular
justi�cation of smc algorithms which we have presented here.
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2.2 Interpretation as Importance Sampling

2.2.3 Importance Weights

For the moment, our aim is to approximate Nt via is using the proposal
distribution N t . The Rao–Blackwellisation described in the next subsec-
tion then leads to the usual smc approximation of t . We must therefore
ensure that the Radon–Nikodým derivative

xwt. Nxt/ WD
d Nt
d N t

. Nxt/

D 1fu1Wt g.x
b1Wt
1Wt /

1.du1/�1.u1; fb1g/

�t jt.z1Wt ; fbtg/q
m
1 .b1; du1/

�

tY
sD2

�s..u1Ws; z1Ws�1; os�1; bs�1/; fbsg/ 1fbs�1g.a
bs
s�t/

Rm
s�1..z1Ws�1; os�1; bs/; fbs�1g/

�
�s.u1Ws�1; dus/

Qm
s ..z1Ws�1; os�1; as�1; bs/; dus/

(2.5)

is well de�ned. Here, we have slightly abused notation by writing Radon–
Nikodým derivatives as �.dx/=�.dx/ WD Œd�=d��.x/, for any two meas-
ures �� �, and where we have de�ned the following quantities.
� �s 2 K.X�1Ws�1;Xs/ is a kernel which extends the Step-.s � 1/ target

measure to the Step-s target measure, i.e. it satis�es s�1 ˝ �s D s .
� Rm

s�1..z1Ws�1; os�1; n/; � / denotes the ‘marginal’ distribution of the nth
parent index under Rs�1..z1Ws�1; os�1/; � /.
� Qm

s ..z1Ws�1; os�1; as�1; n/; � / denotes the ‘marginal’ distribution of the
nth particle under Qs..z1Ws�1; os�1; as�1/; � /. The marginal Step-1 pro-
posal distribution qm1 .b1; � / is similarly de�ned.

2.8 Remark. The kernelsRm
s�1 andQ

m
s induce marginal distributions only

in the sense that they do not condition on the other parent indices or particles

generated at Step s. They generally still depend on all the auxiliary variables,

parent indices and particles sampled at previous steps. Indeed, this is why the

‘conditional’ smc kernel does not represent a (full) conditional distribution

under the distribution induced by the smc algorithm as pointed out in

Remark 2.7 (see also Remark 1.16).

We will comment on particular choices for the kernels and measures
guaranteeing the existence of the above importance weight in Section 2.3.
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2 Sequential Monte Carlo Methods

Distribution Over Particle Indices. The kernels �s introduced in the
previous subsection need to be chosen carefully to preserve absolute
continuity, especially if a non-exchangeable resampling scheme is used.

A generally applicable choice considered in Lee, Murray and Johansen
(in prep.), which is also implicitly used by most smc algorithms, is to let
�s be a time-reversal kernel of some stochastic kernel �s 2K1.X�1Ws;Ks/
(which de�nes a distribution over Bt ) under Rm

s�1, as de�ned in Assump-
tion 2.9.

2.9 Assumption. �1 WD �1 and, for s > 1,

�s..u1Ws; z1Ws�1; os�1; a
bs
s�1/; fbsg/

D
Rm
s�1..z1Ws�1; os�1; bs/; fa

bs
s�1g/�s.u1Ws; fbsg/PNs

nD1 �s.u1Ws; fng/R
m
s�1..z1Ws�1; os�1; n/; fa

n
s�1g/

: (2.6)

It often su�ces to let �s.u1Ws; � / � UnifKs . However, more complex ker-
nels are sometimes needed to ensure absolute continuity in Equation 2.5.
For instance, a more complex kernel �s is needed in the discrete particle
�lter summarised in Subsection 2.3.4.

The main advantage of the time-reversal kernel is that the import-
ance weight in Equation 2.5 depends on the resampling distribution only
through the denominator in Equation 2.6. Hence, it is usually not neces-
sary to require the resampling scheme to be exchangeable – even if we
cannot evaluate the distribution implied by Rm

s�1. For instance, if we use
an unbiased resampling scheme and if �s.u1Ws; � / WD UnifKs , then Rm

s�1
drops out in the importance weights from Equation 2.5 because

�s..u1Ws; z1Ws�1; os�1; bs�1/; fbsg/

Rm
s�1..z1Ws�1; os�1; bs/; fbs�1g/

D

(
1=W bs�1

s�1 .z1Ws�1/; if we resample at Step s,
1fbs�1g.bs/; otherwise.

However, note that sampling according to�s (which depends on Rm
s�1)

and Rc
s�1 is still required when sampling from the csmc kernel. For

various common resampling schemes, Rm
s�1 and Rc

s�1 are derived in Lee,
Murray and Johansen (in prep.) and for completeness, they are also stated
in Appendix A of this work.
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2.2 Interpretation as Importance Sampling

2.2.4 Rao–Blackwellisation

Let N is;1
t WD xwt. xXt/• xXt be an is approximation of the extended target

measure Nt based on a single sample xXt D .U1Wt ; B1Wt ;Z1Wt/ � N t .
Of course, we are only interested in approximating the marginal t of
Nt . The usual smc approximation of this marginal measure,  smc;N1Wt

t , can
be obtained by Rao–Blackwellising N is;1

t as described in Lee, Murray and
Johansen (in prep.).

More precisely, note that

w
b1Wt
t .Z1Wt/ WD EŒ xwt. xXt/ 1fb1Wt g.B1Wt/jZ1Wt �

is non-zero only if b1Wt coincides with a particle lineage under the smc
algorithm, i.e. if b1Wt D Bn1Wt jt , for some n 2 Kt . We can therefore identify
Nt (unnormalised) Step-t particle weights, for n 2 Kt , as

wnt .z1Wt/ WD w
bn1Wtjt
t .z1Wt/:

For any A 2 B.X�1Wt/, a mosis approximation of t.A/ is thus given by


mosis;N1Wt
t .A/ D E

�
N
is;1
t .A � xZt/

ˇ̌
Z1Wt

�
D

X
b1Wt2K�1Wt

w
b1Wt
t .Z1Wt/•Xb1Wt1Wt

.A/

D

N tX
nD1

wnt .Z1Wt/•X
Bn1Wtjt
1Wt

.A/

D 
smc;N1Wt
t .A/:

The above construction immediately implies that the smc estimate
of the normalising constant, z

smc;N1Wt
t D 

smc;N1Wt
t .1/ D N

is;1
t .1/, is a (one-

sample) is estimate and is therefore unbiased. Nonetheless, we stress
again that the unbiasedness property alone does not ensure estimates that
are useful in practice, i.e. estimates whose error can be controlled. Condi-
tions under which this is guaranteed are summarised in Subsection 2.2.5.

Finally, recall that xwt D d Nt=d N t . For later reference, we state the
following slight generalisation of Andrieu et al. (2010, Theorem 2) (but
which is really just a special case of Proposition 1.13).
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2 Sequential Monte Carlo Methods

2.10 Proposition. Assume that

�t jt.z1Wt ; fng/ D W
n
t .z1Wt/;

for any .n; z1Wt/ 2 Kt � Z�1Wt , then

xwt. Nxt/ D z
smc;N1Wt
t ; for any Nxt 2 xXt .

Proof. This follows immediately from the de�nition of wnt .z1Wt/. �

2.2.5 Theoretical Results

In this subsection, we brie�y summarise some of the available theoretical
results for estimates obtained from smc algorithms. Throughout, we
assume that N1 D N2 D : : : D N , for simplicity.

Speci�c Test Function. smc methods are particularly suited to approx-
imating integrals of the form �t.ft/, where �t WD t=t.1/ and

ft WD 1X�1Wt�1 ˝ ft;t :

Here, ft;t is some suitable real-valued test function with domain Xt . For
such a test function (and for suitably ergodic kernels �s) we are essentially
performing is on a space of constant dimension (if Xs D Xt , for s; t 2 T).
We assume such a test function in our statements of the theoretical results
below. Most of these results can be readily generalised to vector-valued
functions, e.g. by Cramér–Wold type arguments.

Non-Asymptotic Error Bounds. For instance, for such test functions,
and for various smc algorithms, non-asymptotic (in N ) uniform-in-t Lp

error bounds have been established, i.e. if ft;t is bounded (and under
further ‘strong mixing assumptions’ on the kernels �s) Del Moral and
Miclo (2000) and Del Moral (2004, Theorem 7.4.4) show that

sup
t2T

E
��
�

smc?;N1Wt
t .ft/ � �t.ft/

�p�1=p
�
c.p/

N
;

where c.p/ > 0 is some �nite constant which does not depend on N .
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2.2 Interpretation as Importance Sampling

Central Limit Theorems. Del Moral and Guionnet (1999), as well as
Del Moral (2004, Section 9.4.2) and also Chopin (2004), Künsch (2005)
establish clts for the asymptotic behaviour (as N !1) of the error at
Step t , i.e. they show that

p
N
�
�

smc?;N1Wt
t .ft/ � �t.ft/

� N!1
�! Z � N0;�t .ft /;

in distribution, again under certain regularity conditions. They also
provide explicit analytical expressions for the asymptotic variance, �t.ft/.

In particular, Del Moral and Guionnet (2001), Chopin (2004), Douc and
Moulines (2008) obtain uniform-in-t bounds on �t.ft/. Finally, Beskos,
Jasra and Thiéry (2014) extend such clts to a more general class of
adaptive smc algorithms.

Normalising-Constant Estimates. As indicated by Proposition 2.10,
the properties of the smc-based estimate of the normalising constant
zt , zsmc;N1Wt , are strongly related to the performance of smc methods. In
particular, it is important to obtain precise estimates of the normalising
constant when using smc methods as part of a pseudo-marginal approach,
e.g. when using one of the pseudo-marginal smc methods mentioned in
Subsection 2.3.5 or when employing the particle marginal Metropolis–
Hastings algorithm mentioned in Subsection 3.3.4.

Again under strong mixing assumptions, Cérou, Del Moral and Guyader
(2011) show that the non-asymptotic (in N ) relative variance of the smc-
based estimate of normalising constant, i.e. the variance of z

smc;N1Wt
t =z,

grows linearly in the step number. More formally, Cérou et al. (2011,
Theorem 5.1) shows that

N > c.t/ ) V

�
z
smc;N1Wt
t

zt

�
D E

��
z
smc;N1Wt
t

zt
� 1

�2�
�
c.t/

N
;

where c.t/ > 0 is a constant which depends on the kernels �s and which,
in many settings, can be shown to grow linearly in t .

Relaxed Assumptions. Most of the above-mentioned results are ob-
tained under strong mixing assumptions which essentially require the
state space Xt to be compact. Much research has recently been devoted
to relaxing this assumption. See, for instance, Jasra and Doucet (2008),
Whiteley (2012), Douc, Moulines and Olsson (2014), Whiteley (2013).
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2 Sequential Monte Carlo Methods

Extension to General Test Functions. For more general test functions
than ft de�ned above, clts typically still hold. This can easily be seen
by working on the path space. However, uniform-in-t error bounds non-
asymptotic error bounds or uniform-in-t bounds on the asymptotic vari-
ance can almost never be established unless the test function is constant
in all but a uniformly bounded history of the spaces X1; : : : ;Xt .

2.3 Some Important smc Algorithms

2.3.1 Simple sir Algorithm

In this section, we discuss various standard smc algorithms which can be
obtained as special cases of Algorithm 2.6. First, in this subsection, we
de�ne a simple smc algorithm which we call sequential importance re-
sampling for the purpose of this work. Many widely used smc algorithms
– some of which are outlined in this section – are variants of this algorithm
as pointed out in Doucet and Johansen (2011). However, there are also
some smc algorithms, such as the discrete particle �lter described in
Section 2.3.4, which are not.

2.11 De�nition (sequential importance resampling). An instance of

the generic smc algorithm is called sequential importance resampling (sir)

if for all s 2 T, z1Ws 2 Z�1Ws , the following holds.
(1) The auxiliary variable Os takes values in Os WD f0; 1g and

Ss.z1Ws; dos/
WD Œ1Ds.hs�1.z1Ws�1//•0 C 1RnDs.hs�1.z1Ws�1//•1�.dos/;

for some suitable hs�1 W Z�1Ws�1 ! R andDs � R.

(2) If os D 0 thenNsC1 D Ns (otherwise, the number of particles is allowed

to change between smc steps); �s.u1Ws; � / WD UnifKs , for u1Ws 2 X�1Ws ,
and

Rs..z1Ws; os/; das/
WD 1f0g.os/•.1;:::;Ns/.das/C 1f1g.os/ zRs.z1Ws; das/;

where zRs.z1Ws; � / is an unbiased resampling scheme.
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2.3 Some Important smc Algorithms

(3) The marginal proposal kernels only depend on the history of the current

particle path, i.e.

Qs..z1Ws�1; os�1; as�1/; dxs/ D
NsY
nD1

Ps.x
bn1Ws�1js
1Ws�1 ; dxns /;

for some suitable stochastic kernel Ps 2K1.X�1Ws�1;Xs/, for s > 1, and
with P1 2M1.X1/ being some suitable proposal distribution at Step 1.

As discussed in Example 2.13, the quantity hs�1.z1Ws�1/ in Item 1 of De�ni-
tion 2.11 is usually taken to be the ess associated with the particle weights
from the previous smc step, commonly employed to obtain adaptive

resampling schemes, i.e. to not necessarily resample at every smc step.
The particle weights for sir algorithms simplify as follows. Write

xOt WD
˚
s 2 Nt�1

ˇ̌
os D 1

	
;

Nls WD sup
˚
l 2 xOt [ f0g

ˇ̌
l < s

	
C 1;

then if – as we assume throughout this work – the kernels �s are taken
to be the time-reversal kernels given in Assumption 2.9, the nth particle
weight at Step t is given by

wnt .z1Wt/ D

�Y
s2xOt

1
Ns

NsX
mD1

sY
lDNls

Gl.x
bm1Wljs
1Wl /

� tY
lDNlt

Gl.x
bn1Wljt
1Wl /

D

�
Gt.x

bn1Wtjt
1Wt /w

bnt�1jt
t�1 .z1Wt�1/; if ot�1 D 0,

Gt.x
bn1Wtjt
1Wt /

1
Nt�1

Nt�1X
mD1

wmt�1.z1Wt�1/; if ot�1 D 1.

Here, the quantity Gt.xn1Wt/, for any x1Ws 2 X�1Ws de�ned by

Gs.x1Ws/ WD
d�s.x1Ws�1; � /
dPs.x1Ws�1; � /

.xs/;

is sometimes referred to as the nth ‘incremental importance weight’ at
Step t because, conditional on Z1Wt�1, the nth self-normalised particle
weightW n

t .Z1Wt/ used for constructing an approximation of�t D t=t.1/
only depends on .Gt.X

Bn1Wtjt
1Wt //n2Kt .
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The sir estimate of the normalising constant takes the usual form

z
smc;N1Wt
t D

NtX
nD1

wnt .z1Wt/ D
Y

s2xOt[ftg

1
Ns

NsX
nD1

sY
lDNls

Gl.x
bn1Wljs
1Wl /:

2.12 Example (bootstrap particle �lter). If we resample at every step

of the sir algorithm, i.e. ifOs � 1, and if zRs.z1Ws; � / represents multinomial

resmpling, then the sir algorithm reduces to the simple bootstrap particle
�lter introduced in Stewart and McCarty Jr (1992), Gordon et al. (1993).

2.13 Example (adaptive resampling). It is well known that resampling,

i.e. sampling the parent indices from some non-degenerate distribution – see

Remark 2.2 – is wasteful and should only be performed when necessary. A

common approach, known as adaptive resampling which is theoretically

justi�ed in Del Moral, Doucet and Jasra (2012), is to only resample whenever

the following estimate of the ess: ESSs D Nsz
2
s= Ns. xws/, given by

ESS
N1Ws
s WD

Ns.EŒ N
is;1
s .1/jZ1Ws�/

2

EŒ N
is;1
s . xws/jZ1Ws�

D
NsŒ

PNs
nD1w

n
s .Z1Ws/�

2PNs
mD1Œw

m
s .Z1Ws/�2=�sjs.Z1Ws; fmg/

;

falls below a threshold "Ns for some " 2 .0; 1/. This can be reconciled with

De�nition 2.11. by setting hs.Z1Ws/ WD ESS
N1Ws
s andDs WD ."Ns; Ns�.

2.14 Example (sequential importance sampling). If we do not resam-

ple in the sir algorithm, i.e. if Os � 0, and Ns D N 2 N for any s 2 T,

wnt .z1Wt/ D
1
N

tY
sD1

Gs.x
n
1Ws/ D

1
N

dt
dP˝1Wt

.xn1Wt/;

is the nth Step-t weight obtained from standard N -sample ‘sequential’ is.

Other special cases of sequential is, e.g. annealed importance sampling
(Jarzynski, 1997b, 1997a; Neal, 2001) can thus also be viewed as special cases

of sir and hence as special cases of smc algorithms.
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2.3 Some Important smc Algorithms

2.3.2 smc Samplers

We now deal with the situation in which the target measures, now de-
noted Qt , are de�ned on a sequence of arbitrary spaces zXt . Hence, the
smc scheme introduced above is not applicable – not directly, at least.
To approximate Qt , we can use an smc scheme targeting an arti�cially
extended target measure t on X�1Wt , where Xt WD zXt which admits Qt as a
marginal. By working on the product space X�1Wt , we circumvent the need
for calculating certain integrals, e.g. marginal proposal densities, which
would be required for evaluating the importance weights.

As a generic way of constructing t , Del Moral et al. (2006b, 2007) (see
also Peters, 2005) introduce a sequence of ‘backward’ Markov kernels
Lt 2K1.XtC1;Xt/ and set

t WD Qt ˝ L
˝
t�1W1 2M.X�1Wt/:

The smc samplers from Del Moral et al. (2006b) are then simply smc
algorithms targeting this particular sequence of measures. To simplify
the expressions for the importance weights, we assume in the following
that the smc algorithm is a sir algorithm as speci�ed in De�nition 2.11
and that the marginal proposal kernel, Pt , is Markov. However, neither
of these assumptions is strictly necessary.

Clearly, t admits Qt as a marginal. Assuming that the backward Markov
kernels are such that Qt ˝ Lt�1 � Qt�1 ˝ Pt (with some abuse of the
tensor-product notation pertaining to the order of the components), the
following incremental weights are well de�ned:

Gt.x1Wt/ D
dŒ Qt ˝ L˝t�1W1�

dŒ Qt�1 ˝ L˝t�2W1 ˝ Pt �
.x1Wt/

D
dŒ Qt ˝ Lt�1�
dŒ Qt�1 ˝ Pt �

.xt�1; xt/: (2.7)

Optimal Backward Kernels. Equation 2.7 shows that the e�ciency
of smc samplers crucially depends on the choice of backward Markov
kernels. As shown in Del Moral et al. (2006b), the optimal backward kernel

in the sense of minimising the conditional variance of the incremental
importance weights is given by

Lopt
t�1.xt ; dxt�1/ WD

dPt.xt�1; � /
d Qt�1Pt

.xt/ Qt�1.dxt�1/: (2.8)
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2 Sequential Monte Carlo Methods

That is,Lopt
t�1 is the reversal kernel associated with Qt�1 andPt . Employing

this kernel e�ectively takes us back to performing is on the marginal
space, zXt , because it yields the following expression for the incremental
importance weights:

Gt.x1Wt/ D
dŒ Qt ˝ Lopt

t�1 �

dŒ Qt�1 ˝ Pt �
.xt�1; xt/

D
dŒ Qt ˝ Qt�1�
dŒ Qt�1 ˝ Pt �

.xt�1; xt/
dPt.xt�1; � /

d Qt�1Pt
.xt/

D
d Qt

d Qt�1Pt
.xt/; (2.9)

where we have used the de�nition of Lopt
t�1 in the second step; in the third

step, we have replaced Qt˝ Qt�1 by Qt�1˝ Qt by to correct for some abuse
of the tensor-product notation regarding the order of the components.

In practice, the optimal backward kernel is usually intractable because
evaluating (densities with respect to the) measure Qt�1Pt is infeasible.
Instead, Del Moral et al. (2006b) stress that it is extremely important to
selectLt to be some (tractable) approximation ofLopt

t . A common choice,
albeit one which introduces �nite-sample bias, is to replace Qt�1Pt.dxt/
by  smc;N1Wt�1

t�1 .1X�1Wt�2 ˝ Pt. � ; dxt// in the denominator in Equation 2.9.
This backward kernel is used in population Monte Carlo methods (Cappé,
Guillin, Marin & Robert, 2004), for instance.

2.15 Example (mcmc kernels). The kernel Pt is often taken to be Qt -

invariant. The construction of such Qt -invariant kernels, called mcmc

kernels, is the subject of Chapter 3.

If Qt is similar to Qt�1 in some suitable sense, so that Qt is reasonably close

to Qt�1Pt , then Equation 2.8 suggests approximating Lopt
t�1.xt ; dxt�1/ by

the time-reversal kernel of Qt under Pt , given by

Lt�1.xt ; dxt�1/ WD
dPt.xt�1; � /

d Qt
.xt/ Qt.dxt�1/:

Using this backward kernel leads to the following simple expression for the

incremental importance weights.

Gt.x1Wt/ D
d Qt

d Qt�1
.xt�1/:
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Note that the incremental importance weights at Step t do not depend on

Zt . As mentioned in Example 2.5, it can therefore be bene�cial to ‘switch

the order’ of sampling and resampling.

Mixture Kernels. The smc-sampler framework also allows the use of a
mixture of forward kernels by including the index of the Step-t mixture
component, Mt , into Xt and instead targeting an even further extended
measure t on X�1Wt WD

Qt
sD1 Xs . Here, Xs WD zXs �Ms , where Ms is the

countable set of all mixture component indices. Writing Xs D . zXs;Ms/,
the unnormalised version of this further extended distribution is

t.dx1Wt/ WD Qt.d Qxt/ˇ0. Qx1; dm1/

t�1Y
sD1

Ls. QxsC1; d Qxs � dmsC1/: (2.10)

We need to employ backward mixture kernels

Ls. QxsC1; d Qxs � dmsC1/ D ˇs. QxsC1; dmsC1/zLs..msC1; QxsC1/; d Qxs/;

if the (forward) proposal kernels are mixture kernels of the form

Ps.xs�1; dxs/ D ˛s. Qxs�1; dms/ zPs..ms; Qxs�1/; d Qxs/:

Here, the stochastic kernels ˛s 2K1.zXs�1Ms/ and ˇs�1 2K1.zXs;Ms/

de�ne forward and backward kernel mixture weights at Step s. At Step 1,
it is common not to sample from a mixture so that ˇ0.d Qx1; dm1/ D

˛1.dm1/ D •m.dm1/ and M1 D fmg. With the above-mentioned abuse of
notation, the incremental importance weights then simplify to

Gt.x1Wt/ D
dŒ Qt ˝ zLt�1 ˝ ˇt�1�
dŒ Qt�1 ˝ ˛t ˝ zPt �

.xt�1; xt/:

These are only well de�ned if Qt ˝ zLt�1 ˝ ˇt�1 � Qt�1 ˝ ˛t ˝ zPt . In
particular, the backward mixture kernel weights ˇs need to be chosen
carefully if some forward mixture kernel components do not cover the
entire support of Qs . That is, if there exists a set A in the support of Qs and
a mixture component index ms 2 Ms with Qs�1.˛s. � ; fmsg// > 0 such
that Qs�1. zPs..ms; � /; A// D 0. An algorithm for which this is a concern
is considered in Chapter 4.
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2 Sequential Monte Carlo Methods

Examples. In this subsection, we have introduced smc samplers as a spe-
cial case of the sir algorithm. In turn, many well-known smc algorithms
may be viewed as special cases of smc samplers.

For instance, as pointed out in Del Moral et al. (2006b, 2007) and as
already mentioned above, population Monte Carlo methods (Iba, 2000;
Cappé et al., 2004) can be viewed as special cases of this framework.
The same is true for block sampling (Doucet, Briers & Sénécal, 2006), for
the resample–move algorithm Gilks and Berzuini (2001), and for various
special cases of the latter such as the smc algorithm for ‘static’ models
(Chopin, 2002), and also smc-squared (Chopin et al., 2013).

By working on the path space and employing forward and backward
kernels that are mostly degenerate, we can actually also view any sir al-
gorithm as an smc sampler. Though we will not pursue this interpretation
further in this work.

2.3.3 Re-Using All Particles

Motivation. Assume that X1 D � � � D XT D X. Usually, the smc sampler
from the previous subsection is run for T 2 N steps and we are actually
only interested in calculating integrals with respect to the �nal marginal
measure, Q WD QT , i.e. integrals of the form QT . Qf /, where Qf W X ! R

is some integrable test function. The target measures Q1; : : : ; QT�1 are
then only employed to interpolate between some easy-to-approximate
initial target measure, Q1, and the measure that is actually of interest, Q .
Throughout this subsection, we assume that Q � Qt , for any t 2 T. The
standard smc approximation of the integral Q. Qf / is only based on the
particles generated at the T th step. This is wasteful, especially if Qt is
similar (in some suitable sense) to Q , for some t < T , as is usually the case
in smc samplers. It is wasteful because some of the remaining samples
could be exploited to achieve variance reductions.

In this subsection, we describe a way of re-using all the particles to
approximate integrals of the form Q. Qf /. To that end, we slightly gener-
alise the importance tempering approach from Gramacy, Samworth and
King (2010). The resulting estimator is a (doubly) Rao–Blackwellised
version of the estimator from Nguyen, Septier, Peters and Delignon (2014).
Alternative approaches for combining is estimates are discussed in Veach
and Guibas (1995), Madras and Piccioni (1999), Owen and Zhou (2000).
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2.3 Some Important smc Algorithms

Algorithm. Our proposed combination scheme is summarised in Al-
gorithm 2.16. In the remainder of this subsection, we present formal
(mosis-type) extended state-space justi�cation of this scheme and com-
ment further on its relationship with the approaches from and Gramacy
et al. (2010) Nguyen et al. (2014).
2.16 Algorithm. For each t 2 T, let .Xn

t ; w
n
t .Z1Wt//n2Kt be a set of (not

necessarily iid) samples weighted to target the measure Qt . Then, setting

Qvt WD d Q=d Qt , we may approximate Q. Qf / byX
t2T

�T .ftg/
X
n2Kt

Qvt.x
n
t /w

n
t .Z1Wt/ Qf .X

n
t /;

where �T is a probability measure on T such that �T .ftg/ is proportional to

Nt Œ
P
n2Kt Qvt.X

n
t /W

n
t .Z1Wt/�

2P
m2Kt Qv

2
t .X

m
t /W

n
t .Z1Wt/

:

Extended Target Measure. To justify our novel estimator, we devise a
slightly di�erent instance of the generic mosis target measure from Sec-
tion 1.4 (compared to that of smc methods). Writing xX 0T WD .X;K;Z1WT /,
where X D .U; U1W�/ and K D .�; B1W�/, this target measure is given by

x 0T .d Nx0T / WD �T .d�/ Q.du/•u.du�/L˝��1W1.u� ; du��1 � � � � � du1/
� x̆

csmc
� .u1W� ; dk � dz1WT /	˝�C1WT .z1W� ; dz�C1WT /;

where �T 2M1.T/ with T WD NT . The extended measure is de�ned on
the space xX0T WD X � C � Z�1WT , where C WD

S
t2T.ftg � Xt � K�1Wt/.

In other words, to sample from the normalised version of this extended
measure, we would �rst sample the random variable � which indexes a
particular generation (or step) of the smc algorithm. We then sample a
single particleU� D U from the actual target distribution, Q= Q.1/, sample
U1W��1 according to the backward kernels and draw xZ� D .K;Z1W�/ from
the standard csmc kernel (up to Step � ). We then sample additional
variablesZ�C1WT via Steps �C1 to T of the smc sampler. Note that under
the normalised version of this extended measure, XB�

� � Q= Q.1/.
Extended Proposal Distribution. The associated extended proposal
distribution can be de�ned as

N 0T .d Nx0T / WD  T .dz1WT /UnifT.d�/��.z1W� ; du1W� � db1W�/•u� .du/;
where �t is as de�ned in Equation 2.2.
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2 Sequential Monte Carlo Methods

Importance Weights. Having de�ned the Radon–Nikodým derivatives
xw0T WD d N 0T =d N 0T and Qvt WD d Q=d Qt , we can calculate ‘weights’

w
t;n
T .Z1WT / WD EŒ xw0T .

xX 0T / 1f.t;n/g.�; B�/jZ1WT �

D �T .ftg/ Qvt.x
n
t /w

n
t .Z1Wt/;

where wnt .Z1Wt/ is the usual nth Step-t weight from the smc algorithm.
A one-sample is approximation of the extended target measure is given
by N 0Tis;1 WD xw0T . xX 0T /• xX 0T , where xX 0T D .U; U1W� ; �; B1W� ;Z1WT / � N 

0
T .

One-Sample is Interpretation. LetA 2 B.X/. With a Rao–Blackwelli-
sation as in Section 1.4, an approximation of Q.A/ which makes use of all
particles generated over the course of the smc sampler is then given by

Qmosis;N1WT .A/ WD EŒ N 0T
is;1.A � C � Z�1WT /jZ1WT �

D

X
t2T

X
kt2Kt

w
t;kt
T .Z1WT /•Xktt

.A/

D

X
t2T

�T .ftg/ Q
?
t .A/; (2.11)

where we have de�ned the following unbiased estimate of Q.A/, which is
based on the particles generated at the t th step of the smc sampler:

Q?t .A/ WD
X
n2Kt

Qvt.x
n
t /w

n
t .Z1Wt/•Xnt .A/: (2.12)

The approximation from Equation 2.12 is a Rao–Blackwellised version of
the following estimator used by Nguyen et al. (2014) within the estimator
Qmosis;N1WT .A/ D

P
t2T �T .ftg/ Q

?
t .A/:

Q?t .A/ WD
X
m2Mt

Qvt. yX
m
t /

�X
n2Kt

wnt .Z1Wt/

�
• yXmt

.A/;

Here, Mt WD NMt
and yX 1WMt

t is obtained by choosing Mt elements from
among X 1WNt

t via multinomial resampling according to the standard self-
normalised smc weights .W n

t .Z1Wt//n2Kt . In other words, Nguyen et al.
(2014) �rst resample the particles from each step of the smc sampler so
that yX 1WMt

t is a set of unweighted particles whose empirical measure ap-
proximates Q�t / Qt . They then weight these (now unweighted) particles
so that their weighted empirical measure approximates Q� / Q .
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Approximately Optimal Weighting Scheme. Note that the choice of
the distribution �T is critical in both estimators. On the one hand, taking
� D •T takes us back to only using the Step-T particles to approximate
Q. Qf /. On the other hand, taking � D UnifT assigns equal weights to
the individual estimators Q?t . Qf / associated with di�erent smc steps. As
pointed out in Gramacy et al. (2010), this usually leads to a high variance of
the estimator from Equation 2.11 because Q?1 . Qf /; : : : ; Q?T . Qf / have di�erent
variances. Ideally, we would weight each of these estimators inversely
proportional to its variance, i.e. we would like to set

�T .ftg/ D
1=V Œ Q?t . Qf /�P
s2T 1=V Œ Q?s . Qf /�

: (2.13)

Unfortunately, these variances are usually intractable and furthermore,
we are often interested in a large class of test functions.

Instead, we generalise the approach from Gramacy et al. (2010) and
take �T WD "=

P
s2T ".fsg/ where ".ftg/ is the following proxy for the t th

inverse variance in Equation 2.13: for xX 0T D .U; U1W� ; �; B1W� ;Z1WT / � N 
0
T ,

".ftg/ WD
Nt.EŒ Qv�.U /jZ1WT ; � D t �/

2

EŒ Qv2�.U /jZ1WT ; � D t �

D
Nt Œ

P
n2Kt Qvt.X

n
t /W

n
t .Z1Wt/�

2P
m2Kt Qv

2
t .X

m
t /W

n
t .Z1Wt/

: (2.14)

This is an approximation of ESS t WD Nt Qz
2
t= Q�t. Qv

2
t / and can be seen as

the conditional ess associated with the self-normalised version of Q?t .
Here, we have set Qzt WD zT =zt . The conditional ess was introduced in
Yan Zhou et al. (2013) (albeit in a di�erent context). Note that using the
same set of samples to construct the estimators Q?t . Qf / and to determine
" introduces a slight bias. Of course, if it is necessary to obtain unbiased
estimates, this particular bias can be avoided by using two di�erent sets
of samples, i.e. by basing the construction of " on samples generated in
some pilot run.

Note that Equation 2.14 does not take into account the particular form
of the test function. This is sensible whenever (1) we are interested in a
large class of test functions and want to avoid the cost of re-calculating
�T for each test function, (2) the oscillations of Qf have little e�ect on the

47
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integral Q. Qf /. However, in some instances, it might be desirable to take
the form of a particular test function into account. For instance, this is the
case when performing rare-event estimation, i.e. when Qf WD 1A, where
A 2 B.X/ is such that Q.A/ is very small compared to Q.X/. In this case,
we can easily incorporate the test function into the above framework if
we replace the pair . Q; Qf / by the pair . Qf Q; 1/.

Finally, we note that we have presented our approach in the context
of smc samplers. However, it can be used in any other case in which we
have sets of samples X 1WNt

t weighted to target a distribution Q�t , for t 2 T.

Relationship With Previous Approaches. We conclude this subsec-
tion by summarising the relationship between our estimator and those in
Gramacy et al. (2010) and Nguyen et al. (2014).

Our estimator can be seen as a generalisation of the approach from
Gramacy et al. (2010). Indeed, our estimator reduces to that of Gramacy
et al. (2010) in the case that wnt .Z1Wt/ D wmt .Z1Wt/ D 1=Nt , for any
.n;m/ 2 K2

t and any t 2 T and nt 2 Kt . This special case occurs
when the ‘particles’ X 1WNt

t are unweighted draws from the distribution
proportional to Qt . For instance, in Gramacy et al. (2010), all the samples
are unweighted because they are obtained from simulated tempering so
that X 1WNt

t represent the samples associated with the t th temperature.
The approach from Nguyen et al. (2014) obtains such unweighted draws

via the additional resampling step described above. Our construction
shows that this extra resampling step is not necessary – neither for con-
structing the estimators Q?t .A/ nor for designing " (and hence �T ). Indeed,
the extra resampling step introduces additional Monte Carlo variance and
increases the computational cost. This insight is in the spirit of Johansen
and Doucet (2008) who showed the redundancy of the second resampling
step in the auxiliary particle �lter from Pitt and Shephard (1999).

Indeed, our choice of the (random) measure " in Equation 2.14 is ob-
tained by Rao–Blackwellising the numerator and denominator of the
following random measure employed by Nguyen et al. (2014):

".ftg/ WD
Œ
P
n2Mt Qvt.

yXn
t /�

2P
m2Mt Qv

2
t . yX

m
t /

:

Hence, our approximation can be interpreted as a twice Rao–Blackwellised
version of the estimator from Nguyen et al. (2014).
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2.3.4 Discrete Particle Filter

If the number of elements in Xt is �nite (and su�ciently small), sir
algorithms are wasteful because there is usually a positive probability that
two available particle paths at Step t are identical, i.e. for any m; n 2 Kt ,

P
�˚
X
Bn1Wtjt
1Wt D X

Bm1Wtjt
1Wt

	�
> 0: (2.15)

The discrete particle �lter (dpf) introduced by (Fearnhead, 1998; Fearnhead
& Cli�ord, 2003) tackles this problem by propagating particles in a way
that reduces the probability on the left hand side in Equation 2.15 to zero.
This is done by extending each available particle trajectory once in every
possible direction at Step t . To keep the computational cost from growing
exponentially in t , the resulting trajectories are then stochastically pruned
in a way that is optimal in the sense that it minimises the variance of the
sum of the self-normalised importance weights.

In this subsection, we show that by using particular choices of the
kernels St�1, Rt�1, Qt , and �t , the dpf can be viewed as a special case
of the generic smc algorithm. To our knowledge, this is a new result. It
immediately implies the validity of csmc algorithms, backward sampling,
or ancestor sampling (see Section 3.4 in the next chapter), as described
in Whiteley, Andrieu and Doucet (2010), for the dpf. However, the dpf
cannot be viewed as a special case of sir due to the dependence in the
proposal kernels and the use of a biased resampling scheme. Here, we
recall that in the terminology of De�nition 2.3, a resampling scheme is
termed ‘biased’ if it does not lead to an evenly weighted (i.e. unweighted)
set of particles after resampling. We reiterate that any estimates of in-
tegrals of the form t.ft/ will still be unbiased as long as the resampled
particles are suitably weighted.

Without loss of generality, assume a �nite state space Xt D NK , for
any t 2 T for some (usually not too large) K 2 N . At the t th step of the
algorithm, we have Nt WD MK ^ K t particles, where M 2 N can be
chosen to control the computational cost of the algorithm. As described
below, at Step t , we select Mt WD Nt=K particle trajectories from the
previous step and extend each of them in all K possible directions.

Resampling Scheme. In this case, we do not make use of the auxiliary
variables Os�1 and therefore drop them from the notation along with the
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kernels Ss�1. The kernel Rs�1 D zRs�1 is then given by
zRs�1.z1Ws�1; das�1/

D zR?s�1.z1Ws�1; da
1WMs
s�1 /

KY
nD2

•
a
1WMs
s�1

.da.n�1/MsC1WnMss�1 /;

where zR?s�1.z1Ws�1; da
1WMs
s�1 / denotes the resampling scheme (for Ms o�-

spring) developed in Fearnhead (1998) which summarised in the following.
A more formal description of the entire kernel zRs�1 can be found in
Section A.5 of the appendix, for completeness.

At Step s, we use Fearnhead (1998, Algorithm 5.2) to solve
Ns�1X
nD1

�
1 ^ Cs�1W n

s�1.z1Ws�1/
�
DMs;

for Cs�1 > 0. The idea is that particles whose self-normalised weights
exceed the threshold 1=Cs�1 get exactly one o�spring. The remaining
particles have at most one o�spring.

Collect the indices of the former particles in the set

Ls WD #
˚
n 2 Ks�1

ˇ̌
W n
s�1.z1Ws�1/ > 1=Cs�1

	
and let ls W f1; : : : ; #Lsg ! Ls be the function which maps n to the nth
largest element inLs . We then set the �rst #Ls parent indices determinist-
ically via A1W#Ls

s�1 WD .ls.1/; : : : ; ls.#Ls//. The remaining Ms � #Ls parent
indices take values in Ks�1 n Ls . They are generated using systematic
resampling based on the weights .W n

s�1.z1Ws�1//n2Ks�1nLs , after these have
been re-normalised to sum to 1.

Note that Ms D Ns�1 implies Cs�1 � 1=Œmaxn2Ks�1 W n
s�1.z1Ws�1/� and

thus Ls D NMs , i.e. in this case, we propagate all existing particle paths
without any pruning.

Proposal Kernel. The proposal kernels are completely deterministic, i.e.
q1.dx1/ D •.1;:::;K/.dx1/, and

Qs..z1Ws�1; as�1/; dxs/ D •.1�Ms ;2�Ms ;:::;K�Ms /.dxs/;

where �m denotes anm-component vector of 1s. In other words, each of the
Ms particle trajectories chosen as parents by the resampling distribution
has exactly K o�spring – one for each element of Xs .
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Importance Weights. To ensure that the Radon–Nikodým derivative
xwt exists, let �1.u1; � / WD •u1 and, for s > 1, let �s.u1Ws; � / be the uniform
distribution on Z.us�1/MsC1;usMs DW D

us
s . If�s is the time-reversal kernel

from Assumption 2.9, then by the properties of the resampling scheme
employed here (see Section A.5 of the appendix),

�s..u1Ws; z1Ws�1; bs�1/; fbsg/•bs�1.fa
bs
s�1g/

D
Rm
s�1..z1Ws�1; bs/; fa

bs
s�1g/

1 ^ Cs�1W bs�1
s�1 .z1Ws�1/

1
fa
bs
s�1g
.bs�1/ 1Duss .bs/:

Hence, the nth Step-t particle weight, wnt .z1Wt/, can be written as

wnt .z1Wt/ D
t.fx

bn1Wtjt
1Wt g/Qt

sD2Œ1 ^ Cs�1W
bns�1jt
s�1 .z1Ws�1/�

D w
bnt�1jt
t�1 .z1Wt�1/

�t.x
bn1Wt�1jt
1Wt�1 ; fxnt g/

1 ^ Ct�1W
bnt�1jt
t�1 .z1Wt�1/

;

for any z1Wt in the support of Q t and wnt .z1Wt/ D 0, otherwise.

2.3.5 Other smc Algorithms

In this subsection, we brie�y mention how other well-known smc al-
gorithms �t into the framework developed in this chapter.

Look-Ahead Algorithms. As pointed out in Heine (2005), Johansen
and Doucet (2008), auxiliary particle �lters (Pitt & Shephard, 1999) can be
viewed as a special case of the sir algorithm targeting a slightly altered
sequence of measures. Block sampling (Doucet et al., 2006), piloting (Wang
et al., 2002; Zhang & Liu, 2002) and the other look-ahead strategies
surveyed in Lin et al. (2013) can also be seen as standard sir algorithms
on suitably extended spaces. Twisted particle �lters (Whiteley & Lee, 2014)
propose one particle at each step from a di�erent proposal kernel than
the others. They can therefore not be seen as sir algorithms but remain
a special case of the generic smc framework introduced in this chapter.
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2 Sequential Monte Carlo Methods

Hierarchical Algorithms. The framework developed in this chapter
can also be applied hierarchically. That is, the target measure t can itself
be an extended target measure of a ‘lower-level’ smc algorithm (i.e. it is
of the form given in Equation 2.3).

Using this construction, we can justify a wide range of hierarchical
smc algorithms such as exactly-approximated Rao–Blackwellised particle

�lters (Johansen et al., 2012), island particle �lters (Vergé et al., 2013),
smc-squared (Chopin et al., 2013) and other interacting smc algorithms
by Jasra et al. (2008), Beskos, Crisan, Jasra, Kamatani and Zhou (2014).
Finally, Johansen and Doucet (in prep.) use smc algorithms at the lower
level to mimic the behaviour of the intractable optimal block sampling
strategy from Doucet et al. (2006).

These algorithms are also pseudo-marginal smc algorithms because in
the sense of Subsection 1.4.3, they (exactly) approximate a usually intract-
able marginal smc algorithm. On the marginal space, their behaviour
approaches that of the marginal algorithm as the number of particles
in the lower-level smc algorithm tends to in�nity. More generally, at
the lower level, we may target the extended measure associated with
any mosis scheme. This justi�es other pseudo-marginal smc algorithms
such as random-weight particle �lters (Fearnhead et al., 2010). Indeed,
the is-squared approach later developed by Tran et al. (2014) is a simple
special case this hierarchical idea. Alternatively, it may also be justi�ed
as a simple case of (random-weight) is.

2.4 Sample Impoverishment and Remedies

2.4.1 Particle-Path Coalescence

In this section, we discuss the sample-impoverishment ‘problem’ and
a partial remedy in the form of forward �ltering–backward smoothing
as well as the sampling-approximation of the latter known as forward
�ltering–backward sampling.

As noted in Subsection 2.2.5, smc methods are particularly suited (often
only suited) to approximating integrals with respect to the �nal marginal
of �t , i.e. integrals with respect to �t;t given by �t;t.A/ WD �t.X�1Wt�1�A/,
for A 2 B.Xt/. Fundamentally, this is due to the fact that for su�ciently
ergodic models, such estimators behave approximately as is estimators
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on a much smaller space.
However, this does not hold for more general test functions, i.e. test

functions which are not constant on X�1Wt�1. For the latter, the error associ-
ated with smc estimates tends to grow in t . This is unsurprising because
we are estimating integrals with respect to �t and are thus performing is
on an ever increasing space.

In practice, this manifests itself in the sample-impoverishment problem,
i.e. in the fact that all particle trajectories share a common ancestor if t is
su�ciently large. More formally, let

�t WD sup
˚
s 2 Nt

ˇ̌
B1

1Wsjt D � � � D B
Nt
1Wsjt

	
be the step number associated with the most recent common ancestor of
all Step-t particles. Jacob, Murray and Rubenthaler (2013) show that the
expected ‘time’ to the most recent common ancestor satis�es

t � EŒ�t � D O.N log.N //;

assuming that N1 D N2 D : : : D N . However, as stressed by Doucet and
Johansen (2011), while this coalescence is a result of performing resampling
within an smc algorithm, resampling is not fundamentally causing the
error associated with smc estimates to grow with t (for general test
functions). Rather, the need for resampling is merely another symptom
of the fact that we are performing is on an ever increasing space. In fact,
resampling is actually the crucial ingredient for guaranteeing uniform-
in-t error bounds and other stability properties of estimates of integrals
with respect to �t;t .

2.4.2 Forward Filtering–Backward Smoothing

In order to still obtain estimates of path integrals �t.ft/ (i.e. for more gen-
eral test functions), it has been suggested to make use of all the particles
generated throughout the smc algorithm (and not just those that form
part of the Nt particle lineages at Step t . This procedure, known as for-
ward �ltering–backward smoothing (ffbs), leads to a di�erent kind of
mosis approximation based on a further extended measure which we
describe in this subsection.
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2 Sequential Monte Carlo Methods

Up to now, the mosis interpretation of smc methods was based around
e�ectively taking the indexK to be one of the particle lineages, i.e. loosely
speaking, we have K D Bn1Wt jt , for some n 2 Kt . The aim of the further
extended measure constructed in this subsection is to letK D C1Wt , where
C1Wt are particle indices which need not coincide with any particle lin-
eage generated under the smc algorithm. A normalised version of this
measure is also at the heart of iterated conditional sequential Monte Carlo
algorithms which use backward sampling or ancestor sampling and which
are discussed in Section 3.4.

Backward Sampling Weights. Hereafter, we assume some �xed ‘time’
horizon, T 2 N and set T WD NT . Before de�ning the further extended
target measure, we need some additional notation.

For t 2 T, de�ne the following kernels in K.Z�1Wt � X�tC1WT ;Kt/, termed
backward sampling weights,

wkt jT .z1Wt ; vtC1WT / WD w
k
t .z1Wt/

d� ˝tC1WT .x
bk1Wtjt
1Wt ; � /

d�˝tC1WT .x
bk1Wtjt
1Wt ; � /

.vtC1WT /;

for k 2 Kt , where the kernels �t 2 K¢.X�1Wt�1Xt/ de�ne some suitable
dominating measure. We also de�ne the self-normalised versions

W k
t jT .z1Wt ; vtC1WT / WD

wk
t jT
.z1Wt ; vtC1WT /PNt

nD1w
n
t jT
.z1Wt ; vtC1WT /

:

Note that wk
T jT
.z1WT / D w

k
T .z1WT /.

Further Extended Target Measure. We now construct the further ex-
tended target measure, QT . To that end, we include an additional set of
particles, V1WT , and particle indices, C1WT , into the state space. Both of
these will be such that V1WT coincides with the particles with indices C1WT
generated under the smc algorithm, i.e. V1WT D XC1WT

1WT . However, we may
have C1WT ¤ B

n
1WT jT , for all n 2 KT .

Write zXT WD . xXT ; V1WT ; C1WT /, then the further extended measure on
the extended space zXT WD xXT � X�1WT � K�1WT is de�ned as

QT .d QxT / WD NT .d NxT /� bs
T .z1WT ; dv1WT � dc1WT /;
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where � bs
T 2K1.Z

�
1WT ;X

�
1WT � K�1WT / is a stochastic kernel given by

� bs
T .z1WT ; dv1WT � dc1WT /

WD

TY
tD1
�t jT ..z1Wt ; vtC1WT ; ctC1WT /; dct/•xctt .dvt/:

For t < T , we have de�ned the backward sampling/smoothing kernels

�t jT ..z1Wt ; vtC1WT ; ctC1WT /; dct/

WD

(
•
a
ctC1
t

.dct/; if %t.ot/ D 0,
W
ct
t jT
.z1Wt ; vtC1WT /; if %t.ot/ D 1,

Here, %t W Ot ! f0; 1g are suitable functions for interpolating between
‘full’ backward smoothing (%1 D � � � D %T � 1) and no backward smooth-
ing (%1 D � � � D %T � 0). This may be desirable for reducing the
computational cost of calculating the backward smoothing weights.

Further Extended Proposal Distribution. To obtain a further exten-
ded proposal distribution, Q T , with respect to which QT is absolutely
continuous, we simply extend the usual smc proposal distribution by the
same kernel, i.e.

Q T WD N T ˝�
bs
T :

Importance Weights. Since � bs
T extends both the target measure and

proposal distribution, we have zwT . QxT / D Œd QT =d Q T �. QxT / D xwT . NxT /.
Assuming that �T jT .z1WT ; fkg/ D W k

T .z1WT /, Proposition 2.10 then implies
the following weight for the particles indexed by c1WT ,

zw
c1WT
T .Z1WT / WD E

�
zwT . zXT / 1fc1WT g.C1WT /

ˇ̌
Z1WT

�
D � bs

T .Z1WT ;X�1WT � fc1WT g/
NtX
nD1

wnT .Z1WT /: (2.16)

Rao–Blackwellisation. Let zXT D . xXT ; V1WT ; C1WT / � Q T , then a one-
sample standard is approximation of QT is given by Q is;1

T WD zwT . zXT /• zXT .
The ffbs approximation of T is then obtained in the usual manner by

integrating out the indices K D C1WT and the set of particles X D V1WT
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2 Sequential Monte Carlo Methods

along with the quantities .U1WT ; B1WT /. In contrast to the standard mosis
interpretation of smc methods, the latter quantities are now considered to
be auxiliary variables which are part of Y , along with the parent indices
A1WT�1 and O1WT . For any A 2 B.X�1WT /, by Equation 2.16,


mosis;N1WT
T .A/ D E

�
Q
is;1
T .xXT � A � K�1WT /

ˇ̌
Z1WT

�
D

X
c1WT2K�1WT

zw
c1WT
T .Z1WT /•Xc1WT1WT

.A/

DW 
ffbs;N1WT
T .A/:

Note that we have not yet shown that QT admits T as a marginal in
the v1WT -component, i.e. that

QT .xXT � A � K�1WT / D T .A/; (2.17)

for any A 2 B.X�1WT /. Hence, it is not obvious that the ffbs approxima-
tion  ffbs;N1WT

T .fT / should be an unbiased estimate of T .fT /. We post-
pone the proof of Equation 2.17 until Subsection 3.4.3. As shown therein,
Equation 2.17 is essentially equivalent to showing that conditional sequen-
tial Monte Carlo kernels with backward sampling and ancestor sampling
both share the same extended target distribution.

Finally, note that by Equation 2.16, ffbs cannot lead to any improve-
ment over the standard smc approximation if fT is constant because

z
ffbs;N1WT
T WD

X
c1WT2K�1WT

zw
c1WT
T .z1WT / D

NTX
nD1

wnT .z1WT / D z
smc;N1WT
T :

Thus, in particular, ffbs does not improve estimates of the normalising
constant compared to the usual smc estimate.

Additive Functionals. Using the ffbs approximation tends to be in-
feasible, in practice, because the cost of evaluating zwc1WTT .z1WT / is O.N T /

if we assume, for simplicity, that N1 D N2 D : : : D NT D N . However,
the computational cost can be brought down to O.TN 2/ via standard
forward–backward recursions (Rauch, Striebel & Tung, 1965; Baum, Petrie,
Soules & Weiss, 1970) if the test function admits the following additive
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decomposition

fT .x1WT / D f1;T .x1/C

TX
tD2

ft;T .xt�1; xt/; (2.18)

where ft;T W X�t�1Wt ! R are suitable functions. In particular, the ffbs
approximation of the integral T .fT / can then be calculated without an
explicit backward recursion. This is known as forward smoothing (Del
Moral, Doucet & Singh, 2010).

2.4.3 Forward Filtering–Backward Sampling

Instead of analytically integrating out .V1WT ; C1IT /, Doucet, Godsill and
West (2000), Godsill, Doucet and West (2004) propose to sample M
‘backward trajectories’ .V m1WT ; Cm1WT /m2NM (conditionally) independently
from the distribution � bs

T .Z1WT ; � /, given the variables Z1WT �  T which
have been generated by a single run of the smc algorithm. This has been
termed forward �ltering–backward sampling.

The backward-sampling idea represents a simple sampling-based ap-
proximation of ffbs (conditional on Z1WT ) and compared to the latter, it
reduces the computational cost to the more manageable O.MTN/. This
rate can formally be further improved by rejection-sampling ideas (Douc,
Garivier, Moulines & Olsson, 2011) under some additional conditions on
the target measure T . Again, forward �ltering–backward sampling does
not improve estimates of the normalising constant, as noted, for instance,
in Olsson and Rydén (2011).

Finally, in the case that the test function fT admits an additive de-
composition as in Equation 2.18, a sampling-based approximation of the
above-mentioned forward-smoothing recursions has been developed by
Olsson and Westerborn (2014).

2.5 Summary

In this chapter, we have described a generic smc algorithm and have
shown that it can be viewed as a special case of the mosis scheme de-
scribed in the previous chapter. One way of interpreting the relationship
between some well-known smc algorithms mentioned in this chapter is
outlined in Figure 2.1.
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generic
smc algorithm

discrete
particle �lter

sequential
importance resampling

random-weight
particle �lter

bootstrap
particle �lter

auxiliary
particle �lter

smc-sampler
framework

block
sampling

population
Monte Carlo

resample–move

smc-squared

Figure 2.1 Some instances of the generic smc algorithm mentioned in this
chapter.
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3 Markov Chain Monte Carlo

Methods

3.1 Introduction

3.1.1 Motivation

In this chapter, we introduce Markov chain Monte Carlo methods. Section 3.1

outlines the main idea behind this class of Monte Carlo schemes and shows

that they can be viewed as (an approximation to) a special case of the mar-

ginalised one-sample importance sampling scheme presented in Chapter 1.

Using the same ideas again at a lower level, we construct a generic kernel

which admits essentially every known Markov chain Monte Carlo kernel as

a special case. This is done in Section 3.2. In Section 3.3, we demonstrate that

multiple-proposal and ‘randomised’ Metropolis–Hastings kernels, pseudo-

marginal kernels, and ensemble Markov chain Monte Carlo kernels can all

be viewed as instances of the generic kernel. Other special cases, conditional

sequential Monte Carlo kernels, which play a major rôle in Part II of this

work, are detailed in Section 3.4. In particular, we show that the variance-

reduction techniques: backward sampling and ancestor sampling share the

same extended target distribution. To our knowledge, this is a new result.

In this chapter, we speci�cally assume that the measure with respect
to which we want to calculate integrals is a probability measure. That is,
throughout, we assume that we want to calculate integrals of the form
�.f / for some probability measure � 2M1.X/ and some test function
f 2 F � L.�/.

3.1 Remark. Even though the methods described in this chapter only ap-

proximate probability measures, it is still generally possible to use these

methods in the presence of intractable normalising constants, i.e. if � D =z

with some unknown normalising constant z D .1/.
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3 Markov Chain Monte Carlo Methods

The main idea of Markov chain Monte Carlo (mcmc) methods is to
approximate the measure � by a collection of samples X D X 1WN which
are marginally (approximately) distributed according to � .

However, taking X to be independent (and thus iid) samples is im-
possible in realistic problems. Instead, mcmc methods generate dependent
samples by iteratively sampling from some Markov kernel P 2K1.X;X/
which is �-invariant, i.e. which satis�es

�P D �: (3.1)

Assume for the moment that X D x � � . Then by Equation 3.1, any
draw Y � P.x; � / is also distributed according to � . The samples X
and Y are usually dependent but the main advantage of this idea is that
sampling from P.x; � / is often feasible in situations in which generating
iid samples from � is not.

The �rst mcmc algorithm, known as the Metropolis algorithm, was
developed in the seminal work by Metropolis, Rosenbluth, Rosenbluth,
Teller and Teller (1953). In Hastings (1970), it was improved and generalised
to a framework which includes the Metropolis–Hastings kernel as well
as another mcmc kernel due to Barker (1965). Work by Peskun (1973)
(and later extensions by Tierney (1998), Mira (1998)) showed that the
Metropolis kernel dominates Barker’s kernel in terms of resulting in a
lower asymptotic variance.

The scope of mcmc methods was further expanded in the works by
S. Geman and Geman (1984), Tanner and Wong (1987) and �nally brought
in to the mainstream of statistical computing by Gelfand and Smith (1990),
Tierney (1994), Chib and Greenberg (1995). A thorough summary as well as
further references may be found in Roberts and Rosenthal (2004), Robert
and Casella (2004).

3.1.2 Note on Ergodicity

The estimator discussed in this chapter is ‘valid’ – in the sense of yielding
unbiased estimates of integrals of the form �.f / – as soon as (1) P is
�-invariant, (2) the Markov chain .Xn/n2N has initial distribution � .
However, as in the previous chapters, further conditions are needed to
obtain consistent estimators. Even worse, initialising the Markov chain
from � is generally impossible.
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In order to obtain consistent estimates – and, as described in the next
subsection, to permit non-stationary initial distributions � ¤ � – we
require P to also be suitably ergodic. That is, we at least need

�PN .f /
N!1
�! �.f /; for all .�; f / 2 P .X/ �L.�/,

where P .X/ is some appropriate class of initial distributions – ideally,
P .X/ DM1.X/ is the set of all probability measures on X.

A discussion of various (stronger) notions of ergodicity and associated
convergence rates is beyond the scope of this work. We refer the reader
to Roberts and Rosenthal (2004), for an overview, and Meyn and Tweedie
(2009), for a thorough theoretical treatment.

3.1.3 Generic Algorithm

Let � be some probability measure on X from which we can sample and
which will be the initial distribution of a Markov chain .Xn/n2N .

The remainder of this section is concerned with constructing the fol-
lowing mcmc approximation of the probability measure � ,

�mcmc;N
� WD

NX
nD1

wn.Z /•Xn :

Here, as in the previous chapters, Z D X D X 1WN is a set of samples
while .wn.Z //n2K, for K WD NN , is a collection of non-negative weights.
However, in contrast to the previous chapters, the nth weight will only
depend on n (and possibly on Xn). This notation may seem unnecessarily
complicated. However, in the next Subsection, it helps interpreting mcmc
methods as a special case of the mosis approximation from Section 1.4.

As discussed below, the weights .wn.Z //n2K play an important rôle
in discounting the e�ect of initialising the Markov chain from some
distribution � with � ¤ � but they may also be used for thinning.

A generic mcmc algorithm is outlined in Algorithm 3.2.

3.2 Algorithm (Markov chain Monte Carlo). Given X 1 � �.

� For n 2 Z2;N , sample Xn � P.xn�1; � /.

� Approximate �.f / by �mcmc;N
� .f /.
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Clearly, �mcmc;N
� .f / can only be an unbiased estimate of �.f / if the

Markov chain .Xn/n2N is initialised from the target distribution. Unfor-
tunately, taking � D � is impossible in realistic problems.

Instead, by appealing to the ergodicity properties ofP , we can construct
the weights wn.Z / in a way that largely removes the e�ect of sampling
X 1 � � ¤ � from the estimator. This is commonly done by making
sure that wn.Z / D 0, for any n in the burn-in period comprising the �rst
R < N iterations. The length of this period, R, needs to be large enough
such that k�PR � �k is su�ciently small and hence that�mcmc;N

� � �mcmc;N
�

 (3.2)

is su�ciently small, where k � k denotes some suitable norm.
3.3 Remark. For the rest of this chapter, we assume that � D � and

write �mcmc;N
� DW �mcmc;N

, for simplicity. However, we stress that this is

an unrealistic assumption and that in practice the kernel P needs to be

su�ciently ergodic and the weights constructed in such a way that the

distance in Equation 3.2 is su�ciently small.

More complicated weights can also be used to accommodate thinning,

i.e. for some suitable M 2 N , we may specify the weights in such a way
that wm.z/ D 0, for any m satisfying m mod M ¤ 0. If Xn and XnCm

are highly correlated for all m 2 NM�1, then this choice has little e�ect
on the variance of the estimate �mcmc;N .f / but it dramatically reduces
the memory cost because only every M th value of the chain has to be
stored. Valid ways of constructing the weights are implied by the is
interpretation of mcmc methods which is detailed in the next subsection.

3.1.4 Interpretation as Marginalised One-Sample

Importance Sampling

In this subsection, we show that mcmc methods can be viewed as a special
case of the mosis framework introduced in Chapter 1. To that end, we
again introduce an extended proposal distribution, N 2M1.xX/, and an
extended target distribution N� 2 M1.xX/ such that (1) N� admits � as a
marginal, (2) we can sample from N , (3) xw WD d N�=d N exists and can be
evaluated point-wise. We then show that the usual mcmc approximation
of � , �mcmc;N , coincides with a Rao–Blackwellised is approximation of
N� , based on a single sample.
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Extended Proposal Distribution. As before, we include an index K
into the state space which takes values in some �nite space K WD NN .
The collection of random variables generated by the mcmc algorithm,
Z D X D X 1WN , takes values in the product space Z WD X WD XN .
Finally, we let xX WD X � K � Z be the space on which we de�ne the
extended proposal distribution and accordingly write xX WD .X;K;Z /

for a random vector drawn from this distribution.
Assuming that we initialise the Markov chain from � (see Remark 3.3),

the extended proposal distribution may be given by
N .d Nx/ WD �.dx1/P˝.N�1/.x1; dx2WN /�.x; dk/•xk.dx/;

where the kernel � 2K1.X;K/ de�nes a distribution over the index K .
Extended Target Distribution. A corresponding extended target dis-
tribution can be constructed as

N�.d Nx/ WD �.dx/�.x; dk/•x.dxk/P˝.N�k/.xk; dxkC1WN /
� L˝.k�1/.xk; dxk�1 � � � � � dx1/:

Above, the stochastic kernel � 2 K1.X;K/ de�nes a distribution over
K and L 2 K1.X;X/ is the time-reversal kernel of � under P , i.e. L is
de�ned by L.x0; dx/ D ŒdP.x; � /=d��.x0/�.dx/.
Rao–Blackwellisation. Assuming that � is chosen such that N� � N ,

xw. Nx/ WD
d N�
d N 
. Nx/ D

�.xk; fkg/

�.x; fkg/
1fxkg.x/: (3.3)

Given xX � N , a one-sample is approximation of N� is given by the random
measure N� is;1 WD xw. xX/• xX . If we write

wk.Z / WD E
�
xw. xX/ 1fkg.K/

ˇ̌
Z
�
D �.xk; fkg/;

then for anyA 2 B.X/, Rao–Blackwellising the estimate N� is;1.A � K � Z/,
shows that the usual mcmc approximation of �.A/ is an instance of the
mosis approximation, i.e.

�mosis;N .A/ D E
�
N� is;1.A � K � Z/

ˇ̌
Z
�

D

NX
nD1

wn.Z /•Xn.A/

D �mcmc;N .A/:
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Hence, the mcmc approximation of � can be seen as a special case of is,
more precisely as a special case of the mosis construction from Chapter 1.
Note that this immediately implies that mcmc may be viewed as a special
case of the Monte Carlo method. We recognise that this is somewhat at
odds with the often-held view that the Monte Carlo method is ‘a special
case of mcmc’ (Geyer, 2011, p. 6).

Rôle of Time-Reversal Kernels. Using the time-reversal kernel to in-
corporate a corresponding �-invariant kernel into an is scheme is a
common approach employed, for instance, in the generalised is approach
(MacEachern et al., 1999) as described in Example 1.9, in smc samplers
(Del Moral et al., 2006b) as described in Example 2.15, as well as in Storvik
(2011). Indeed, it is often the only feasible way of using the mcmc kernels
described in the next section within is. Di�erently constructed extended
target distributions lead to intractable Radon–Nikodým derivatives as
stressed by (Del Moral, Doucet & Jasra, 2006a).

The drawback, however, is that this way of simplifying the Radon–
Nikodým derivative in Equation 3.3 requires the mcmc chain to be initial-
ised from � (though, in practice, this can be relaxed the number of burn-in
samples, R is su�ciently large). Ideally, we would like to initialise the
chain from some other distribution, � ¤ � and use the Radon–Nikodým
derivative to compensate for the fact that samples are not drawn (margin-
ally) from � . Unfortunately, this is generally infeasible.

3.2 Generic mcmc Kernel

3.2.1 Elementary Kernels

In this section, we construct a generic mcmc kernel which admits es-
sentially all known mcmc kernels as a special case. Its construction is
based around the is framework from Andrieu and Roberts (2009), An-
drieu et al. (2010) and is thus closely linked to the extended measure N
from the mosis approach in Chapter 1. However, instead of obtaining an
is approximation of (a normalised version of) this measure by averaging
over all candidates X D X 1WN , we sample one of these candidates, XK ,
which is then marginally distributed according to � .
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Related generic mcmc frameworks have appeared in Tjelmeland (2004),
Storvik (2011) though without exploiting the fundamental insight from
Andrieu and Roberts (2009) as described in Remark 1.16 and without
using the extra auxiliary variables required for more sophisticated mcmc
kernels. Our framework is similar to that of Lee (2011) around which Lee,
Andrieu and Doucet (in prep.) also develop a number of novel extensions.

In particular in this subsection, we describe an elementarymcmc kernel.
Essentially all mcmc kernels can be decomposed into repeated application
of such kernels to an extended target distribution which is constructed in
such a way that sampling from the elementary kernels is possible. In an
mcmc context, such extended state-space constructions are often called
data augmentation (Tanner & Wong, 1987).

Assume that the state space can be decomposed as X D X0 � X1 and let
X D .X0; X1/ � � . Let ˘ 2K1.X0;X1/ be the stochastic kernel de�ning
the full conditional distribution of X1 under � then the elementary kernel

P.x; dx0/ WD •x0.dx00/˘.x00; dx01/

is clearly �-invariant. We also refer to these elementary kernels as Gibbs
kernels in this work since their concatenation leads to mcmc algorithms
known as Gibbs samplers. These are described in the next subsection.

3.2.2 Combinations of Kernels

More complicated mcmc kernels are constructed by combining element-
ary mcmc kernels. Indeed, let . zPm/m2M be a countable collection of
�-invariant kernels with zPm D zP ..m; � /; � / 2K1.X;X/, for m 2 M WD
NM . Additionally, let ˇ 2K1.M;M/ be another stochastic kernel which
will be used to determine the choice of kernel Pm.

In this case, we can include the indicesM into the state space to justify
kernels of the form

P..m; x/; dm0 � dx0/ WD ˇ.m; dm0/ zP ..m0; x/; dx0/:

This implies a mixture of (elementary) kernels on the marginal space X.
As a special case, we can justify compositions of kernels (on the marginal
space), P D P1 � � �PM ; by setting

ˇ..m; x/; dm0/ WD 1fM g.m/•1.dm0/C1f1;:::;M�1g.m/•mC1.dm0/: (3.4)
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3.4 Example (Gibbs sampler). Assume that we can decompose the state

space as X D X�1WJ for some J 2 N and write X D X1WJ . De�ne Sets

J1; : : : ; JM � NJ such that

S
m2M Jm D NJ . Furthermore, de�ne themth

Gibbs kernel via

zP ..m; x/; dy/ WD •xJm .dyJm/˘m.y�Jm; dyJm/;

where XJm WD .Xj /j2Jm , X�Jm WD .Xj /j2JnJm and where ˘m.x�Jm; � /

denotes the full conditional distribution of XJm under � . In this case, the

Markov chain induced by P D ˇ ˝ zP is called a Gibbs sampler (S. Geman

& Geman, 1984). In particular, it is called a

� random-scan Gibbs sampler if ˇ.m; � / is non-degenerate,

� deterministic-scan Gibbs sampler if ˇ is as given in Equation 3.4.

3.5 Example (partially-collapsed Gibbs sampler). Deterministic-scan

Gibbs samplers are often presented as updating every component of X ex-

actly once per iteration, i.e. taking .Jm/m2M to be a partition ofNJ . However,

large reductions in the asymptotic variance are achievable if Jm\JmC1 ¤ ;,

and in this case, the Gibbs sampler is often referred to as a partially-collapsed
Gibbs sampler (Van Dyk & Park, 2008).

3.2.3 Generic mcmc Kernel

Clearly, sampling from a tractable distribution on a su�ciently small, �nite
state space is feasible and we would not need mcmc algorithms for this
task. However, the only mcmc kernel capable of sampling (approximately)
from a higher-dimensional distribution � on general state space is the
Gibbs-sampling kernel presented in Example 3.4. Unfortunately, this
kernel requires sampling from full conditional distributions under �
which are often intractable.

In this subsection, we construct a generic �-invariant mcmc kernel
which does not require sampling from full conditional distributions under
� . Unsurprisingly, this generic kernel is based around a state-space
extension pioneered by Tjelmeland (2004). That is, it can be viewed as
being invariant with respect to a distribution on an extended space which
(1) admits � as a marginal, (2) has full conditional distributions from
which we can sample. The resulting mcmc algorithm can thus be viewed
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as a Gibbs sampler targeting this extended distribution. As we shall see,
this generic kernel admits most known mcmc kernels as a special case.

The generic mcmc kernel is again based around (a normalised version
of) the extended measure N� D N= N.1/ 2M1.xX/ from Chapter 1. Recall
that xX D X � K � Z, where K D NN and Z D XN � Y, where Y is the set
of values taken by some auxiliary variables, Y .

Note that in the previous section, we used the framework from Chapter 1
to interpret the entire mcmc algorithm as a special case of is. Here, we
employ the same framework again but at a lower level to construct the
�-invariant kernel, P .

Further Extended Target Distribution. Recall that the extended dis-
tribution can be seen as a distribution over some auxiliary variables Y , a
pool of N candidates for X , X D X 1WN , and an index K . It is construc-
ted in such a way that if xX D .X;K;Z / D .X;K;X 1WN ; Y / � N� then
XK D X � � (Assumption 1.12). Approximations of � were previously
constructed by integrating out .X;K/ and thus averaging over all possible
candidates in an is scheme.

Here, instead of integrating .X;K/ out, we generate a new value for
the index K , denoted zK , and a ‘new’ candidate, zX D X zK , in such a way
that again, zX � � under the extended distribution de�ned below. More
precisely, writing zX WD . xX ; zK; zX/ and recalling that xZ D .K;Z /, the
generic mcmc kernel targets the extended distribution

Q�.d Qx/ WD N�.d Nx/�. Nx; d Qk � d Qx/
D �.dx/ x̆ .x; dNz/�. Nx; d Qk � d Qx/

on zX WD xX � K � X. Here, � 2K1.xX;K � X/ is chosen such that

zX � Q� ) X
zK
D zX � �: (3.5)

Note that such a kernel exists because we can always (and will often) take
�. Nx; d Qk � d Qx/ D N� c.z; d Qk � d Qx/, where N� c.z; � / is the full conditional
distribution of .K;X/ under N� .

Dominating Measure. Throughout the remainder of this chapter, we
assume that N� has a density xw with respect to a suitable dominating
measure N which admits the factorisation

N .d Nx/ WD  .dz/�.z; dk/•xk.dx/;
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where  2 M¢.Z/ and � 2 K¢.Z;K/. This factorisation is required to
obtain the following explicit representation of N� c . For Nx D .x; k; z/, write
wk.z/ WD xw. Nx/�.z; fkg/. We can then represent the full conditional dis-
tribution of .X;K/ under N� as N� c.z; dk � dx/ D N�z.dk/•xk.dx/, where

N�z.fkg/ WD
wk.z/PN
nD1w

n.z/
:

Finally, note the measure  does not depend on k. It therefore gen-
eralises the symmetric dominating measure required in Green (1995) as
discussed in the Subsection 3.3.2,

Summary. By Equation 3.5, a �-invariant kernel is given by

P.x;A/ WD

Z
xZ�K�A

x̆ .x; dNz/�. Nx; d Qk � d Qx/;

for all .x; A/ 2 X �B.X/. It is summarised in Algorithm 3.6.

3.6 Algorithm (generic mcmc kernel). Given X � � ,

(1) sample xZ � x̆ .x; � / and set xX WD .X; xZ /,

(2) sample . zK; zX/ � �. Nx; � /,

(3) output X WD zX (D X
zK
).

Note that the generic mcmc kernel is just a Gibbs kernel targeting the
extended distribution Q� . The advantage of this state-space extension is
that the kernels x̆ and� can often be chosen in such a way that sampling
from them – and thus sampling from this Gibbs kernel – is feasible even
if sampling from full conditional distributions under � is not.

Finally, we note that the generic mcmc kernel is �-invariant by con-
struction. In particular, this insight immediately shows that all the mcmc
kernels mentioned in this chapter are �-invariant (since they are all spe-
cial cases of this approach) without appealing (explicitly) to su�cient
conditions such as detailed balance. However, we reiterate the fact that
�-invariance is not su�cient for obtaining useful mcmc kernels. Indeed,
taking q WD � in Example 1.14 can be viewed as initialising the Markov
chain from � and then applying the trivial kernel P.x; � / WD •x . This
kernel is �-invariant but not ergodic and thus clearly useless.
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3.2 Generic mcmc Kernel

For later use, we de�ne the following terminology, borrowed from
Nicholls, Fox and Watt (2012), which will be justi�ed in the next section.

3.7 De�nition (randomised mcmc kernel). Any instance of the gen-

eric mcmc kernel is called ‘randomised’ if it makes use of further auxiliary

variables, i.e. if Y ¤ ;.

3.2.4 Finite State-Space Kernels

In this section, we show that �nite-state space mcmc kernels such as the
Metropolis kernel (Metropolis et al., 1953) and the modi�ed discrete-state
Gibbs sampler kernel from Liu (1996) can be viewed as special cases of
the generic kernel introduced in the previous subsection. These kernels
are mainly of interest because they themselves serve as building blocks
for the general-state space mcmc kernels described in the next section.
Namely, they will be used to construct the kernel � in Algorithm 3.6
when the state space X is in�nite.

Throughout this subsection, we do not make use of the auxiliary vari-
ables, Y , and therefore set Y WD ;, for simplicity. However, there is
no principal di�culty with including extra auxiliary variables and thus
obtaining ‘randomised’ versions of the kernels described here.

Assume a �nite state space, without loss of generality X D NN , and
assume that N 2 N is su�ciently small so that any normalising constant
z D .1/ D

P
x2X .x/ of� D =z is tractable which in turn implies that

we can sample directly from � . Throughout, we write .fxg/ D .x/.

General Construction. De�ne the extended target distribution through

x̆ .x; dNz/ WD •x.dk/•x.dxk/•.1;:::;k�1;kC1;:::;N/.dx�k/; (3.6)

�. Nx; f Qkg � d Qx/ WD A.xk; x Qk/•
x Qk
.d Qx/: (3.7)

Here A.x; y/ WD s.x; y/�.y/, where, following Hastings (1970), we take
s W X2 ! Œ0;1/ to be some non-negative symmetric function chosen such
that � is a stochastic kernel. In this case, if zX � Q� , we clearly have that
XK � � and by symmetry, X zK � � .
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Examples. The remainder of this subsection details how some well-
known �nite state-space mcmc kernels can be viewed as special cases of
this framework.
3.8 Example (iid sampling). Generating iid samples from � can be

interpreted as running an mcmc algorithm which uses the kernel P based

on Equations 3.6 and 3.7 with s � 1, i.e. A.x; y/ D �.y/.
The following example de�nes an alternative mcmc kernel which

dominates iid sampling in the Peskun sense (Peskun, 1973).
3.9 Example (modi�ed discrete-state Gibbs sampler). Another valid

choice for the symmetric function s is given by

s.x; y/ WD

�
Œ1 � �.x/ _ 1 � �.y/��1; if x ¤ y,�
1 �

X
y2Xnfxg

s.x; y/�.y/

�
1

�.x/
; otherwise.

(3.8)

In this case,� de�ned according to Equation 3.7 is indeed a stochastic kernel.
To see this, de�ne the sets X0 WD fy 2 X n fxg j �.x/ � �.y/ g and

X1 WD fy 2 X n fxg j �.x/ > �.y/ g, thenX
y2Xnfxg

A.x; y/ D
X
y2X0

�.y/

1 � �.x/
C

X
y2X1

�.y/

1 � �.y/

�
1

1 � �.x/
X

y2Xnfxg

�.y/

D 1:
The kernel P based on this symmetric function can be recognised as the

modi�ed discrete-state Gibbs kernel from (Liu, 1996).

3.10 Example (Metropolis). If N D 2, then the kernel de�ned by Equa-

tions 3.6 and 3.8 is the famous Metropolis kernel introduced in (Metropolis

et al., 1953). Indeed, in this case

A.x; y/ D
�.y/

�.y/ _ �.x/
D 1 ^ ˛.x; y/;

for x ¤ y with ˛.x; y/ WD .y/=.x/. This the usual Metropolis ‘accept-

ance probability’, so called because in some of the general state-space kernels

presented in the next section, it can be viewed as the probability of accepting

a proposed move from x D xk to y D x
Qk
.
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3.3 General State-Space Kernels

3.3.1 Barker, Forced-Move, Metropolis–Hastings

In this subsection, we show that many classical mcmc kernels for general
state spaces such as the Metropolis kernel (Metropolis et al., 1953), Barker’s
kernel (Barker, 1965), the Metropolis–Hastings kernel (Hastings, 1970)
as well as generalisations of the latter two to N � 1 > 1 proposals
(Tjelmeland, 2004) can be viewed as special cases of the generic kernel
introduced in Subsection 3.2.3.

Assume now that X is some general state space, e.g. continuous or �nite
but large enough such that the normalising constant of � D =z, given
by z D .1/, is intractable.

General Idea. To ease the explanation, we recall that the main intuition
behind the generic kernel can be summarised as follows. Given some value
X � � , we propose N possible candidates with the Kth candidate being
set equal to X . Of course, we cannot generally propose these candidates
from � . Instead, we propose them from another (conditional) distribution
and then pick the next value of the mcmc chain, zX D X zK , by sampling
a new index zK . If zK D K , then the Markov chain chain induced by the
generic kernel does not move to a di�erent value. If N D 2, then this
amounts to ‘rejecting’ the proposed candidate X�K .

The extended target distribution from Chapter 1, N� , involved in the
construction of the generic kernel is essentially the distribution targeted
by the pseudo-prior approach from Carlin and Chib (1995) (if all models are
de�ned on the same space). Though in the pseudo-prior case, the indexK
actually has some physical interpretation; namely, it indexes one out ofN
possible models. Because this framework allows for N � 1 > 1 proposals
to be made (of which one, the zKth, is ‘accepted’) it has recently received
renewed attention with a view to harnessing the bene�ts of parallelisation
within mcmc algorithms (Calderhead, 2014).

Simpli�cation. To obtain the concrete expressions for ‘acceptance prob-
abilities’ and other familiar quantities, we often assume in this section that
the extended target distribution factorises according to Assumption 3.11.
However, we stress that this factorisation is only employed for illustrative
purposes and is not necessary for constructing �-invariant kernels.
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3.11 Assumption (simpli�ed target distribution). We take

x̆ .x; d Nx/ D UnifK.dk/•x.dxk/Qk.x; dx�k/Rk.x; dy/;

whereQk.x; � / WD Q..x; k/; � /, Rk.x; � / WD R..x; k/; � /, and

(1) Q 2K1.X � K;XN�1/ proposes the N � 1 remaining candidates,

(2) R 2K1.X � K;Y/ de�nes a distribution over the auxiliary variable Y .

In this subsection, we take�. Nx; d Qk � d Qx/ WD zPz.k; d Qk/•x Qk.d Qx/, where
zPz will be one of the �nite state-space mcmc kernels – invariant with

respect to N�z – constructed in the previous subsection.
In addition in this subsection, we assume a ‘non-randomised’ algorithm,

i.e. we do not make use of the further auxiliary variables and take Y D ; so
that Z D X D X 1WN . We then obtain the classical Metropolis–Hastings
algorithm and Barker’s algorithms as instances of the generic kernel. We
present slightly generalised versions of both which allow for N � 1 > 1,
not necessarily (conditionally) independent ‘proposals’.

Barker’s Kernel. If we take zPx.k; � / WD N�x to be the iid-sampling ker-
nel from Example 3.8, then the generic kernel P simpli�es to Barker’s

kernel (Barker, 1965), slightly generalised to allow for N � 1 (not neces-
sarily independent) proposals. In turn, Barker’s kernel admits the frozen

Carlin-&-Chib kernel from Douc, Maire and Olsson (2014) as a special
case (again, the index K then has a ‘physical’ interpretation: it indexes a
particular component in an N -component mixture model).

In particular, under Assumption 3.11, a single application of Barker’s
kernel is outlined in Algorithm 3.12.

3.12 Algorithm (Barker). Given X � � ,

(1) sample K � UnifK, X�k � Qk.x
k; � /, and set Xk WD X ,

(2) set zK D l with probability

zPx.k; flg/ D N�x.flg/ D
.dxl/Ql.x

l ; dx�l/PN
nD1 .dxn/Qn.xn; dx�n/

;

(3) output zX D X
Qk
.

Note that in this simpli�ed case (due to the exchangeability implied
by the uniform distribution for K in Assumption 3.11), it su�ces to set
K WD 1, say, in Step 1 of Algorithm 3.12.
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Forced-Move Kernels. If we take zPx.k; � / to be the modi�ed discrete-
state Gibbs kernel from Example 3.9 in the previous section, with target
distribution N�x , then the generic kernel P simpli�es to the forced-move

kernel described in Chopin and Singh (2013) (though, in that work, the
kernel also makes use of the auxiliary variables, Y , which we have left
out here, for simplicity). As shown in that work, the forced-move kernel
dominates (the above-mentioned generalisation of) Barker’s kernel in
terms of Peskun ordering (Peskun, 1973).

In particular, under Assumption 3.11, a single application of the forced-
move kernel is summarised in Algorithm 3.13, where we set

ˇx.k; l/ WD
N�x.flg/

1 � N�x.fkg/ _ 1 � N�x.flg/
:

3.13 Algorithm (forced move). Given X � � ,

(1) sample K � UnifK, X�k � Qk.x
k; � /, and set Xk WD X ,

(2) set zK D l with probability

zPx.k; flg/ WD

(
ˇx.k; l/; if l ¤ k,

1 �
P
l2Knfkg ˇx.k; l/; if l D k,

(3) output zX D X
Qk
.

Again in the simpli�ed case (due to the exchangeability implied by
Assumption 3.11), it su�ces to set K WD 1, say, in Step 2 of Algorithm 3.13.
Note that setting zK D k in Step 2 is usually interpreted as ‘rejecting’ all
the N � 1 proposed candidates X�k .

Metropolis–Hastings Kernels. If N D 2, then the forced-move kernel
simpli�es to the classic Metropolis–Hastings (mh) kernel introduced by
Hastings (1970). Note that in this case, zPx reduces to the Metropolis
kernel from Example 3.10 with target distribution N�x .

In particular, under Assumption 3.11, a single application of the mh
kernel takes the familiar form outlined in Algorithm 3.14, where we set

˛x.k; l/ WD
N�x.flg/

N�x.fkg/
D

.dxl/Ql.x
l ; dx�l/

.dxk/Qk.xk; dx�k/
:

73



3 Markov Chain Monte Carlo Methods

3.14 Algorithm (Metropolis–Hastings). Given X � � ,

(1) sample K � UnifK, X�k � Qk.x
k; � /, and set Xk WD X ,

(2) set zK D l with probability

zPx.k; flg/ WD

(
1 ^ ˛x.k; l/; if l ¤ k,

1 � 1 ^ ˛x.k; l/; if l D k,

(3) output zX D X
Qk
.

As before, in this simpli�ed case (due to the exchangeability implied
by Assumption 3.11), it su�ces to set K WD 1, say, in Step 1. In particular,
setting zK D l ¤ k in Step 1 is usually interpreted as ‘accepting’ the pro-
posed candidateX�k and zPx.k; flg/ D 1 ^ ˛x.k; l/ is the corresponding
‘acceptance probability’.

It is well known that many mcmc kernels can themselves be viewed
as special cases of the mh kernel on a suitably extended space:
Multiple-try Metropolis kernels (Liu, Liang & Wong, 2000) are shown to

be mh kernels e.g. in Maire, Douc and Olsson (2014, Appendix B.2).
Delayed-acceptance kernels (Christen & Fox, 2005) are mh kernels whose

proposal kernel is itself an mh kernel targeting another distribution,
Reversible-jump kernels (Green, 1995) (see Subsection 3.3.2) are mh ker-

nels targeting a distribution on a particular countable union of spaces.
Pseudo-marginal mh kernels (Beaumont, 2003; Andrieu & Roberts, 2009)

(see Subsection 3.3.4) are mh kernels targeting a version of the pseudo-
marginal target distribution from Subsection 1.4.3.

Note that these kernels are not inherently reliant onN D 2 and can easily
be generalised to using N � 1 > 1 proposals. In addition, they could also
use of some set of auxiliary variables, Y , e.g. as in Subsection 3.3.3.

We conclude this subsection by noting that Gibbs kernels are often
viewed as (one-proposal) mh kernels in which the acceptance probability
is equal to 1 (Gelman, 1992). The above interpretation shows that the
opposite interpretation is also possible. That is, mh kernels are funda-
mentally Gibbs kernels on a suitably extended space. Of course, this is
unsurprising because any implementable Monte Carlo algorithm must
necessarily decompose into steps that require sampling from tractable
(conditional) distributions.

74



3.3 General State-Space Kernels

3.3.2 Reversible-Jump mcmc

In some cases, for instance in the context of model selection problems, the
target distribution � is de�ned on a particular countable union of spaces,

X WD
[
m2M

.fmg � Xm/; (3.9)

for some sequence of essentially arbitrary spaces .Xm/m2M. mh kernels
targeting such distributions are then known as reversible-jump Markov

chain Monte Carlo (rjmcmc) kernels (Green, 1995) though there is no fun-
damental di�culty with targeting � using other (more general) instances
of the generic mcmc kernel. Indeed, Extensions and modi�cations of the
rjmcmc kernel can be found in Brooks, Giudici and Roberts (2003).

Often, rjmcmc kernels induce additional degenerate dependencies in
the kernel x̆ because the candidatesX�k are constructed, at least in part,
from deterministic transformations of Xk . As a result, the dominating
measure  can no longer be the otherwise common choice: Lebesgue
measure, counting measure or combination of the two.

In this case, constructing a suitable dominating measure  will often
be di�cult. In the speci�c case: N D 2, Green (1995) proposes way of con-
structing the ‘symmetric’ dominating measure  . Evaluating (densities
with respect to) this measure typically requires calculating Jacobian de-
terminants related to the deterministic transformation. This requirement
is simply a product of making such (partially) deterministic proposals and
is entirely unrelated to the speci�c structure of the state space X .

As shown by Besag (1997), Godsill (2001), rjmcmc kernels and other
mcmc kernels targeting distributions on a space as in Equation 3.9 can
actually be viewed as being embedded in (and thus being a special case
of) the pseudo-prior approach from Carlin and Chib (1995). The latter
uses standard mcmc algorithms to target a distribution on the product
space

X D M ��
m2M

Xm:

Again, if Xm D Xn, for n;m 2 M, then this extended distribution can in
turn be interpreted as a special case of the extended target distribution N�
(but one in which the index M D K taking values in M D K has some
‘physical’ interpretation, for instance as the model index).
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3.3.3 Randomised mcmc

Recall that in De�nition 3.7 we de�ned instances of the generic mcmc
kernel as ‘randomised’ if they make use of additional auxiliary variables,
Y , which are included in Z D .X ; Y /. In this subsection, we motivate
this terminology and give some examples of such kernels.

Randomised Metropolis–Hastings Kernels. Note that the full condi-
tional distribution of .X;K/ under N� now also depends on the auxiliary
variable, Y . Assume that the extended target distribution has the particu-
lar structure from Assumption 3.11 and that N D 2.

In particular, under Assumption 3.11, a single application of such a
randomised mh kernel is outlined in Algorithm 3.15, where we write

Ǫz.k; l/ WD
N�z.flg/

N�z.fkg/
D ˛x.k; l/

dRl.x; � /
dRk.x; � /

.y/:

Here, ˛x.k; l/ is as in the standard mh kernel from Algorithm 3.14.
3.15 Algorithm (randomised Metropolis–Hastings). Given X � � ,

(1) sample K � UnifK, X�k � Qk.x
k; � /, and set Xk WD X ,

(2) sample Y � Rk.x; � /,

(3) set zK D l with probability

zPz.k; flg/ WD

(
1 ^ Ǫz.k; l/; if l ¤ k,

1 � 1 ^ Ǫz.k; l/; if l D k,

(4) output zX D X
Qk
.

As before, in this simpli�ed case (due to the exchangeability implied
by Assumption 3.11), it su�ces to set K WD 1, say, in Step 1.

Randomised mh kernels have for instance been studied in Ceperley
and Dewing (1999) (the penalty method), in I. Murray, Ghahramani and
MacKay (2006) (the single-variable exchange algorithm) and in Nicholls
et al. (2012), Alquier, Friel, Everitt and Boland (2014). They are usually
motivated by the fact that the ‘exact’ acceptance probability based on
˛x.k; l/ is intractable but that introducing the auxiliary variables Y allows
the evaluation of Ǫ.x;y/.k; l/. However, as shown in Andrieu and Vihola
(2014), these kernels cannot have a smaller asymptotic variance than the
corresponding non-randomised kernels.
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Interpretation as Randomised Acceptance Probability. The termin-
ology ‘randomised’ mcmc (also called ‘perturbed’ mcmc in Andrieu &
Vihola, 2014) is motivated by the fact that the term Ǫ.x;Y /.k; l/ in the
acceptance probability can be viewed as a randomised version of the term
˛x.k; l/ in the acceptance probability from the standard mh kernel in
Algorithm 3.14. That is, using the reparametrisation

�x;k;l.y/ WD
dRl.x; � /
dRk.x; � /

.y/;

we may write Ǫ.x;Y /.k; l/ D ˛x.k; l/V , where V is a random variable,
taking values in V WD Œ0;1/, which is distributed according to

�k;l.x; � / WD Rk.x; � / ı �
�1
x;k;l :

Conditional on X D x, K D k and L D l , this random variable has
expectation 1 which implies EŒ Ǫ.x;Y /.k; l/� D ˛x.k; l/. Thus, V is inter-
preted as noise perturbing the acceptance probability.

The fact that the randomised acceptance probability in these algorithms
is equivalent to including the auxiliary variables Y into the state space is
pointed out in Lee, Andrieu and Doucet (in prep.).

Reversibility. We stress again that viewing these kernels as special cases
of the generic kernel from the previous section immediately shows that
they are �-invariant – without appealing to (and having to check!) su�-
cient conditions such as detailed balance.

The following simple condition for �-reversibility is given by O’Neill,
Balding, Becker, Eerola and Mollison (2000, Equation 3.10).
3.16 Proposition (O’Neill et al., 2000). Let ˛x.k; l/ in Algorithm 3.14

be replaced by ˛x.k; l/V , where V � �k;l.x; � / for some distribution

�k;l.x; � / 2M1.V/. Then the resulting kernel is �-reversible if

EŒ1 ^ ˛x.k; l/V �

EŒ1 ^ ˛x.l; k/W �
D ˛x.k; l/; (3.10)

for any k; l 2 f1; 2g with k ¤ l , and where W � �l;k.x; � /.
Proof. Note that ˛x.k; l/ D 1=˛x.l; k/. Hence, by Equation 3.10,

N�x.fkg/EŒ1 ^ ˛x.k; l/V � D N�x.flg/EŒ1 ^ ˛x.l; k/W �:

Thus, the randomised mh kernel is �-reversible. �
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A version of the following su�cient condition for Equation 3.10 can be
found in Andrieu and Vihola (2014, Lemma 6).
3.17 Proposition (Andrieu & Vihola, 2014). Using the notation from

Proposition 3.16, Equation 3.10 holds ifZ
A

�k;l.x; dv/v D
Z
V
�l;k.x; dw/ 1.1= idV/�1.A/.w/; (3.11)

for any A 2 B.Y/.

Proof. Again, let V � �k;l.x; � / and W � �l;k.x; � /. Using that
˛x.k; l/ D 1=˛x.l; k/ and decomposing the domain of integration, the
left hand side in Equation 3.10 can be written as

EŒV 1.˛x.k;l/;1/.V /�C ˛x.l; k/EŒ1Œ0;˛x.k;l/�.V /�

EŒ1Œ0;˛x.l;k/�.W /�C ˛x.l; k/EŒW 1.˛x.l;k/;1/.W /�
˛x.k; l/:

Note that Œa; b� D .1=id/�1.Œ1=b; 1=a�/, for 0 < a � b, then by Equa-
tion 3.11, the �rst and second expectation in the denominator are equal
to EŒV 1.˛x.k;l/;1/.V /� and EŒ1Œ0;˛x.k;l/�.V /�, respectively. Hence, Equa-
tion 3.10 is satis�ed. �

In turn, our auxiliary-variable construction immediately implies the
su�cient condition from Equation 3.11. To see this, write �k;l D �k;l and
use the changes-of-variables v D �x;k;l.y/ and w D �x;l;k.y/. For any
.x; A/ 2 X �B.V/ and any k ¤ l , we then haveZ

A

�k;l.x; dv/v D
Z
A

Rk.x; � / ı �
�1
x;k;l.dv/v

D

Z
Y

dRl.x; � /
dRk.x; � /

.y/Rk.x; dy/ 1��1x;k;l .A/
.y/

D

Z
V
Rl.x; � / ı �

�1
x;l;k.dw/ 1�x;l;kı�

�1
x;k;l .A/

.w/

D

Z
V
Rl.x; � / ı �

�1
x;l;k.dw/ 1.1= idV/�1.A/.w/

D

Z
A

�l;k.x; dw/ 1.1= idV/�1.A/.w/:

Here, in the fourth step, we have used that for any suitable surjective func-
tion f W X1 ! X2, and any set A � X2, f ı .1=f /�1.A/ D .1= idX2/

�1.A/.
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3.3.4 Pseudo-Marginal mcmc

As a pseudo-marginal kernel, we refer to any mcmc kernel used to ap-
proximate a ‘marginal’ distribution �? / ? 2M.Θ/, where

?.d�/ WD $.d�/.�; 1/;

by targeting an extended distribution

�.d� � dv/ WD ?.d�/ zT .�; dv/v;

as de�ned in Subsection 1.4.3.
Note that this entails using the generic extended target measure from

Chapter 1 three times. Once for justifying the overall mcmc approxima-
tion (Subsection 3.1.4), once for constructing the particular mcmc kernel
P (Subsection 3.2.3) and now a third time for building the distribution �
which with respect to which the kernel P is invariant.

Illustration. To give a more concrete description of the resulting mcmc
kernel, assume again the particular factorisation of the extended target
distribution (associated with the mcmc kernel) given in Assumption 3.11.
For simplicity, assume that Y D ;. In addition, set X WD Θ � V, where
V WD Œ0;1/, and write X WD .�; V /, Xk D .�k; V k/ and � D �1WN

as well as V D V 1WN . The crucial ingredient of pseudo-marginal mcmc
kernels is then a proposal kernel with the following factorisation:

Qk.x; dx�k/ WD Sk.�; d��k/
Y

n2Knfkg

zT .�k; dvk/;

where S 2 K1.X � K;ΘN / is some suitable proposal kernel for � and
where we write S..�; k/; � / DW Sk.�; � /, for simplicity.

The conditional distribution of .X;K/ under N� then simpli�es to

N�x.fkg/ D
.dxk/Qk.x

k; dx�k/PN
nD1 .dxn/Qn.xn; dx�n/

D
?.d�k/Sk.�k; d��k/vkPN
nD1 

?.d�n/Sn.�n; d��n/vn
: (3.12)
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In other words, if V � 1, then the probability in Equation 3.12 reduces
to that obtained from some mcmc algorithm which directly works on
the marginal space, Θ and which at each iteration, proposes N � 1 can-
didates according to the kernel S to target the marginal distribution �?.
In the particular context of mcmc methods, this property can be power-
ful because the mixing properties of algorithms targeting this (usually
intractable) marginal distribution – and whose properties the pseudo-
marginal algorithm seeks to mimic by controlling the oscillations of V
– can be substantially better than those of mcmc algorithms targeting
some (tractable) extended distribution.

Pseudo-Marginal mh Kernels. Pseudo-marginal methods were intro-
duced by Beaumont (2003), Andrieu and Roberts (2009) and – in the
context of mcmc methods – they are usually implemented by targeting
the pseudo-marginal distribution using a standard mh kernel.

More precisely, assume in particular that that N D 2. Then under
Assumption 3.11, the mh algorithm (Algorithm 3.14) can be restated as in
Algorithm 3.18, where the term ˛x.k; l/ in the acceptance probability can
be expressed as

˛x.k; l/ D
N�x.flg/

N�x.fkg/
D

?.d� l/Sl.� l ; d��l/
?.d�k/Sk.�k; d��k/

vl

vk
: (3.13)

3.18 Algorithm (pseudo-marginal mh). Given X � � ,

(1) sample K � UnifK and��k � Sk.�; � /,

(2) sample V �k � zT .��k; � / and set Xk WD X ,

(3) set zK D l with probability

zPz.k; flg/ WD

(
1 ^ ˛x.k; l/; if l ¤ k,

1 � 1 ^ ˛x.k; l/; if l D k,

(4) output zX D X
Qk
.

As before, in this simpli�ed case (due to the exchangeability implied
by Assumption 3.11), it su�ces to set K WD 1, say, in Step 1.

A thorough analysis of pseudo-marginal mh kernels has been under-
taken by Doucet, Pitt, Deligiannidis and Kohn (2015), Andrieu and Vihola
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(2015, 2014), Sherlock, Thiéry, Roberts and Rosenthal (2015) who also de-
rive guidelines for the optimal value of tuning parameters which govern
the oscillations of the ‘noise’, V , in this context.

3.19 Example (particle marginal mh). The particle marginal Metro-
polis–Hastings (pmmh) kernel from Andrieu et al. (2010) is immediately

justi�ed by recalling that smc methods can be viewed as a special case of

the mosis framework from Chapter 1. More precisely, the pmmh kernel is a

special case of Algorithm 3.18 with

zT .�; � / WD N .�; � / ı . xw�/�1;

where N .�; � / and xw� represent the extended proposal distribution and the

Radon–Nikodým derivative from Chapter 2. These are now indexed by � . In

other words, at every iteration, the pmmh kernel employs an smc algorithm

which, conditionally on the proposed value of�, proposes the ‘weight’ V l in

the acceptance probability in Equation 3.13. More precisely, the weight V l is

simply the usual smc-based estimate of the normalsing constant .�; 1/ of

the measure .�; � / which is marginally targeted by the smc algorithm.

3.20 Example (random refreshment). The random refreshment algo-
rithm from Maire et al. (2014, Algorithm 3) can be viewed as applying the

pseudo-marginal mh kernel twice but taking Sk.�; � / WD •� in the �rst

application. This kernel obviously dominates a single application of the

pseudo-marginal mh kernel in terms of not inducing a larger asymptotic

variance.

Other Pseudo-Marginal mcmc Kernels. The pseudo-marginal distri-
bution can also be targeted by other (more general) instances of the
generic mcmc kernel from Subsection 3.2.3. That is, the pseudo-marginal
idea can still be used when the kernel includes extra auxiliary variables Y
(leading to ‘randomised’ pseudo-marginal mh kernels) or if it usesN > 2
candidates (leading to multiple-proposal pseudo-marginal kernels).

For instance, using (iterated) conditional sequential Monte Carlo ker-
nels – these are described in the next section – based around pseudo-
marginal smc algorithms (see Subsection 2.3.5) can be viewed as more
complicated (non-mh) pseudo-marginal mcmc kernels. The latter are
also ‘randomised’ pseudo-marginal kernels due to the use of a a number
of further auxiliary variables (e.g. parent indices) within smc algorithms.
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3.3.5 Ensemble mcmc

The ensemble mcmc methods from Neal (2003, 2011), Shestopalo� and
Neal (2013) are based around a particular instance of the generic mosis
target measure N from Section 1.4 which we describe below. Speci�cally,
they describe two approaches.
Single-sequence ensemble mcmc kernels, described in Neal (2011) and also

called embedded hmmmethods in Neal (2003), can be viewed as building
a multiple-proposal mcmc kernel around N . This leads to a special case
of the generic mcmc kernel from Section 3.2.3. We show that this
method bears some resemblance – upon which we further elaborate
below – to the conditional sequential Monte Carlo kernel with backward
sampling which we describe in the next section.

Pseudo-marginal ensemble mcmc kernels, described in Shestopalo� and
Neal (2013, 2014), are special cases of the pseudo-marginal mh kernel
described in the previous subsection. They employ the particular in-
stance of the measure N at a lower level to construct a particular kind
of pseudo-marginal target distribution which is then targeted using a
standard mh kernel. We show that this method can be interpreted as a
particular pmmh kernel in which all the parent indices are integrated
out analytically.

Setting. Let T 2M.X�1WT / be some target measure, let �T WD T =T .1/
denote the target distribution, and let �t 2K.X�1Wt�1;Xt/ be �nite kernels
such that T D � ˝1WT .

Ensemble mcmc methods propose a pool of Nt possible candidates for
the t th component of this target measure. In contrast to smc methods, the
candidates for di�erent components are proposed independently. Given
the pool of candidates, single-sequence ensemble mcmc kernels select
one possible candidate for each component. In contrast, pseudo-marginal
ensemble mcmc kernels average over all available candidates.

Extended Target Distribution. We describe both types of ensemble
mcmc approaches in the following. First, we discuss the particular in-
stance of the generic extended measure N around which they are based.
We let Kt WD NNt , for some Nt 2 N , Nt > 1, and set Y WD ; (i.e. we do
not use any extra auxiliary variables).
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The extended target measure employed by ensemble mcmc methods,
and termed ‘ensemble density’ in Neal (2011), is then given by the usual
factorisation

NT .dx1WT / WD T .dx1WT / x̆T .x1WT ; dNzT /;

where

x̆
T .x1WT ; dNzT / WD UnifK�1WT .dk1WT /•x1WT .dx

k1WT
1WT /

�

TY
tD1
�ct ..kt ; x

kt
t /; dx�ktt /: (3.14)

Above, for each t 2 NT DW T, �ct 2K1.Kt �Xt ;X
Nt�1
t / is some stochastic

kernel which de�nes a distribution over the Nt � 1 remaining candidates
in the ‘pool’ Zt WD Xt D X 1WNt

t .
For later use, let �t 2M1.Xt/, be a probability measure on the space

Zt WD Xt WD XNtt , which is such that �ct ..k; x/; � / is the conditional
distribution of X�kt under �t given that the kth component takes the
value x. Similarly, let �mt .k; � / denote the marginal distribution of the kth
component under �t .

3.21 Example. For instance, Neal (2003) proposes to take �mt .k; � / D �t
to be some probability measure which is constant in k and sets

�ct ..k; x/; � / WD P
˝.Nt�k/
t .x; dxkC1WNtt /L

˝.k�1/
t .x; dxk�1t �� � ��dx1

t /;

where Pt is some �t -invariant mcmc kernel and Lt is the associated time-

reversal kernel.

Dominating Measure. Assuming that T � �
m;˝
1WT .k1WT ; � /, for any

k1WT 2 K�1WT , the dominating measure employed by ensemble mcmc meth-
ods exists and can be written as

N T .d NxT / WD  T .dz1WT /�T .z1WT ; dk1WT /•xk1WT1WT
.dx1WT /; (3.15)

where �T 2 K1.Z�1WT ;K�1WT / is some suitable stochastic kernel (whose
support is a large-enough subset of K�1WT ) and where  T WD �˝1WT was
termed ‘ensemble base measure’ in Neal (2011).
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Radon–Nikodým Derivative. For the above-mentioned extended tar-
get measure and associated dominating measure, we obtain the following
simple Radon–Nikodým derivative xwT WD d NT =d N T , given by

xwT . NxT / D 1fx1WT g.x
k1WT
1WT /

�
dUnifK�1WT

d�T .z1WT ; � /
.k1WT /

dT
d�m;˝1WT .k1WT ; � /

.x
k1WT
1WT /: (3.16)

For xXT � N T , if we again write

wk1WT .Z1WT / WD E
�
xwT . xXT / 1fk1WT g.K1WT /

ˇ̌
Z1WT

�
D

� TY
tD1
Nt

��1 dT
d�m;˝1WT .k1WT ; � /

.X
k1WT
1WT /;

then the full conditional distribution of .X1WT ; K1WT / under N�T can be
written as N� c

T .z1WT ; dk1WT � dx1WT / D N�T;z1WT .dk1WT /•xk1WT1WT
.dx1WT /, where

N�T;z1WT .fk1WT g/ WD
wk1WT .z1WT /P

n1WT2K�1WT
wn1WT .z1WT /

:

Single-Sequence Ensemble mcmc. The single-sequence ensemble or
embedded hmm method from Neal (2003, 2011) is an instance of the
generic mcmc kernel from Subsection 3.2.3. More speci�cally, by adding
a large number of degenerate copies of the candidates and by using a
suitable reparametrisation, it can be viewed as an instance of Barker’s
kernel with N D

QT
tD1Nt candidates. In algorithmic form, it may be

summarised as follows.

3.22 Algorithm (single-sequence ensemble mcmc). For X1WT � �T ,

(1) sample K1WT � UnifK�1WT and set X
k1WT
1WT WD X1WT ,

(2) for t 2 T, sample X
�kt
t � �ct ..kt ; x

kt
t /; � /,

(3) sample zK1WT D l1Wt with probability N�T;z1WT .fl1WT g/,

(4) output zX1WT D X
Qk1WT
1WT .

Note that the computational cost of sampling zK1WT in Step 3 of this
Algorithm will generally grow exponentially in T . However, in the setting
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studied in Neal (2003, 2011), the kernels �t are Markov, i.e. �t.x1Wt�1; � /
is constant in x1Wt�2. As a result, the usual forward–backward recur-
sions (Rauch et al., 1965; Baum et al., 1970) can reduce the computational
complexity of Step 3 to O.TN 2/ (assuming N1 D : : : D NT D N ).

Pseudo-Marginal Ensemble mcmc. We now turn to the ensemble
mcmc approach from Shestopalo� and Neal (2013) which may be viewed
as a special case of the pseudo-marginal mh kernel described in the pre-
vious subsection.

More precisely, the extended target measure de�ned by Equation 3.14
is now used to construct a particular instance of the pseudo-marginal
target measure from Subsection 1.4.3 and hence to de�ne a particular
distribution � with respect to which the mh kernel is invariant. Note that
this is in contrast to the single-sequence method in which the extended
target measure was used at a ‘higher level’ to construct the �-invariant
mcmc kernel P .

As in Subsection 3.3.4, we assume that we actually want to approximate
some ‘marginal’ distribution �?T / ?T 2M.Θ/, where

?T .d�/ WD $.d�/T .�; 1/:

In this case, T .�; � / is the target distribution used for the single-sequence
ensemble mcmc method but which may now depend on �. The probab-
ility measure $ 2M1.Θ/ can often be viewed as a prior distribution on
the parameter �.

As before, to circumvent intractabilities in the acceptance probability,
the mh algorithm may be viewed as targeting the extended distribu-
tion �T , proportional to the extended measure $.d�/ zT .�; dv/v. Here,
zT .�; � / WD N T .�; � /ı. xw

�
T /
�1 where N T .�; � / and xw�T are the dominating

measure and the Radon–Nikodým derivative from Equations 3.15 and 3.16
but which may now depend on �.

By Proposition 1.13, taking �T .z1WT ; fk1WT g/ WD N�T;z1WT .fk1WT g/ means
that the random variable governing the ‘noise’ in the noisily evaluated
target density, V � � zT .�; � / is given by the usual estimate of the norm-
alising constant, i.e. by

V � D xw�. xXT / D
X

k1WT2K�1WT

w
k1WT
T .�;Z1WT /:

Here, the notation wk1WTT .�;Z1WT / is used to indicate dependence on �.
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Comparison With Particle mcmc. We conclude this section by o�er-
ing a comparison between ensemble mcmc methods and the particle
mcmc methods introduced by Andrieu et al. (2010). Such a formal com-
parison has not been undertaken in the literature.

Let  T be the distribution of all random variables generated by an smc
algorithm up to Step T , as de�ned in Chapter 2. Speci�cally, assume that
the smc algorithm is as follows. For any t 2 T WD NT ,
� zRt�1.z1Wt�1; � / D UnifKNtt�1 , i.e. the resampling distribution is uniform,

and, in addition, Ot � 1, i.e. we resample at every step,
� Qt..z1Wt�1; at�1/; � / D �t , i.e. the particles are proposed independently

of the particles generated at previous steps (and of the parent indices).
In this case, the single-sequence ensemble mcmc method can be seen as

an instance of the csmc algorithm which we describe in the next section,
but with a non-standard backward-sampling recursion. This recursion
may be viewed as performing backward sampling after having analytically
integrated out the parent indices.

Similarly, the pseudo-marginal ensemble mcmc method can be viewed
as a pmmh algorithm (again based around the particular kind of smc
algorithm speci�ed above) but one in which all the parent indices are
integrated out when forming the estimate of the normalising constant.

Note that ensemble mcmc methods do not make use of the fundamental
insight from Andrieu and Roberts (2009) described in Remark 1.16. More
precisely, the extended target measure is constructed by extending the
measure T using the stochastic kernel �c;˝1WT ..k1WT ; x1WT /; � / which is a
full conditional distribution under the joint proposal distribution (the ‘en-
semble base measure’)  T . As a result, evaluating the importance weights
requires evaluating (a density with respect to) the marginal proposal
distribution, �m;˝1WT ..k1WT /; � / (see Remark 1.16).

The need for the marginal proposal distribution to be tractable is ex-
actly why the ensemble base measure,  T , does not allow for dependence
between Xt and XtC1. Unfortunately, this impedes the e�ciency of en-
semble mcmc methods whenever the t th and .t C 1/th component are
highly correlated under the target measure, T . Nonetheless, Shestopalo�
and Neal (2013) speci�cally stress the bene�ts of ensemble mcmc meth-
ods over other mcmc methods for models which exhibit such a strong
dependence structure.
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In contrast, as pointed out in Remarks 2.7 and 2.8, smc methods only
require evaluations of (densities with respect to) a certain conditional
distribution under the joint proposal distribution. As a result, they are
able to employ a proposal distribution with a much more complicated
dependence structure. For instance, particles proposed at successive
steps are almost always correlated under the law of the smc algorithm,
 T , even without resampling. Indeed, it is precisely this complicated
dependence structure which can lead to e�cient proposal distributions
on high-dimensional spaces.

Meanwhile, ensemble mcmc methods are only justi�ed by assum-
ing ‘computational short-cuts’. More precisely, for the single-sequence
method, let � be some other parameter which may be updated using an-
other mcmc kernel. Neal (2011) then justi�es these methods by assuming
that X 1WN

t are ‘fast’ variables so that sampling (and evaluating densities
associated with) .�;X 1WN

t / can be computationally faster than N times
sampling (and evaluating densities associated with) the pair .�;X 1

t /.

3.4 Conditional smc Kernels

3.4.1 Iterated csmc Kernel

In this section, we describe mcmc kernels based around the conditional

sequential Monte Carlo (csmc) kernel from Equation 2.4. In particular,
we provide a uni�ed framework for variance-reduction techniques for
csmc-based algorithms termed backward sampling (Whiteley, 2010) and
ancestor sampling (Lindsten, Jordan & Schön, 2014): we show that both
target the same extended distribution, Q�T WD QT = QT .1/. To our know-
ledge, this is a new result. Finally, we comment on the use of csmc
kernels within particle Gibbs samplers.

Throughout this section, we assume that we are running an smc al-
gorithm up to T 2 N steps. To construct Q�T , we include an additional
set of particles zX D V1WT and particle indices zK D C1WT into the state
space. Both of these will be such that V1WT coincides with the particles
with indices C1WT generated under the smc algorithm, i.e. V1WT D XC1WT

1WT .
Throughout this section, we re-use a substantial amount of notation from
Subsection 2.4.2. This is deliberate because in the case of csmc with back-
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ward sampling, discussed in the next subsection, the extended measure
QT is exactly the extended target measure associated with the forward
�ltering–backward smoothing approximation from Subsection 2.4.2.

In particular, in this subsection, we present the basic iterated csmc
algorithm from Andrieu et al. (2010) which forces the particles V1WT to
coincide with a particle lineage under the smc algorithm. That is, we
have C1WT D B

n
1WT jT , for some n 2 KT . The variance-reduction techniques

described in the next subsection are based around relaxing this condition.
To construct a �T -invariant mcmc kernel based on the csmc kernel
x̆ csmc
T 2K1.X�1WT ;Z

�
1WT / from Equation 2.4, we let

�T .z1WT ; dx1WT � dk1WT /

D �T jT .z1WT ; dkT /
�T�1Y
tD1

•
a
ktC1
t

.dkt/
�
•xk1WT1WT

.dx1WT /

be the stochastic kernel from Equation 2.2.
Throughout this section, �T jT .z1WT ; fkg/ WD W k

T .z1WT /, for k 2 KT .
Take N�T WD NT = NT .1/ to be the extended target distribution associated
with the generic smc algorithm from Chapter 2. Then by Proposition 2.10,

Q�T .d QxT / WD N�T .dz1WT � du1WT � db1WT /�T .z1WT ; dv1WT � dc1WT /
D  T .dz1WT /zsmc;N1WT

T �T .z1WT ; du1WT � db1WT /
��T .z1WT ; dv1WT � dc1WT /

D N�T .dz1WT � dv1WT � dc1WT /�T .z1WT ; du1WT � db1WT /:

The further extended distribution Q�T therefore satis�es Equation 3.5, i.e.
if zX � Q�T , then V1WT � �T . As a result, the following algorithm induces
a �T -invariant kernel, called the iterated csmc kernel.

3.23 Algorithm (iterated csmc). Given X D U1WT � �T ,

(1) sample .B1WT ;Z1WT / � x̆
csmc
T .u1WT ; � /,

(2) sample .V1WT ; C1WT / � �T .z1WT ; � /,

(3) return X WD V1WT .

Unfortunately, as discussed by Fearnhead (2010), Whiteley (2010), the
sample-impoverishment phenomenon discussed in Subsection 2.4.1 can
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lead to slow mixing of this kernel. That is, all NT particle lineages under
 T will often share a common ancestor, i.e. there is some t < T such that
Bn1Wt jT D U1Wt , for all n 2 KT .

In this case (at least) the �rst t particles of the path U1WT coincide with
the �rst t particles of the path V1WT . It is well known (Andrieu, Lee &
Vihola, 2013; Lindsten, Douc & Moulines, 2015) and has been observed
empirically (e.g. Fearnhead, 2010) that, in su�ciently ergodic models,
the number of particles needs to scale at least linearly in T to control
the probability of such a coalescence events and hence the asymptotic
variance associated with the mcmc approximation.

3.4.2 Variance-Reduction Techniques

In this subsection, we describe two variance-reduction techniques for
iterated csmc algorithms known as backward sampling and ancestor
sampling. The main idea of these techniques is to allow C1WT ¤ B

n
1WT jT ,

for any n 2 KT so that V1WT does not need to coincide with any particle
lineage at Step T .

Backward and Ancestor Sampling Weights. Before describing the
variance-reduction techniques we recall some notation from Subsec-
tion 2.4.2

For t 2 T WD NT , we again de�ne the following kernels, termed
backward sampling weights or ancestor sampling weights in this section,

wkt jT .z1Wt ; vtC1WT / WD w
k
t .z1Wt/

d� ˝tC1WT .x
bk1Wtjt
1Wt ; � /

d�˝tC1WT .x
bk1Wtjt
1Wt ; � /

.vtC1WT /; (3.17)

for k 2 Kt , where the kernels �t 2 K¢.X�1Wt�1Xt/ de�ne some suitable
dominating measure. We also de�ne the self-normalised versions

W k
t jT .z1Wt ; vtC1WT / WD

wk
t jT
.z1Wt ; vtC1WT /PNt

nD1w
n
t jT
.z1Wt ; vtC1WT /

:

We again note that wk
T jT
.z1WT / D w

k
T .z1WT /.
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Backward Sampling. First introduced by Whiteley (2010), backward
sampling (bs) replaces the standard kernel�T by the slightly more general
kernel� bs

T 2K1.Z
�
1WT ;X

�
1WT �K

�
1WT / from Subsection 2.4.2 which we recall

was given by

� bs
T .z1WT ; dv1WT � dc1WT /

WD

TY
tD1
�t jT ..z1Wt ; vtC1WT ; ctC1WT /; dct/•xctt .dvt/;

where, for any t 2 T n fT g,

�t jT ..z1Wt ; vtC1WT ; ctC1WT /; fctg/

WD

(
•
a
ctC1
t

.fctg/; if %t.ot/ D 0,
W
ct
t jT
.z1Wt ; vtC1WT /; if %t.ot/ D 1,

(3.18)

Here, %t W Ot ! f0; 1g is again some suitable function for interpolating
between the ‘plain’ iterated csmc kernel from the previous subsection
and an iterated csmc kernel with ‘full’ backward sampling.

Iterated csmc with bs is summarised in Algorithm 3.24. The proof
that this procedure induces a kernel that is �T -invariant is postponed to
the next subsection.

3.24 Algorithm (iterated csmc with bs). Given X D U1WT � �T ,

(1) sample .B1WT ;Z1WT / � x̆
csmc
T .u1WT ; � /,

(2) sample .V1WT ; C1WT / � �
bs
T ..b1WT ; u1WT ; z1WT /; � /,

(3) return X WD V1WT .

That is, to sample according to the kernel induced by iterated csmcwith
bs, we �rst sample xZT D .U1WT ; B1WT ;Z1WT / according to the standard
csmc kernel. Note that this conditions on particlesU1WT D u1WT which are
allocated to indices B1WT in such a way that the BT th particle lineage at
Step T (implied by Z1WT ) takes values u1WT . We then sample a sequence of
particle indices C1WT ‘backwards’. The collection of particles thus indexed
is then labelled V1Wt . In general, it does not need to coincide with any of
the Step-T particle lineages implied by Z1WT .
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Ancestor Sampling. Introduced by Lindsten, Jordan and Schön (2012,
2014), ancestor sampling (as) keeps the kernel �T from the plain iter-
ated csmc algorithm but replaces the standard csmc kernel, x̆ csmc

T , by
x̆ as
T 2K1.X�1WT ;Z

�
1WT � K�1WT /, given by

x̆ as
T .v1WT ; dz1WT � dc1WT /
WD x̆

as
1jT .v1WT ; dc1 � dz1/

�

TY
tD2

x̆ as
t jT ..v1WT ; c1Wt�1; z1Wt�1/; dct � dzt/;

with

x̆ as
1jT .v1WT ; dc1 � dz1/
WD �1.v1; dc1/•v1.dx

c1
1 /q

c
1 ..c1; x

c1
1 /; dx

�c1
1 /

and

x̆ as
t jT ..v1WT ; c1Wt�1; z1Wt�1/; dct � dzt/
WD St�1.z1Wt�1; dot�1/•vt .dx

ct
t /

� �t�1jt.v1Wt ; z1Wt�1; ot�1; c1Wt�1/; dactt�1/
��t..v1Wt ; z1Wt�1; ot�1; a

ct
t�1/; dct/

�Rc
t�1..z1Wt�1; ot�1; ct ; a

ct
t�1/; da

�ct
t�1/

�Qc
t ..z1Wt�1; ot�1; at�1; ct ; x

ct
t /; dx�ctt /:

The only di�erence to the standard csmc kernel is that the parent index
associated with the particle on which we condition at Step t C 1, ACtC1

t , is
not deterministically set to Ct but rather sampled from some distribution
determined by the stochastic kernel for any t 2 T n fT g de�ned by

�t jT ..z1Wt ; ot ; vtC1WT ; c1Wt/; fa
ctC1
t g/

D

(
•ct .fa

ctC1
t g/; if %t.ot/ D 0,

W
a
ctC1
t

t jT
.z1Wt ; vtC1WT /; if %t.ot/ D 1.

As a result, V1WT does not necessarily coincide with any particle lineage
under the smc algorithm. The function %t is the same is in the case of bs.
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More precisely, the only di�erence between iterated csmc with as and
‘plain’ iterated csmc is that the former potentially sets ACtt�1 ¤ Ct�1 in
Step 2 of Algorithm 3.25 which details the steps entailed in sampling from
x̆ as
T .v1WT ; � /.

3.25 Algorithm. At Step 1, sample C1 � �1.v1; � /, set x
c1
1 WD v1 and

sample X
�C1
1 � qc1 ..c1; x

c1
1 /; � /. At Step t , t 2 Z2;T ,

(1) sample Ot�1 � St�1.z1Wt�1; � /,

(2) sample A
Ct
t�1 � �t�1jt.v1Wt ; z1Wt�1; ot�1; c1Wt�1/; � /,

(3) sample Ct � �t..v1Wt ; z1Wt�1; ot�1; a
ct
t�1/; � / and set x

ct
t D vt ,

(4) sample A
�Ct
t�1 � R

c
t�1..z1Wt�1; ot�1; ct ; a

ct
t�1/; � /,

(5) sample X
�Ct
t � Qc

t ..z1Wt�1; ot�1; at�1; ct ; x
ct
t /; � /.

The complete set of sampling steps needed for performing one iteration
of the iterated-csmc-with-as kernel is summarised in Algorithm 3.26.
Again, the proof that this procedure induces a kernel that is �T -invariant
is postponed to the next subsection.

3.26 Algorithm (iterated csmc with as). Given X D V1WT � �T ,

(1) sample .C1WT ;Z1WT / � x̆
as
T .v1WT ; � / via Algorithm 3.25,

(2) sample .U1WT ; B1WT / � �T .z1WT ; � /,

(3) return X WD U1WT .

3.4.3 Duality of Backward and Ancestor Sampling

By construction, iterated csmc with bs targets the extended distribution

Q� bs
T .d QxT / WD �T .du1WT / x̆ csmc

T .u1WT ; dz1WT � db1WT /
�� bs

T .z1WT ; dc1WT � dv1WT /:

Similarly, iterated csmc with as targets the extended distribution

Q� as
T .d QxT / WD �T .dv1WT / x̆ as

T .v1WT ; dz1WT � dc1WT /
��T .z1WT ; db1WT � du1WT /:

The main focus of this subsection is the following result whose proof can
be found at the end of this subsection.
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3.27 Proposition. Iterated conditional sequential Monte Carlo algorithms

with backward sampling and ancestor sampling target the same extended

distribution, i.e. Q�T WD Q�
bs
T D Q�

as
T .

Recalling that forward �ltering–backward smoothing (as well as its sam-
pling approximation: forward �ltering–backward sampling) targets an
extended measure whose normalised version coincides with Q� bs

T , Propos-
ition 3.27 implies that it leads to unbiased estimates of integrals of the
form T .fT /. More importantly, Proposition 3.27 immediately guarantees
that iterated csmc kernels with bs and as both leave �T invariant, as
formalised in the following corollary.

3.28 Corollary. If zXT � Q�T , then V1WT � �T and U1WT � �T . �

3.29 Remark. Corollary 3.28 might also be useful for analysing and per-

haps comparing the convergence properties of iterated csmc algorithms

with bs and with as. This could be done by analysing the expectation of

the usual normalising-constant estimate under a ‘doubly-conditional’ smc

algorithm to which Corollary 3.28 gives rise. This ‘doubly-conditional’ smc

algorithm is slightly more general than the one from Andrieu et al. (2013).

To summarise, recall that U1WT forms a particle lineage under the smc
algorithm but V1WT does not (necessarily). The above-mentioned csmc
kernels with bs and as can thus be interpreted as follows.
Iterated csmc with bs samples from the conditional distribution of all

random variables under Q�T given V1WT D v1WT . The procedure yields a
new set of particles U1WT .

Iterated csmc with as samples from the conditional distribution of all
random variables under Q�T given U1WT D u1WT . The procedure yields a
new set of particles V1WT .

The remainder of this subsection is devoted to proving Proposition 3.27.
To that end, we �rst state the following technical lemma.

3.30 Lemma. For v1WT 2 X�1WT , use the convention that for any integer k,

wk0jT .v1WT / WD
dT

d�˝1WT
.v1WT /;
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where �˝1WT 2M¢.X�1WT / is the same dominating measure used in the de�n-

ition of the bs/as weights. With some abuse of notation, for t > 1, write
ˇt.k; l/ as a shorthand for

�t..z1Wt�1; ot�1; k/; flg/

Rm
t�1..z1Wt�1; ot�1; l/; fkg/Q

m
t ..z1Wt�1; ot�1; at�1; l/; dxlt /

:

Likewise, for t D 1 and for any k, write

ˇ1.k; l/ WD
�1.flg/

qm1 .l; dxl1/
:

Let c1WT 2 K�1WT and let t 2 T. If there exists p 2 Nt�1 such that

8s 2 Zp;t�1 W a
csC1
s D cs;

(i.e. so that cpWt D b
ct
pWt jt

) then, writing v1WT D x
c1WT
1WT ,

w
ct
t jT
.z1Wt ; vtC1WT / D w

a
cp
p�1
p�1jT .z1Wp�1; vpWT /

tY
sDp

ˇs.a
cs
s�1; cs/:

Proof. This follows from the de�nition of the bs/as weights after some
tedious but simple algebraic manipulations. �

Proof (of Proposition 3.27). To simplify the notation throughout this
proof, we omit all degenerate dependencies and write bbT

t jT
D bt , ut D xbtt

and vt D xctt , for t 2 T. We also de�ne ˇt as in Lemma 3.30.
As we assume that �T jT .z1WT ; fkg/ D W k

T .z1WT /, it su�ces to show that�NTX
nD1

wnT .z1WT /

� TY
tD1
�t jT ..z1Wt ; vtC1WT ; ctC1WT /; fctg/

D
dT

d�˝1WT
.v1WT /

� TY
tD1
ˇt.a

ct
t�1; ct/

�
�

T�1Y
tD1

�t jT ..z1Wt ; vtC1WT ; c1Wt/; fa
ctC1
t g/: (3.19)

De�ne

xO WD
˚
t 2 T

ˇ̌
%t.ot/ D 1

	
[ fT g
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to be the indices of the csmc steps for which bs is performed (to which
we also count the �nal step). Using the de�nition of the kernels �t jT from
Equation 3.18, left hand side in Equation 3.19 then equals�

w
cT
T .z1WT /

Y
t2xOnfT g

W
ct
t jT
.z1Wt ; vtC1WT /

�Y
t2TnxO

•ct .fa
ctC1
t g/: (3.20)

LetL WD #xO be the number of csmc steps at which backward sampling is
performed (to which we again count the �nal step) and let t1WL denote the
indices of these csmc steps in increasing order. In particular, therefore,
tL D T . Additionally, we use the conventions t0 WD 1.

By Lemma 3.30 and the conventions de�ned therein, in particular with
the convention that wk0jT D dT =d�˝1WT , for any integer k, the term in the
square brackets in Equation 3.20 can then be written as�L�1Y

lD0

w
a
ctlC1
tl

tl jT
.z1Wtl ; vtlC1WT /

tlC1Y
tDtlC1

ˇt.a
ct
t�1; ct/

�
�

Y
t2xOnfT g

�X
n2Kt

wnt jT .z1Wt ; vtC1WT /

��1
D

dT
d�˝1WT

.v1WT /

� TY
tD1
ˇt.a

ct
t�1; ct/

�Y
t2xOnfT g

W
a
ctC1
t

t jT
.z1Wt ; vtC1WT /:

This completes the proof. �

3.4.4 Application to Particle Gibbs Samplers

The csmc kernels described above are usually employed as only one
ingredient in a composite mcmc kernel.

That is, we usually want to approximate some ‘marginal’ distribution
�? WD ?=?.1/ 2M1.Θ/, where

?.d�/ WD $.d�/T .�; 1/:

Here,$ 2M1.Θ/ and, for any � 2 Θ, T .�; � / 2M.X�1WT / is the measure
employed throughout this section but is now indexed by � . However,
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to avoid calculating the integral T .�; 1/, which is often intractable, we
devise an mcmc kernel which targets an extended distribution � WD
=.1/ 2M1.Θ � X�1WT /, where

.d� � dx1WT / WD $.d�/T .�; dx1WT /:

3.31 Example (Bayesian posterior, continued). In Bayesian statistics,

� is often the joint posterior distribution of parameters .�;X1WT /. In this

case, lettingM.�; � / be a conditional prior distribution of the parameters

X1WT , the joint prior distribution is given by x$ WD $ ˝M . Furthermore,

xL WD d=d x$ represents the likelihood of .�;X1WT / given some observations.

Such joint posterior distributions are often more tractable than the marginal

posterior distribution given by �?.A/ WD �.A � X�1WT /.

Particle Gibbs Sampler. Particle Gibbs (pg) samplers target the dis-
tribution � using an mcmc kernel P which is formed by �rst apply-
ing an mcmc kernel which is invariant with respect to the full condi-
tional distribution of � under � , with some abuse of notation denoted
�.d� jx1WT /, and then applying one of the above-mentioned iterated csmc
kernels (which are invariant with respect to the full conditional distri-
bution of X1WT under � , again denoted with some abuse of notation as
�.dx1WT j�/ WD T .�; dx1WT /=T .�; 1/). Algorithm 3.32 presents a single
iteration of the pg sampler.

3.32 Algorithm (particle Gibbs). Given .�;X1WT / � � ,

(1) sample z� from some �.d� jx1WT /-invariant mcmc kernel,

(2) sample zX1WT using Alg. 3.23, 3.24 or 3.26 (targeting �.dx1WT j Q�/),
(3) return .�;X1WT / WD . z�; zX1WT /.

Novel Auxiliary-Variable Rejuvenation Step. The distribution � tar-
geted by the pg sampler is sometimes itself an ‘arti�cially’ extended
distribution in the sense that there is some one-to-one reparametrisation

.�;X1WT / ! .�;Z; Y /: (3.21)

Here, Z is often some collection of random variables which can be inter-
preted as latent parameters in the model of interest. In contrast, Y is often
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3.4 Conditional smc Kernels

some collection of random variables which have only been introduced to
allow a more �exible (conditional) smc algorithm to be used.

We let O� be the distribution of the random variables under the para-
metrisation on the right hand side in Equation 3.21. More speci�cally,

O�.d� � dz � dy/ D O�m.d� � dz/L..�; z/; dy/:

Here O�m 2 M1.Θ � Z/ and L 2 K1.Θ � Z;Y/ while Z and Y take
values in Z and Y, respectively. Crucially, we assume that sampling from
L..�; z/; � / is feasible.

3.33 Example. In the smc-sampler framework from 2.3.2, Q�m
may the

distribution that is actually of interest, Z D XT , Y D X1WT�1, and L D

L˝T�1W1 is the tensor product of the backward Markov kernels. In practice, it

is often possible to sample from these.

3.34 Remark. As mentioned in Example 3.33, the auxiliary variables take

a simple form in the case of the smc-sampler framework. However, the

auxiliary-variable rejuvenation idea is more widely applicable. Indeed, in

Chapter 4 we apply it to an smc algorithm which cannot be viewed as a

(trivial) smc sampler.

Conditioning on the auxiliary variables Y when sampling � in Step 1
of the pg sweep described in Algorithm 3.32 can become computationally
expensive and can induce slow mixing as soon as L..�; z/; � / is not
constant in � . In Finke et al. (2014), we proposed an additional pg step that
overcomes these potential di�culties. It is summarised in Algorithm 3.35,
where we slightly abuse notation by letting O�m.d� jz/ denote the full
conditional distribution of Z under O�m .

3.35 Algorithm (pg with auxiliary-variable rejuvenation). Given a

draw .�;X1WT / � � ,

(1) reparametrise .�;Z; Y / .�;X1WT /,

(2) sample z� from some O�m.d� jz/-invariant mcmc kernel,

(3) sample zY � L..�; z/; � / and reparametrise . z�;X1WT / . z�;Z; zY /,

(4) sample zX1WT using Alg. 3.23, 3.24 or 3.26 (targeting �.dx1WT j Q�/),
(5) return .�;X1WT / WD . z�; zX1WT /.
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This algorithm is justi�ed since the combination of steps Steps 1 to 3
leaves � invariant. Indeed, these steps represent a partially collapsed
Gibbs step as described in Example 3.5. It o�ers three advantages.

(1) By only conditioning on Z, Step 1 can take larger steps in the �-
direction compared to Step 1 in the standard pg algorithm.

(2) Under some smc algorithms, there is a strong interaction between Z
and Y , so that rejuvenating the auxiliary variables Y outside of the
csmc kernel can dramatically improve mixing of the pg sampler. We
give an example for this in Chapter 4. Therein, X1WT D .�1WT ; m1WT /,
where �t is some parameter and mt is some �nite index. Then, Z
includes some subvector of �1WT , whose choice depends on m1WT , and
Y denotes the remaining elements of �1WT and some other auxiliary
variables. In this case, updating Y is bene�cial because some of its
components may be ‘chosen to be part of Z’ by the csmc kernel.

(3) Finally, Algorithm 3.35 comes at little or no extra computational cost.
It can even o�er computational savings compared to the standard
pg scheme, e.g. when each pg sweep updates � using the m-fold
convolution of a Metropolis–Hastings kernel (as is often done in
practice since these updates tend to be relatively inexpensive). Al-
gorithm 3.35 then avoids mC 1 evaluations of (densities of) L at the
cost of generating one sample from L..�; z/; � /.

3.5 Summary

In this chapter, we have shown that mcmc algorithms can be viewed as a
special case of the mosis framework described in Chapter 1. Using the
same framework at a lower level, we have constructed a generic mcmc
kernel. One way of interpreting the relationship between some well-
known mcmc kernels for general state spaces mentioned in this chapter
is outlined in Figure 3.1.
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generic
mcmc kernel

N > 2

Y ¤ ;

csmc
(with bs or as)

Y D ;

multiple-proposal
mh (forced-move)

(multiple-proposal)
Barker’s kernel

single-sequence
ensemble mcmc

frozen
Carlin-&-Chib

N D 2

Y ¤ ;

randomised
mh

penalty
method

single-variable
exchange

Y D ;

mh

multiple–try

delayed
acceptance

reversible–jump

pseudo-marginal
mh

pmmh

pseudo-marginal
ensemble mcmc

random
refreshment

Figure 3.1 Particular instances of the generic mcmc kernel described in this
chapter and their relation to the generic mcmc kernel.
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4 Inference in Piecewise

Deterministic Processes

4.1 Introduction

4.1.1 Motivation

In this chapter, we develop algorithms for conducting inference in discretely

observed piecewise deterministic processes. This class of models is de�ned in

Section 4.2 where we also provide motivating examples. Section 4.3 describes

an existing sequential Monte Carlo sampler for these models and investigates

some of its properties. Section 4.4 derives a novel representation for this

algorithm. In addition to ensuring the existence of the importance weights,

this representation permits the use of backward sampling and ancestor

sampling within particle Gibbs samplers and also allows the use of forward

�ltering–backward sampling schemes. Section 4.5 provides simulation results

and comments on the utility of the novel particle Gibbs step which was

presented in Subsection 3.4.4. An extended version of the work presented in

this chapter was published as Finke et al. (2014).

A piecewise deterministic process (pdp) is a stochastic process that jumps
randomly at a countable number of stopping times but otherwise evolves
deterministically in continuous time. In this chapter, we employ sequential

Monte Carlo (smc)-based methods to conduct inference in pdps which
are observed only partially, noisily and in discrete time. Such models are
more general than state-space models and inference for them is often
more di�cult.

Simple particle �lters for pdps, termed variable-rate particle �lters

(vrpfs), were introduced by Godsill and Vermaak (2004) and a corres-
ponding smoothing algorithm for non-degenerate models was suggested
by Bunch and Godsill (2013). To apply more sophisticated particle �ltering
techniques to these models, an smc �lter for pdps, based on the smc-
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sampler framework from Del Moral et al. (2006b) (see Subsection 2.3.2),
was introduced in Whiteley, Johansen and Godsill (2011).

However, methods for e�ciently estimating the static parameters in
such models still need to be developed. A few approaches have been pro-
posed in the literature. A stochastic expectation–maximisation algorithm
based on a reversible-jump Markov chain Monte Carlo (rjmcmc) sampler
(Green, 1995) was introduced by Centanni and Minozzo (2006a, 2006b). A
simple smc sampler was attempted in Del Moral et al. (2007) to which
some improvements were made in Martin, Jasra and McCoy (2013). In
addition, Rao and Teh (2013) developed a Gibbs sampler for the special
case in which the state space is discrete.

4.1.2 Contribution

We employ a particle Gibbs (pg) sampler (Andrieu et al., 2010), based
around the smc �lter for pdps from Whiteley et al. (2011), to estimate the
static parameters. Our methodological contributions are as follows.
(1) We provide new insight into the approximation induced by the smc

�lter for pdps and by related algorithms used in Del Moral et al.
(2006b, 2007), Martin et al. (2013). We also suggest a way of ensuring
the existence of the importance weights.

(2) We derive a new representation of the algorithm that – for non-
degenerate models – permits the use of backward sampling and an-
cestor sampling (Whiteley, 2010; Whiteley et al., 2010; Lindsten et al.,
2014) within pg samplers and also allows the use of forward �ltering–
backward sampling schemes.

(3) We apply the novel pg step for rejuvenating the potentially large
number of auxiliary variables used in the smc �lter which was intro-
duced in Subsection 3.4.4. This reduces the impact of these auxiliary
variables on the overall mixing of the pg chain at virtually no extra
computational cost, often even resulting in computational savings.

We demonstrate our method on two challenging examples. Our simula-
tions indicate that it can compete with both a vrpf-based pg sampler
and a rjmcmc sampler, at a potentially lower computational cost. We
also empirically investigate the impact of the approximation mentioned
in Item 1, above.
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4.2 Piecewise Deterministic Processes

4.2.1 De�nition

In this section, we introduce discretely-observed piecewise deterministic
processes, the class of models with which the remainder of this article is
concerned. They are stochastic processes that jump randomly at an almost
surely countable number of random times but otherwise evolve determin-
istically in continuous time. Their description here follows Whiteley et al.
(2011). We also provide motivating examples.

Notation. First, we clarify some notational conventions used throughout
this chapter. For some spaces Θ and X, and some positive �nite kernel
R 2K.Θ;X/, we usually writeR.�; � / DW R�. � /, for any � 2 Θ. We use
the same notation,R�.x/, to denote a density of this measure with respect
to some ¢-�nite measure on X, dx, e.g. with respect to a suitable version of
the Lebesgue or counting measure, evaluated at some point x. For vectors
x D .x1; : : : ; xn/ and some vector of indices a D .a1; : : : ; ak/, where
fa1; : : : ; akg � Nn, we write xa WD .xa1; : : : ; xak/. Finally, x�a D x n xa
denotes the vector that is identical to x, except that the components
xa1; : : : ; xak have been removed.

Prior Distribution. Let .�j ; �j /j2N[f0g be a stochastic process such that
0 � �0, such that �j < �jC1, and such that each �j takes a value
in some non-empty set Φ. In addition, take a (deterministic) function
F � W Œ0;1/2 � Φ ! Φ that satis�es F �.t; t; � / D id for any t � 0. A
piecewise deterministic process (pdp) is then a continuous-time stochastic
process � WD .�t/t�0 with initial condition �0 D �0 and with

�t D F
�.t; ��t ; ��t /;

for t > 0. Here, we have de�ned �t WD supf j 2 N [ f0g j �j � t g, so
that ��t represents the time of the last jump before (and including) time
t . In other words, after time �j�1, the pdp evolves deterministically in
continuous time according to the function F � until it reaches the next
jump time �j , at which point the process randomly jumps to a new value
given by the jump size �j . Here and throughout, � denotes the ordered
set of all static parameters present in the model. That is, � contains all
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4 Inference in Piecewise Deterministic Processes

the parameters that do not change over time and which therefore cannot
be estimated via standard (particle) �ltering methods.

Let 0 D t0 < t1 < t2 < : : : be strictly increasing (non-random) times
and let Kn WD �tn denote the number of jumps before time tn, with
realisations kn and convention k0 D 0. The process �Œ0;tn� WD .�t/t2Œ0;tn� is
then completely determined by .Kn; �1WKn; �0WKn/ (and � ). For simplicity,
as in Whiteley et al. (2011), we assume the following Markovian prior on
the number, times and sizes of jumps in the interval Œ0; tn� for any n 2 N ,

p�n.kn; �1Wkn; �0Wkn/ D S
�.tn; �kn/q

�
0 .�0/ 1.0;tn�.�kn/

�

knY
jD1

q�.�j j�j�1; �j ; �j�1/f
�.�j j�j�1/;

where q�.�j j�j�1; �j ; �j�1/f �.�j j�j�1/ forms the Step-j transition ker-
nel of .�j ; �j /j2N[f0g with the support of f �.�j j�j�1/ being .�j�1;1/.
Furthermore, q�0 .�0/ is the distribution of the initial jump size, and �nally,
S�.t; �/ WD 1 �

R t
�
f �.dsj�/ denotes the probability of no jump occurring

in the interval .�; t � (for � � t ).

Posterior Distribution. Inference for such models becomes necessary
if we assume that � can be observed only partially, at discrete times, and
subject to some measurement error. Observations may be recorded at
�xed or random times. Let y.s;t� denote the vector of all observations in the
interval .s; t � for some 0 < s < t <1, a density of which is represented
by g�.y.s;t�j�.s;t�/. Again for simplicity, we assume the observations in
disjoint time intervals to be conditionally independent given the pdp,
though this assumption could easily be relaxed. Hence,

g�.y.0;tn�j�.0;tn�/

D g�.yŒ�kn ;tn�j�kn; �kn/

knY
jD1

g�.yŒ�j�1;�j /j�j�1; �j�1/;

where we sometimes use the notation

g�.yŒ�j�1;�j /j�j�1; �j�1/ D g
�.yŒ�j�1;�j /j�Œ�j�1;�j //

to stress that �Œ�j�1;�j / is conditionally independent of all the other jump
times, jump sizes, and the total number of jumps (up to time �j ), given
.�j ; �j�1; �j�1/ (and given � ).
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4.2 Piecewise Deterministic Processes

The conditional-independence property of the observations is reminis-
cent of state-space models. However, as mentioned earlier, pdps can be
seen as being more general than state-space models. Indeed, state-space
models may be viewed as pdps in which f �.�j j�j�1/ is degenerate, i.e. in
which the number of jumps and the jump times are known. Hence, for the
remainder of this work, we assume that f �.�j j�j�1/ is non-degenerate.

The conditional posterior distribution of the jumps up to time tn (as
well as their number) may then be de�ned by the density (with respect to
a suitable dominating measure)

Q��n .kn; �1Wkn; �0Wkn/

D Q�n .kn; �1Wkn; �0Wkn/=z
�
n

WD p�n.kn; �1Wkn; �0Wkn/g
�.y.0;tn�j�.0;tn�/=z

�
n; (4.1)

where z�n > 0 is the normalising constant which is typically unknown.

Variable-Dimension Interpretation. Explicitly including the dimen-
sionality parameter Kn into the state space ensures that for all n 2 N ,
the Step-n posterior distributions are de�ned on increasing subsets of the
same space, i.e. the support of Q��n is a subset of

zEn WD
1[
kD0

.fkg � T.0;tn�;k � Φ
kC1/;

where T.s;t�;k WD f .�1; : : : ; �k/ 2 .0;1/k j s < �1 < � � � < �k � t g. This
representation makes the unknown number of jumps in any interval of
time, .0; tn�, explicit.

4.2.2 Elementary Change-Point Example

This subsection introduces an elementary change-point model as a �rst
example of a pdp. We assume that the interjump times, �j � �j�1, are
distributed according to some parametric family indexed by a parameter
vector �� . Conditional on the jump times, the jump sizes follow a �rst-
order Gaussian autoregressive process, i.e.

q�.d�j j�j�1; �j ; �j�1/ D N��j�1;�2
�
.d�j /;
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Figure 4.1 pdp and observations simulated from the elementary change-point
model.

for some � 2 R. The deterministic function is taken to be piecewise
constant and is given by F �.t; �; �/ WD �. Observations are recorded at
regular intervals of length � and are formed by adding Gaussian noise
with mean 0 and variance � 2

y to the pdp.
Figure 4.1 shows data simulated from the model over a horizon of

T D 1;000 time units with � D 1, � D 0:9, � 2
� D 1 and � 2

y D 0:5 using
gamma-distributed interjump times with shape and scale parameters
�� WD .˛; ˇ/ D .4; 10/.

As the pdp � is only discretely and noisily observed, (particle) �ltering
methods are generally needed to conduct inference about the jump times
and jump sizes. In addition, � WD .�; � 2

�; �
2
y; ��/ 2 R � .0;1/4 are static

parameters which often also have to be estimated.

4.2.3 Shot-Noise Cox-Process Example

A second example of a pdp is a shot-noise Cox-process model described
in Whiteley et al. (2011). The model assumes that observations are taken
on a Cox process (also known as a doubly-stochastic Poisson process)
with piecewise deterministic shot-noise intensity, � D .�t/t�0.

Application in Finance. Such models have applications in �nance, as
described in Centanni and Minozzo (2006a, 2006b): in the modelling of
ultra-high-frequency �nancial data, observations are two-dimensional,
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4.2 Piecewise Deterministic Processes

comprising the time and size of the price movements of a stock. That is,
the stock price process (which can be fully observed) is piecewise constant
since the quoted price is only updated at a countable collection of random
times. The times at which the stock price changes are realisations of a
Cox process with unobserved shot-noise intensity �.

The latent intensity process � (i.e. the pdp) then has the following
interpretation. The j th stopping time, �j , corresponds to the arrival of
the j th news item at the market. This causes a positive jump in the
intensity process, whose size, �j > 0, depends on the ‘importance’ of the
news item. Between �j and �jC1, the intensity gradually decays as the
news item is absorbed by the market. The intensity process thus governs
the amount of activity in the market: each jump leads to an increase in
the trading activity as measured by the number of subsequent change
points in the (observed) price process.

Application in Insurance. Such models are also used to price cata-
strophe insurance derivatives as described in Dassios and Jang (2003). In
this context, the observations are only one-dimensional and represent
the times at which claims are being recorded. In other words, the claim
arrival process is a Cox process with intensity process �. The j th jump
in the intensity process (at time �j ) thus corresponds to a catastrophic
event. The associated jump size, �j , characterises the event’s severity.

More precisely, we have q�0 .�0/ D �� exp.����0/ 1Œ0;1/.�0/, and

f �.�j j�j�1/ WD �� exp.���.�j � �j�1// 1.�j�1;1/.�j /;

q�.�j j�j�1; �j ; �j�1/ WD �� exp.���.�j � ���j // 1.���j ;1/.�j /;

where ���j WD �j�1 exp.��.�j � �j�1// is the intensity immediately before
the j th jump. At any time t , the intensity is a deterministic function of t
as well as of the most recent jump time and jump size as follows,

�t D F
�.t; ��t ; ��t / WD ��t exp.��.t � ��t //:

In addition, the likelihood of the observations recorded in the time in-
terval .tn�1; tn� (i.e. the times at which claims are recorded in this interval),
denoted y.tn�1;tn�, is given by

g�.y.tn�1;tn�j�.tn�1;tn�/ / exp
�
�

Z tn

tn�1

�s ds
� Y
i Wyi2.tn�1;tn�

�yi :
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Figure 4.2 Data simulated from the shot-noise Cox-process model. Top: intensity
process. Bottom: histogram of the observations using a bin width of 2:5.

Figure 4.2 shows an example trajectory and observations simulated
from the model with � D 1=100, �� D 1=40, �� D 2=3.

As the process � is not directly observed, (particle) �ltering methods
are needed to conduct inference about the jump times and jump sizes in
the intensity process. The static parameters � WD .�; �� ; ��/ 2 .0;1/3
must often also be estimated.

4.2.4 Object-Tracking Example

This subsection brie�y mentions, as a third example of a pdp, a model
for tracking �ghter aircraft from Whiteley et al. (2011).

In this model, the pdp represents the evolution of position, speed, and
velocity of the aircraft. The assumption is that the pilot accelerates or
decelerates at a countable collection of random times which correspond
to the jumps in the pdp. Between jumps, the aircraft’s location and speed
are deterministic functions, given by the standard equations of motion,
of the location, speed, and acceleration at the most recent jump time as
well as of the time elapsed since the most recent jump. However, only
countably many noisy observations on the aircraft’s location are available.

While �ltering for this model was shown to be feasible in Whiteley
et al. (2011), it exhibits a characteristic that makes static-parameter es-
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timation di�cult: the transitions q�.�j j�j�1; �j ; �j�1/ have degenerate
components because the location and speed components of the pdp evolve
continuously, i.e. they only have trivial jumps.

We note here that the variance-reduction techniques for conditional
sequential Monte Carlo kernels described in Subsection 3.4.2 cannot be
applied to such degenerate problems which makes pg sampler-based in-
ference impractical. However, rjmcmc-based algorithms, such as those
from Centanni and Minozzo (2006a, 2006b), Del Moral et al. (2007), Martin
et al. (2013) will not be practical for such models either because the condi-
tional posterior distribution of almost any individual jump is degenerate.
The problem remains generally unsolved.

4.3 Existing smc Algorithms

4.3.1 Variable-Rate Particle Filter

In this section, we describe �ltering for pdps via sequential Monte Carlo

(smc) methods. All three algorithms presented in this section may be
viewed as special cases of the generic sir algorithm from Section 2.3.1.
Hence, we always use the same symbols X1Wn, ��n , �n , P �n and G�n to refer
to the ‘states’, normalised and unnormalised extended target measures,
proposal kernels and unnormalised incremental weights even though the
particular form of these quantities may change between the next three
subsections. The actual (marginal) target measure, Q�n 2M.zEn/, and its
normalising constant, z�n, are de�ned as in Subsection 4.2.1.

The �rst particle �lter for pdps, termed variable-rate particle �lter

(vrpf), was proposed by Godsill and Vermaak (2004). The vrpf can
be viewed as an application of the generic smc algorithm to a slightly
reparametrised model described in the following.

Let 0 D t0 < t1; < t2 < : : : be a sequence of strictly increasing (non-
random) times, where tp , for p > 1, represents the time of the pth smc
step. Moreover, let .�p;k; �p;k/ denote the kth jump time in the interval
.tp�1; tp� and its associated jump size. Let kp � 0 be the total number of
jumps in this interval and de�ne the ‘states’ X1Wn, where
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4 Inference in Piecewise Deterministic Processes

� Xn WD .kn; �n;1Wkn; �n;1Wkn/, for n > 1, takes values in (a subset of)

En WD
1[
kD0

.fkg � T.tn�1;tn�;k � Φ
k/;

� X1 WD .k1; �1;1Wk1; �1;0Wk1/ takes values in (a subset of)

E1 WD
1[
kD0

.fkg � T.0;t1�;k � Φ
kC1/:

Let �.n/ WD supfm 2 Nn�1 j km > 0 g be the index of the last interval
of the form .tp�1; tp� before .tn�1; tn� in which the pdp has had a jump,
with the convention that if �.n/ D �1, then we set ��.n/;k�.n/ D �0 D 0
and ��.n/;k�.n/ D �0. The target distribution is then given by ��n WD �n=z�n
on E�1Wn WD�

n
pD1 Ep , where

�n .dx1Wn/
WD S�.tn; ��.n/;k�.n//q

�
0 .d�0/g�.y.0;tn�j�.0;tn�/

�

Y
p2 zDn

1T.tp�1;tp�;kp .�p;1Wkp/

� q�.d�p;1j��.p/;k�.p/; �p;1; ��.p/;k�.p//

� f �.d�p;1j��.p/;k�.p//

�

kpY
jD2

q�.d�p;j j�p;j�1; �p;j ; �p;j�1/f �.d�p;j j�p;j�1/:

Here, zDn WD fp 2 Nn j kp > 0 g is the collection of indices of intervals
of the form .tp�1; tp� that contain at least one jump. For t 2 .tn�1; tn�, the
pdp is then de�ned by

�t WD

(
F �.t; �n;j ; �n;j /; if kn > 0 and t 2 Œ�n;j ; �n;jC1/,
F �.t; ��.n/;k�.n/; ��.n/;k�.n//; otherwise,

with the convention that �n;knC1 D tn. The extended distribution ��n then
admits Q��n as a marginal.
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4.3 Existing smc Algorithms

At Step n, the algorithm generates a particle Xn from the proposal
kernel

P �n .dxnjx1Wn�1/ WD P �n;1.dknjx1Wn�1/
� P �n;2.d�n;1Wkn � d�n;1Wknjkn; x1Wn�1/:

In the above equation, the kernels on the right hand side are selected in
such a way that the usual absolute-continuity conditions are satis�ed. At
Step 1, the kernel P �1;2 also samples a value for �0.

The unnormalised incremental weight at Step n is then given by the
following expressions. If kn D 0, then with some abuse of the notation
for Radon–Nikodým derivatives,

G�n.x1Wn/ D
S�.tn; ��.n/;k�.n//

S�.tn�1; ��.n/;k�.n//

�
g�.y.tn�1;tn�j��.n/;k�.n/; ��.n/;k�.n//

P �n;1.knjx1Wn�1/
:

If kn � 1, then again with some abuse of notation,

G�n.x1Wn/

D
S�.tn; �n;kn/

S�.tn�1; ��.n/;k�.n//

g�.y.tn�1;�n;1/j��.n/;k�.n/; ��.n/;k�.n//

P �n .xnjx1Wn�1/

� g�.y.�n;kn ;tn�j�n;kn; �n;kn/

� q�.�n;1j��.n/;k�.n/; �n;1; ��.n/;k�.n//f
�.�n;1j��.n/;k�.n//

�

knY
jD2

g�.y.�n;j�1;�n;j /j�n;j�1; �n;j�1/

� q�.�n;j j�n;j�1; �n;j ; �n;j�1/f
�.�n;j j�n;j�1/:

As shown in Whiteley et al. (2011), the vrpf can su�er from severe
sample impoverishment. This is because at Step n, jumps are only pro-
posed in the interval .tn�1; tn� and only based on information available
up to time tn. If subsequent observations are highly informative about
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4 Inference in Piecewise Deterministic Processes

jumps in .tn�1; tn�, as they usually are in pdps, then at later steps, this
information can only be incorporated by reweighting particle paths. This
can increase the variance of the particle weights which in turn aggravates
the sample-impoverishment problem outlined in Subsection 2.4.1.

The smc �lter from Whiteley et al. (2011), outlined below, can reduce
sample impoverishment because – even in its simplest form – it allows
new jumps to be sampled anywhere after the most recent jump and also
allows previously generated jumps to be adjusted.

4.3.2 smc Filter for pdps

The smc �lter for pdps from Whiteley et al. (2011) is based on the smc-
sampler framework described in Subsection 2.3.2. That is, it is a ‘stand-
ard’ smc algorithm that targets a sequence of arti�cially extended dis-
tributions ��n WD �n=z�n (as in Equation 2.10) by means of mixture pro-
posal kernels. These extended distributions are de�ned on (product)
spaces E�1Wn WD�npD1 Ep , with Ep WD .M � zEp/. Here, M is again the set of
(proposal-kernel) mixture component indices.

We now add an additional subscript to the model parameters to account
for the fact that for any particle, the j th jump time or jump size at the nth
step of the algorithm may be di�erent from the j th jump time or jump size
at Step n � 1. Thus, we hereafter write Xn WD .Mn; Kn; �n;1Wkn; �n;0Wkn/

for a particle at Step n. To ease the notational burden, we often write
Zn WD Xn nMn D .Kn; �n;1Wkn; �n;0Wkn/.

Proposal Kernels. In the most basic form presented in this work, we
employ a mixture Kernel,

P �n .dxnjxn�1/ WD ˛�n.dmnjzn�1/P �n;mn.dznjzn�1/;

with just two mixture components, i.e. mn 2 M D fa; bg. At Step n, an
adjustment move (Mn D a),

P �n;a.dznjzn�1/ D •kn�1.dkn/•�n�1;1Wkn�1�1.d�n;1Wkn�1/
� •�n�1;0Wkn�1�1.d�n;0Wkn�1/
� ��n;a.d�n;knjzn�1/��n;a.d�n;knj�n;kn; zn�1/;
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moves the most recent stopping time to a new location according to a distri-
bution ��n;a. � jzn�1/with support .�n�1;kn�1�1; tn� and samples a new value
for the corresponding jump size from a distribution ��n;a. � j�n;kn; zn�1/ on
Φ. A birth move (Mn D b),

P �n;b.dznjzn�1/ D •kn�1C1.dkn/•�n�1;1Wkn�1 .d�n;1Wkn�1/
� •�n�1;0Wkn�1 .d�n;0Wkn�1/
� ��n;b.d�n;knjzn�1/�

�
n;b.d�n;knj�n;kn; zn�1/;

adds a new stopping time by sampling it from a distribution ��
n;b
. � jzn�1/

with support .�n�1;kn�1; tn�. Additionally, a new jump-size parameter is
sampled from a distribution ��

n;b
. � j�n;kn; zn�1/ on Φ.

As in Whiteley et al. (2011), the forward mixture weights are set to
˛�n.ajzn�1/ WD S

�.tn; �n�1;kn�1/ as well as ˛�n.bjzn�1/ WD 1 � ˛�n.ajzn�1/,
i.e. the probability of a birth move grows as the time to the last jump
increases. At Step 1, a birth move is enforced for each particle so that
˛�1 .dm1/ D •b.dm1/.

Backward Kernels. The backward Markov kernels

L�n�1.dmn � dzn�1jzn/ WD ˇ�n�1.dmnjzn/L�n�1;mn.dzn�1jzn/;

have a similar ‘mixture’ structure. The component corresponding to
adjustment moves is

L�n�1;a.dzn�1jzn/ WD •kn.dkn�1/•�n;1Wkn�1.d�n�1;1Wkn�1�1/
� •�n;0Wkn�1.d�n�1;0Wkn�1�1/
�Q�

n�1;a.d�n�1;kn�1 � d�n�1;kn�1jzn/;

whereQ�
n�1;a. � jzn/ is a distribution whose support is a subset of the space

.�n�1;kn�1�1; tn�1� � Φ. For a birth move, the corresponding backward
kernel component is

L�n�1;b.dzn�1jzn/ D •kn�1.dkn�1/•�n;1Wkn�1.d�n�1;1Wkn�1/
� •�n;0Wkn�1.d�n�1;0Wkn�1/:

The adjustment- and birth-move kernels only a�ect the most recent
jump time and jump size. This is a reasonable approach as smc �lters can
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only be expected to work for ergodic models and for these, this strategy
should be adequate. Nonetheless, other moves – and even a larger number
of moves – could easily be incorporated. For instance, the second, say,
most recent jump time or jump size may also be modi�ed.

Indeed, as noted by Whiteley et al. (2011), a kernel for multiple-birth-
moves should be included because otherwise, the above choice of for-
ward/backward kernels induces an approximation. However, the probab-
ility of such moves is typically so small that this leads to computationally
the same algorithm. To keep the presentation simple, we refrain from
including such moves here (as was done in Del Moral et al., 2006b, 2007),
although there is no technical di�culty with so doing.

4.3.3 Theoretical Analysis

Actually Targeted Distribution. In the following, we characterise the
approximation induced by the above choice of forward and backward
kernels, i.e. with only single-birth or single-adjustment moves.

First, we de�ne some notation.
� bj WD inff q 2 N j

Pq

lD1 1fbg.ml/ D j g denotes the index of the smc
step at which the j th birth move occurs.
� s.�/ WD inff q 2 N j tq � � g denotes the index of the �rst smc step

at which a jump with jump time � could have been proposed.
� Qs.�1Wj / WD supf s.�j�lC1/ C l � 1 j l 2 Nj g denotes the minimum

number of smc steps needed to propose jumps with jump times �1Wj .
The product of the particle proposal kernels up to Step n,

P �1 .dx1/
nY
pD2

P �p .dxpjx1Wp�1/; (4.2)

then has support

Er
n WD

�
x1Wn 2 E�1Wn

ˇ̌̌̌
b1 D 1 and
8j 2 Z2;kn W Qs.�n;1Wkj�1/ < bj � n

�
:

In particular, the marginal distribution of Xn under the distribution in
Equation 4.2 then has support

zEr
n WD

˚
.kn; �1Wkn; �0Wkn/ 2 zEn

ˇ̌
8j 2 Nkn W s.�j / � n� knC j

	
:
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Recall that we write zn D xn nmn D .kn; �1Wkn; �0Wkn/. To ensure that
the importance weights exist, the algorithm can therefore only target, as
a marginal, the distribution

Q� r;�
n .dzn/ / Q r;�

n .dzn/ D Q�n .dzn/ 1zEr
n
.zn/:

If the time between successive smc steps, tn � tn�1, is short compared
to the average time between jumps, the di�erence between the distribu-
tion in Equation 4.1 and the marginally targeted distribution Q� r;�

n should
be negligible. We will consider the in�uence of this approximation in
Section 4.5.

The extended distribution actually targeted by the algorithm is

� r;�
n .dx1Wn/ / Q r;�

n .dzn/ˇ�0 .dm1jz1/

�

n�1Y
pD1

ˇ�p.dmpC1jzpC1/L�p;mpC1
.dzpjzpC1/;

where we assume, for the moment, that the backward mixture weights
ˇ�p. � jzpC1/ can be chosen such that this extended distribution does not
have probability mass outside of Er

n to ensure that the importance weights
exist. A detailed discussion of the choice of backward mixture weights is
given below.

We conclude this subsection by describing some implementation issues
regarding the above-mentioned smc algorithm. To our knowledge, they
have not been pointed out in the literature. The point we wish to stress
here is that backward and proposal kernels need to be chosen carefully
and in such a way that they are consistent with each other in order to
avoid introducing biases resulting from a loss of absolute continuity. Such
biases may be small in the case of �ltering (i.e. if the static parameters are
known). However, if the static parameters are to be estimated alongside
the jump times and jump sizes, even small biases in the �lter can induce
large biases in the estimates of the static parameters.

Choice of Jump-Size Proposal Kernels. It was advocated in Whiteley
et al. (2011) to sample the jump sizes from their full conditional posterior
distribution. However, given the structure of the algorithm, this posterior
distribution will often be based on observations ‘too far’ into the future.
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Proposal for � based on y

��;�C�

Proposal for � based on y

��;t

n

�

True process
Observations

t

�

t

� � C  t

n

Figure 4.3 Proposal distributions for the jump size � D �n;kn associated with the
jump time � D �n;kn sampled at the nth smc step in the elementary change-point
model (as part of one of the particles). Dashed line: full conditional distribution
of � given all the data up to time tn. Solid line: full conditional distribution of �
given the data up to time � C c.

More formally, assume that the jump time � D �n;kn proposed at
Step n is much smaller than tn. In this case, the full conditional posterior
distribution of the jump size � D �n;kn conditions on there not being
another jump in the interval .�; tn�. Due to conditioning on a potentially
large number of observations, this full conditional posterior distribution
can then be highly concentrated.

However, not having another jump in the interval .�; tn� can have little
probability mass under the joint posterior distribution. If, at Step .nC 1/,
a further jump is added in this interval, then the jump size � might be
located in a region that has little probability mass under the full conditional
posterior distribution (which then also conditions on the additional jump).
This can lead to a high variance in the particle weights. The problem is
illustrated in Figure 4.3.

To circumvent this problem while still retaining the bene�t of incorpor-
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4.3 Existing smc Algorithms

ating observations into the proposal kernels, we recommend to only take
observations from some interval Œ�; � C c�/ into account when sampling
�. For instance, we may take c D .� C � Q�/^ tn, � 2 .0; 1/ and Q� may be
the mean interjump time or a quantile of the interjump-time distribution.

Choice of Backward Mixture Weights. As previously mentioned, the
backward mixture weights must be chosen such that the extended target
distribution does not have probability mass outside of Er

n. The most
obvious problem with a poor choice of backward mixture weights is that
the extended target distribution does not actually admit the right marginal
(in addition to having ill-de�ned importance weights).

There is a one-to-one correspondence between
Pn
pD1 1fbg.mp/, the

number of birth moves, and kn, the number of jumps in the proposal
distribution and hence in the support of the truncated target distribution
Q� r;�
n . Therefore we cannot specify their distributions independently. The

target already speci�es a distribution over kn; if the backward mixture
weights ˇ�p. � jzpC1/ do not depend on kpC1, then they implicitly specify a
second distribution over kn and the marginal distribution of this quantity
under the target distribution will not be what is intended.

For instance, consider setting the backward mixture kernel weights
to a uniform distribution over M D fa; bg – a popular choice. Write
An WD fp 2 Nn�1 j mpC1 D a g, Bn WD Nn�1 nAn, and Cn WD fbg�Mn�1.
The algorithm targets as a marginal the distribution de�ned byZ

E�1Wn

� r;�
n .dx1Wn/ 1D.zn/

/

Z
zE�1Wn

Q� r;�
n .dzn/ 1D.zn/

�

X
m1Wn2Cn

�Y
p2An

L�p;a.dzpjzpC1/
�Y
p2Bn

L�p;b.dzpjzpC1/

D

Z
D

Q� r;�
n .dzn/ #

�
m1Wn 2 Cn

ˇ̌̌̌ Pn
pD1 1fbg.mp/ D kn

�
D

Z
D

Q� r;�
n .dzn/

 
n � 1
kn � 1

!
;

for any measurable set D � zEn.
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4 Inference in Piecewise Deterministic Processes

For regular proposal kernels, a possible choice of backward kernels
restricting the support of the extended target distribution to Er

n may be
induced by setting the backward mixture weights to

ˇ�p�1.bjzp/ D

�
0; if kp D 1 and p > 1,
1; if p 2 f1; kp; Qs.�p;1Wkp�1/C 1g,
qp.zp/; otherwise,

(4.3)

for some probability qp.zp/ 2 .0; 1/ which may depend on zp .

Local Adjustment Moves. Ideally, adjustment moves should direct the
jumps towards regions of higher posterior probability. If such moves
cannot be devised, it is preferable to use local adjustment moves, e.g. small-
scale Gaussian kernels centred around the current location of the jump.
This reduces the risk of moving jumps away from regions of high posterior
probability, which would add to sample impoverishment. However, such
local adjustment moves are unlikely to move a jump currently contained
in .tp�1; tp� out of such an interval. Therefore, even using Equation 4.3
could result in importance weights with in�nite variance.

A simple remedy is to employ restricted adjustment moves, i.e. local
moves that are limited to the particular interval .tp�1; tp� currently con-
taining the jump. More formally, recall that s.�/ D inff q 2 N j tq � � g

is the �rst smc step at which a jump with jump time � could have been
proposed. For restricted adjustment moves, ��n;a. � jzn�1/ then has support
..�n�1;kn�1�1 _ tsn�1�1/; tsn�1�, where sn�1 WD s.�n�1;kn�1/, rather than
having support .�n�1;kn�1�1; tn�.

Also recalling that Qs.�1Wj / D supf s.�j�lC1/C l � 1 j l 2 Nj g repres-
ents the minimum number of smc steps needed to propose jumps with
jump times �1Wj , the support of the joint proposal distribution from Equa-
tion 4.2 is then given by

Er
n D

�
x1Wn 2 E�1Wn

ˇ̌̌̌
b1 D Qs.�n;1/ D 1 and
8j 2 Z2;kn W Qs.�n;1Wkj / � bj � n

�
:

To ensure that the target distribution does not have probability mass
outside of Er

n, the distribution of �n�1;kn�1 under Q�
n�1;a. � jzn/ must have

support ..�n;kn�1 _ tsn�1/; tsn�, where sn WD s.�n;kn/. In addition, the
backward mixture weights might take the form presented in Equation 4.3
but with Qs.�p;1Wkp�1/ replaced by Qs.�p;1Wkp/ � 1.
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4.4 Reformulation of the smc Filter

4.4.1 General Idea

One problem with the smc �lter for pdps from the previous subsection
– henceforth referred to as the ‘original’ smc �lter – is that it induces
unnecessary degeneracy in the transitions at Step n because most jump
times and jump sizes in Xn�1 coincide with jump times and jump sizes
in Xn. In other words, the algorithm works explicitly on the path space
by embedding a ‘standard’ smc �lter within the smc-sampler framework
using (mostly) trivial degenerate backward transitions.

Unfortunately, degenerate backward transitions prevent the use of
backward-simulation methods such as forward �ltering–backward sam-
pling and they also prevent the use of the essential variance-reduction
techniques for pg samplers: backward sampling and ancestor sampling,
which were described in Subsection 3.4.2. At the same time, the algorithm
does not gain any bene�t from the path-space representation.

Below, we present a novel representation of the algorithm whose
alternative Step-n extended target distribution also admits Q� r;�

n as a
marginal but whose ‘states’ do not have degenerate transitions (unless
q�.�j j�j�1; �j ; �j�1/ is degenerate). In addition, this algorithm makes it
easier to ensure the existence of the importance weights as it circum-
vents the problem of choosing sensible backward mixture weights. Our
representation may be viewed as a way of extracting the ‘standard’ smc
�lter embedded in the smc sampler from Whiteley et al. (2011). The struc-
ture of its extended target distribution is reminiscent of the product-space

formulation from Carlin and Chib (1995) (see also Godsill, 2001).

4.4.2 Extended Target Distribution

The algorithm presented in this subsection targets an extended distribu-
tion (de�ned further below) that contains all the ‘states’ X1Wn, where
� Xn WD .Mn; �n; �n/, for n > 1, takes values in (a subset of)

En WD M � .0; tn� � Φ;

� X1 WD .M1; �1; �1; �0/ takes values in (a subset of)

E1 WD M � .0; tn� � Φ2:
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4 Inference in Piecewise Deterministic Processes

In this subsection, �n and �n are the jump time and associated jump size
sampled at the nth step of the smc algorithm as part of a birth move or
as part of an adjustment move. As before, Mn indicates an adjustment
move (Mn D a) or birth move (Mn D b) at Step n. Again, these mixture
component indices are added to the state space as auxiliary variables.

The main idea is to use the mixture component indices M1Wn to keep
track of which jumps a�ect the marginal target distribution Q� r;�

n . These
are the jumps sampled in smc Steps p 2 Hn, where

Hn WD f j 2 Nn�1 j mjC1 D b g [ fng:

That is, Hn contains the indices of all jumps which have been sampled
(up to Step n) immediately before a birth move. We also de�ne the set of
indices of the remaining jumps, Vn WD Nn nHn. For easier reference, we
collect all elements of the set Hn in the vector

hn D .hn.1/ : : : hn.#Hn//;

in increasing order and all the elements of the set Vn in the vector

vn D .vn.1/ : : : vn.#Vn//;

again in increasing order.

Extended Target Distribution. In the following, we present the ex-
tended target distribution of the algorithm. To show that it admits the
right marginal, some reparametrisation is required: write kn WD #Hn

for the total number of birth moves in the �rst n steps and let i1Wkn de-
note the smc steps at which these birth moves occur, i.e. i1 WD 1 and
ij WD hn.j � 1/ C 1 for j 2 Z2;kn . Re-label .�hn; �hn/ DW .� 01Wkn; �

0
1Wkn/

and .�vn; �vn/ DW .�?1Wn�kn; �
?
1Wn�kn/. This permits the one-to-one trans-

formation�
m1Wn; .�hn; �hn/; .�vn; �vn/

�
 !

�
.n; kn; i1Wkn/; .�

0
1Wkn; �

0
1Wkn/; .�

?
1Wn�kn; �

?
1Wn�kn/

�
; (4.4)

where we have implicitly used thatHn; Vn; hn and vn can be equivalently
de�ned in terms of m1Wn or in terms of .n; kn; i1Wkn/.

Let ��n.dm1Wnjk; �hn; �hn; �0/ be some distribution on the indices M1Wn
conditional on

Pn
pD1 1fbg.Mp/ D k.

122



4.4 Reformulation of the smc Filter

4.1 Remark. With some abuse of notation, Equation 4.4 allows us to

use the same symbol ��n to de�ne a distribution on the indices I1WKn , i.e.

��n.di1Wknjkn; � 01Wkn; �
0
1Wkn; �0/. The choice of �

�
n is discussed below.

The alternative extended target distribution for the smc �lter intro-
duced in this subsection is de�ned as ��n D �n=z�n, where

�n .x1Wn/

WD Q r;�
n .#Hn; �hn; �hn; �0/�

�
n.m1Wnj#Hn; �hn; �hn; �0/

�

Y
j2Vn

Q�
j;a.�j ; �j j#HjC1; �hjC1; �hjC1; �0/

D Q r;�
n .kn; �

0
1Wkn; �

0
1Wkn; �0/�

�
n.i1Wknjkn; �

0
1Wkn; �

0
1Wkn; �0/

�

�Y
j2Dn

Q�
vn.j /;a

�
�?j ; �

?
j

ˇ̌
Nkn.j /; N�n.j /; N�n.j /; �0

��
(4.5)

�

Y
j2Nn�knnDn

Q�
vn.j /;a

�
�?j ; �

?
j

ˇ̌
Nkn.j /; �

0

1W Nkn.j /
; � 01W Nkn.j /

; �0
�
:

The second line shows that this distribution can be written explicitly as
a distribution over the variables on the right hand side in Equation 4.4.
Here, we have de�ned the following symbols.
� The quantity Nkn.j / WD supfp 2 Nn j ip � vn.j / g is the number of

birth moves up to (and including) the vn.j /th step of the smc algorithm.
� Recall that by the de�nition of Vn and vn, the particle trajectory X1Wn

has an adjustment move at Step vn.j /C1, for any j 2 N#Vn . As a result,
under the extended target distribution at Step n, the jump sampled at
Step vn.j / is not distributed according to a marginal under the ‘actual’
target distribution, Q� r;�

n . In the extended distribution above, we then
need to distinguish two cases. First, the set

Dn WD

�
j 2 Nn�kn

ˇ̌̌̌
vn.j / < n � 1 and
8l 2 Nkn W vn.j /C 2 ¤ il

�
;

comprises those components vn.j / of vn which are such that there is
also an adjustment move at Step vn.j /C 2. Hence, under the extended
target distribution at Step n, the jump sampled at Step vn.j / C 1 is
also not distributed according to a marginal under Q� r;�

n . Conversely,
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4 Inference in Piecewise Deterministic Processes

the set Nn�kn nDn comprises those components vn.j / of vn which are
such that, under the extended target distribution at Step n, the jump
sampled at Step vn.j /C 1 is distributed according to a marginal under
Q� r;�
n (because of a birth move at Step vn.j /C 2).

� The symbols

N�n.j / WD
�
� 01W Nkn.j /�1

; �?jC1
�
;

N�n.j / WD
�
� 01W Nkn.j /�1

; �?jC1
�
;

represent the vectors of jump times and jump sizes which, under the
extended target distribution at Step vn.j /C 1, are distributed accord-
ing to a suitable marginal of Q� r;�

vn.j /C1, but whose last component is
not distributed according to a suitable marginal of Q� r;�

n because of an
adjustment move at Step vn.j /C 2.
In summary, we have j 2 Dn if and only if the jumps sampled at

Steps vn.j / and vn.j /C1 are distributed according to a suitable marginal
of Q� r;�

n . Similarly, j 2 Nn�kn nDn if and only if the jump sampled at
Step vn.j / is not distributed according to a suitable marginal of Q� r;�

n , but
the jump sampled at Step vn.j /C 1 is and it is denoted�

� 0Nkn.j /
; � 0Nkn.j /

�
:

Finally, Q�
p;a is de�ned as in the previous section.

The second line in Equation 4.5 shows that the extended target distri-
bution admits Q� r;�

n as a marginal. In addition, under this extended target
distribution, the transitions from X1Wn�1 to Xn will be free of degenerate
components as long as q�.�j j�j�1; �j ; �j�1/ is non-degenerate.

4.4.3 Extended Proposal Distribution

We use the proposal kernels

P �n .dxnjx1Wn�1/ D ˛n.dmnjxn�1/P �n;mn.dŒxn nmn�jx1Wn�1/

with birth and adjustment moves that are similar to the ones used in the
original formulation of the smc �lter for pdps, except that they do not
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4.4 Reformulation of the smc Filter

share the degenerate components. A birth move,

P �n;b.d�n � d�njx1Wn�1/ WD ��n;b.d�nj#Hn�1; �hn�1; �hn�1; �0/

� ��n;b.d�nj�n; #Hn�1; �hn�1; �hn�1; �0/;

adds a new stopping time in .�n�1; tn� and samples a new jump size.
Similarly, an adjustment move,

P �n;a.d�n � d�njx1Wn�1/ WD ��n;a.d�nj#Hn�1; �hn�1; �hn�1; �0/

� ��n;a.d�nj�n; #Hn�1; �hn�1; �hn�1; �0/;

shifts the most recent stopping time to a new location in .�hn.#Hn�1/; tn�
and also samples a new value for the corresponding jump size. The kernels
��n;mn and ��n;mn are de�ned as in the previous section and we again de�ne
the forward ‘mixture weights’ by ˛�n.ajxn�1/ WD S�.tn; �n�1/.

4.4.4 Distribution Over Birth-Move Locations

The support of the target distribution in Equation 4.5 must be included in
the support of the proposal distribution. To ensure this, we propose to
use the following distribution over the locations of the birth moves,

��n.di1Wknjkn; � 01Wkn; �
0
1Wkn; �0/

WD �kn.diknjnC 1; kn; � 01Wkn; �
0
1Wkn; �0/•1.di1/

�

kn�1Y
jD2

�j .dij jijC1; kn; � 01Wkn; �
0
1Wkn; �0/:

Here, �j .ij jl; kn; � 01Wkn; �
0
1Wkn; �0/ is a distribution that has support˚

Qs.� 01Wj�1/C 1; : : : ; l � 1
	
;

where we recall the de�nition Qs.�1Wj / D supf s.�j�lC1/C l � 1 j l 2 Nj g

with s.�/ D inff q 2 N j tq � � g.
If only local adjustment moves are used (see Subsection 4.3.2) then the

support of �j .ij jl; kn; � 01Wkn; �
0
1Wkn; �0/ must be limited to˚

Qs.� 01Wj /; : : : ; l � 1
	
:
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In the applications presented in Section 4.5 we employ such restricted
adjustment moves. Consequently, we may take �j .ij jl; kn; � 01Wkn; �

0
1Wkn; �0/

to be a geometric distribution truncated to fQs.� 01Wj /; : : : ; l � 1g or simply
a uniform distribution on this set. Such a choice also ensures that the
computational cost (per smc step) of computing the importance weights
remains constant.

4.4.5 Incremental and Backward-Sampling Weights

Incremental Weights. For easier reference, we will hereafter refer to
the algorithm presented in this subsection as the reformulated sequen-

tial Monte Carlo (rsmc) �lter. Again abusing the notation for Radon–
Nikodým derivatives, the incremental weights of this algorithm, denoted
G�n.x1Wn/ D �n .x1Wn/=Œ

�
n�1.x1Wn�1/P

�
n .xnjx1Wn�1/�;are computed as fol-

lows. For a birth move, i.e. mn D b,

G�n.x1Wn/ D
S�.tn; �n/

S�.tn�1; �n�1/

f �.�nj�n�1/q
�.�nj�n�1; �n; �n�1/

P �
n;b
.�n; �njx1Wn�1/

�
��n.m1Wnj#Hn; �hn; �hn; �0/

��n�1.m1Wn�1j#Hn�1; �hn�1; �hn�1; �0/˛
�
n.bjxn�1/

�
g�.yŒ�n;tn�j�n; �n/

g�.yŒ�n;tn�1�j�n�1; �n�1/
:

For an adjustment move, i.e. mn D a,

G�n.x1Wn/ D
S�.tn; �n/

S�.tn�1; �n�1/

Q�
n�1;a.�n�1; �n�1j#Hn; �hn; �hn; �0/

P �n;a.�n; �njx1Wn�1/

�
��n.m1Wnj#Hn; �hn; �hn; �0/

��n�1.m1Wn�1j#Hn�1; �hn�1; �hn�1; �0/˛
�
n.ajxn�1/

�
f �.�nj�hn.#Hn�1//

f �.�n�1j�hn.#Hn�1//

�
q�.�nj�hn.#Hn�1/; �n; �hn.#Hn�1//

q�.�n�1j�hn.#Hn�1/; �n�1; �hn.#Hn�1//

�
g�.yŒ�n�1^�n;�n/j�hn.#Hn�1/; �hn.#Hn�1//

g�.yŒ�n�1^�n;�n�1/j�hn.#Hn�1/; �hn.#Hn�1//

�
g�.yŒ�n;tn�j�n; �n/

g�.yŒ�n�1;tn�1�j�n�1; �n�1/
:
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Here, we use the convention g�.yŒs;t/j�j ; �j / WD 1 if s � t . To actually
compute these weights, it is preferable to switch to the parametrisation
from the right hand side in Equation 4.4.

Backward-/Ancestor-Sampling Weights. We conclude this subsec-
tion by deriving the probabilitiesG�

njP
.x1WP / WD 

�
P .x1WP /=

�
n .x1Wn/ needed

for the computation of the backward or ancestor sampling weights in
Equation 3.17 for the vrpf and the rsmc �lter.

For the vrpf, using the notation from Subsection 4.3.1, assuming that
n < P and let

�.n/ WD inf
˚
m 2 fnC 1; : : : ; P g

ˇ̌
km > 0

	
:

If
PP
pDnC1 kp D 0 and kn > 0, then, recalling that tP D T ,

G�njP .x1WP / / S
�.T; �n;kn/g

�.y.tn;T �j�n;kn; �n;kn/=S
�.tn; �n;kn/:

If
PP
pDnC1 kp > 0 and kn > 0 then

G�njP .x1WP / / g
�.y.tn;��.n/;1/j�n;kn; �n;kn/f

�.��.n/;1j�n;kn/

� q�.��.n/;1j�n;kn; ��.n/;1; �n;kn/=S
�.tn; �n;kn/:

In the case that kn D 0, the quantity .�n;kn; �n;kn/ in the above equations
is replaced by .��.n/;k�.n/; ��.n/;k�.n//.

For the rsmc �lter, using the notation from this section and assuming
n < P , let nb WD inffp 2 ZnC2;P j mp D b g denote the iteration with
the �rst birth move after step nC1, with the convention that nb WD P C1
if there is no further jump at steps nC 2; : : : ; P . If mnC1 D b,

G�njP .x1WP / /
��P .m1WP j#HP ; �hP ; �hP ; �0/
��n.m1Wnj#Hn; �hn; �hn; �0/

�
f �.�nb�1j�n/q

�.�nb�1j�n; �nb�1; �n/

S�.tn; �n/

�
g�.y.tn;�nb�1/j�n; �n/

g�.yŒ�nb�1;tn�j�n; �n/

�

nb�1Y
jDnC2

Q�
j�1;a.�j�1; �j�1j#Hj ; �hj ; �hj ; �0/:
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If mnC1 D a,

G�njP .x1WP / /
��P .m1WP j#HP ; �hP ; �hP ; �0/
��n.m1Wnj#Hn; �hn; �hn; �0/

�
f �.�nb�1j�hn.#Hn�1//

S�.tn; �n/f �.�nj�hn.#Hn�1//

�
q�.�nb�1j�hn.#Hn�1/; �nb�1; �hn.#Hn�1//

q�.�nj�hn.#Hn�1/; �n; �hn.#Hn�1//

�
g�.yŒ�n^�nb�1;�nb�1/j�hn.#Hn�1/; �hn.#Hn�1//

g�.yŒ�n^�nb�1;�n/j�hn.#Hn�1/; �hn.#Hn�1//

�
1

g�.yŒ�n;tn�j�n; �n/

�

nb�1Y
jDnC1

Q�
j�1;a.�j�1; �j�1j#Hj ; �hj ; �hj ; �0/:

Again, we use the convention that g�.yI j�j ; �j / WD 1, if I D ;. To com-
pute these weights, it is again preferable to switch to the parametrisation
from the right hand side in Equation 4.4.

4.4.6 The Algorithm

In this subsection, we summarise the rsmc-based pg sampler and with
the auxiliary-variable rejuvenation scheme outlined in Subsection 3.4.4
and comment on the e�ciency of backward sampling (bs) and ancestor

sampling (as), in this context.
More precisely, the algorithm is a special case of Algorithm 3.35 in

which we take, with some abuse of notation, T D P , as well as
� X1WP D .M1WP ; �1WP ; �1WP /,
� Y D .I1WkP ; �

?
1WP�kP ; �

?
1WP�kn/,

� Z D .kP ; �
0
1WkP ; �

0
1WkP /,

� �.�; x1Wn/ / p.�/
�
P .x1Wn/, where p.�/ is some prior density for the

parameters �, and where �P represents the extended target meas-
ure associated with the rsmc algorithm up to Step P as de�ned in
Equation 4.5,
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� O�m.� jz/ / p.�/ Q��P .kP ; �
0
1WkP ; �

0
1WkP / (from which we sample in Step 2

of Algorithm 3.35), where Q��P denotes the posterior distribution of the
jump times, jump sizes as well as their number up to Time tP , as de�ned
in Equation 4.1,
� and �nally,

L..�; z//; y/

D ��n.i1Wknjkn; �
0
1Wkn; �

0
1Wkn; �0/

�

�Y
j2Dn

Q�
vn.j /;a

�
�?j ; �

?
j

ˇ̌
Nkn.j /; N�n.j /; N�n.j /; �0

��
�

Y
j2Nn�knnDn

Q�
vn.j /;a

�
�?j ; �

?
j

ˇ̌
Nkn.j /; �

0

1W Nkn.j /
; � 01W Nkn.j /

; �0
�
:

E�ciency of Backward/Ancestor Sampling. We conclude this sec-
tion by commenting on the e�ciency of bs (and, similarly, as) when us-
ing a conditional sequential Monte Carlo (csmc) algorithm based around
the rsmc algorithm within a pg sampler. Assume that we are trying
to ‘connect’ a particle path segment X1Wn with a particle path segment
XnC1WP via bs or as.
(1) IfmnC1 D a,G�

njP
.x1WP / is necessarily equal to zero if �j � �hn.#Hn�1/,

for any j 2 ZnC1;nb�1. This re�ects the fact that under the (extended)
proposal distribution, any subsequent adjustment moves cannot move
the most recent jump to a location before the second most recent jump
at Step n. Furthermore, if only local adjustment moves for the jump
time and jump size are employed, the termG�

njP
.x1WP /will necessarily

be very small unless the distances j�n � �nC1j and j�n � �nC1j are
su�ciently small. This re�ects the fact that in this case, adjustment
moves only slightly perturb an existing jump.

(2) If mnC1 D b, G�
njP
.x1WP / is necessarily equal to zero if �j � �n, for

any j 2 ZnC1;nb�1, where nb is de�ned as in the previous subsection.
This re�ects the fact that under the (extended) proposal distribution,
the birth move at Step .nC 1/ cannot propose a jump in .0; �n� and
subsequent adjustment moves are similiarly unable to move the newly-
born jump to any location in this interval.
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4 Inference in Piecewise Deterministic Processes

In some models, G�
njP
.x1WP / may also be zero (or very small) due to

restrictions imposed on the jump sizes under the model. For instance,
in the Cox-process model from Subsection 4.2.3, the pdp must have a
non-negative jump at the j th jump time, i.e. we must have ���j � �j D ��j ,
where ���j denotes value of the pdp immediately Time �j .

Whenever G�
njP
.x1WP / is zero (or su�ciently small), it is impossible

(or di�cult) to ‘connect’ the particle path X1Wn with the particle path
XnC1WP via bs or as. This hampers mixing of the pg kernel. However,
the auxiliary-variable rejuvenation step alleviates this problem. More
speci�cally, in our simulations (presented in the next Section), the extra
Gibbs step (Step 3) of Algorithm 3.35 appeared to be crucial to the per-
formance of the rsmc-based pg sampler: without it, the algorithm could
get stuck in local modes.

We conjecture that with only local adjustment moves and without
Step 3 of Algorithm 3.35, the pg sampler can get stuck because as (or
similarly bs) is relatively ine�ective: it rarely changes the distinguished
path (i.e. the particles U1WP in the notation from the previous chapter) in
Situation 1, above, and mixing thus relies on replacing the distinguished
path in Situation 2. Here, however, if �nC1 is much smaller than tn, the
most recent jump in all other particle paths is likely to be located in the
interval .�nC1; tn� so that they have bs/as weights equal to zero.

Step 3 of Algorithm 3.35 can circumvent the latter problem because it
can change the smc step of the birth move which is associated with a
particular jump.

This reasoning might also explain why we observed that the rsmc-
based pg sampler could get stuck in the shot-noise Cox-process example
when it was initialised in a region with P jumps: if the distinguished path
has only birth moves then Step 3 of Algorithm 3.35 cannot change the
smc step of the birth move associated with any jump.

4.5 Simulation study

4.5.1 General Setup

In this section, we apply a pg sampler with as and with the auxiliary-
variable rejuvenation step from Subsection 3.4.4 – based on the rsmc
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�lter from Subsection 4.4.2 – to the elementary change-point model from
Subsection 4.2.2 and to the shot-noise Cox-process model from Subsec-
tion 4.2.3. For easier reference, this algorithm is hereafter called rsmc-
based pg sampler. We compare its performance with that of a vrpf-based
pg sampler also using as and additionally with a rjmcmc algorithm.

Reformulated smc Filter. For the rsmc �lter, a birth move at Step n
samples a new jump time �n uniformly in .�hn.#Hn�1/; tn�. The jump size,
�n, is then sampled from its full conditional posterior distribution given
the observations up to time �n C Q�=4 ^ tn, with Q� being the prior mean
interjump time. We use restricted jump-time adjustment moves, i.e. we use
Gaussian kernels with variance 10�4, centred around �n�1 and truncated
to ..�hn.#Hn�1/ _ tsn�1�1/; tsn�1� where sn�1 WD s.�n�1/. Gaussian kernels
with this variance, centred around �n�1, are also used for the jump-size
adjustments. In the Cox-process example, these Gaussian kernels are
truncated to .F �.�n; �hn.#Hn�1/; �hn.#Hn�1//;1/. Likewise, the kernel
Q�
n�1;a is a product of independent Gaussians, each with variance 10�4.
� The �rst component is centred around �n and truncated to the interval
..�hn.#Hn�1/ _ tsn�1/; tsn�, where sn WD s.�n/.
� The second component is centred around �n. In the Cox-process ex-

ample, its support is restricted to .F �.�n�1; �hn.#Hn�1/; �hn.#Hn�1//;1/.
Finally, the conditional distribution of i1Wkn is taken to be a truncated
geometric distribution with parameter 0:3 and with support (for restricted
adjustment moves) as given in Subsection 4.4.2. Throughout, we use
(conditional) systematic resampling and resample only when the e�ect-
ive sample size falls below 0:8N , where N is the (constant) number of
particles at every step.

Variable-Rate Particle Filter. For the vrpf, we propose the number
of jumps in .tn�1; tn� from a Poisson distribution with mean .tn� tn�1/= Q�.
The jump times are subsequently sampled independently from a uniform
distribution on .tn�1; tn� and are then ordered. The corresponding jump
sizes are proposed from their full conditional time-tn posterior distribution.
The step size in both smc algorithms is set to tn�tn�1 D 10. Again, we use
(conditional) systematic resampling and resample only when the e�ective
sample size falls below 0:8N , where N is again the constant number of
particles at every step.
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4 Inference in Piecewise Deterministic Processes

Reversible-Jump mcmc Updates. The moves that update jumps in
the rjmcmc algorithm are those used in Centanni and Minozzo (2006b)
except that in the elementary change-point model, the jump sizes are
always sampled from their full conditional posterior distributions).

Static-Parameter Updates. Within all three algorithms, a new value for
the vector of static parameters is proposed using the m-fold convolution
of a Gaussian random-walk Metropolis–Hastings kernel with the same
covariance matrix across algorithms. More sophisticated updates for the
static parameters could be constructed but we choose not to do so since
this chapter’s focus is on updating the time-varying parameters.

In what follows, a single ‘iteration’ or ‘sweep’ of one of these algorithms
refers to �rst updating the static parameters (followed by the auxiliary-
variable rejuvenation step for the rsmc-based pg sampler algorithm)
and then updating the jumps using either a conditional smc update or l
rjmcmc updates. For the �rst example, we used m D l D 500 and for
the second, we used m D l D 1;000.

Initial Values. Initial values for the static parameters are sampled from
the prior. For the second example, we then divide the �rst two static
parameters by 100 to avoid starting in a region with a very large number
of jumps. This is done to reduce the computational cost for the �rst
iterations in the vrpf-based pg sampler and rjmcmc algorithms and
also because we have observed that the rsmc-based pg sampler can get
stuck if started in a region with close to P jumps. A possible explanation
of the latter phenomenon is provided in Subsection 4.4.6.

Implementation. The algorithms are implemented in Matlab (The Math-
Works, Inc., 2015) on a single 2.66 ghz Intel ‘Westmere’ core using 4 giga-
bytes of ram. In each case, the presented results are based on 60;000
iterations of which the �rst 10;000 are discarded as burn-in. We note
that this is just a proof-of-concept implementation: signi�cant speed-ups
should be attainable using parallelisation techniques to which particle
methods are amenable (Lee, Yau, Giles, Doucet & Holmes, 2010).

4.5.2 Elementary Change-Point Model

For the elementary change-point model, we used the simulated data shown
in Figure 4.1. We chose a Gaussian prior on the static parameters, with
covariance matrix diag.102; 102; 10; 103; 104/ and truncated to R�.0;1/4.
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4.5 Simulation study

As shown in Figure 4.4, all three algorithms yielded comparable es-
timates for the marginal posterior distributions of the static parameters
even when using only 25 particles. The bivariate correlation structure
and sample autocorrelations were also similar but are omitted due to
limited space. However, we encountered rjmcmc chains that seemed to
get stuck in local modes for a considerable number of iterations. Such a
chain is represented by the dashed line in the bottom row of Figure 4.4 and
the corresponding trace plot for the parameter ˇ is shown in Figure 4.5.
We stress that this did not occur in all runs of the rjmcmc algorithm.
This behaviour may be the result of the sampler �nding it di�cult to add,
remove, or modify individual jumps in particular regions of the space.
Such single-site updates are particularly ine�cient in this case due to
the gamma prior on the interjump times. We did not encounter such a
behaviour in any of the pg samplers as they allow for a blocked update
of (large parts of) the entire set of jumps.

The computing time for the auxiliary-variable rejuvenation and condi-
tional smc update (with as) in the rsmc-based pg sampler was around
1:6 seconds on average, the conditional smc update (with as) for the
vrpf-based pg sampler took around 2:5 seconds and l D 500 individual
moves for the rjmcmc algorithm took around 2 seconds. The di�erence
can partially be explained by the fact that the rsmc sampler is more
amenable to code vectorisation than the vrpf because at each smc step,
it generates the same number of random variables for each particle.

4.5.3 Shot-Noise Cox-Process Model

For the shot-noise Cox-process example, we used the simulated data set
shown in Figure 4.2. We chose a Gaussian prior for the vector of static
parameters, with covariance matrix diag.10; 10; 102/ and truncated to
.0;1/3. For the static-parameter updates we switched to a partially non-
centred parametrisation of the jump sizes to improve mixing of the decay
parameter �.

As shown in Figure 4.6, the estimated marginal posterior densities from
all three algorithms have similar modes. However, those obtained from
the rsmc-based pg sampler are more concentrated. This di�erence is
possibly due to the approximation described in Subsection 4.3.2 which
restricts the number of jumps in any particular interval. In this model,
it produces visibly di�erent results because the exponential prior on the
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Figure 4.4 Kernel density estimates for the marginal posterior densities of the
static parameters in the elementary change-point model. Top row: rsmc-based
pg sampler algorithm with 100 particles (solid line), 50 particles (dashed line),
25 particles (dash-dotted line). Middle row: vrpf-based pg sampler with 100
particles (solid line), 50 particles (dashed line), 25 particles (dash-dotted line).
Bottom row: two rjmcmc chains. Vertical lines indicate the true parameters;
dotted lines show the prior densities.
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Figure 4.5 Trace plots for the scale-parameter estimates in the elementary
change-point model. Top: rsmc-based pg sampler with 100 particles. Middle:

vrpf-based pg sampler with 100 particles. Bottom: rjmcmc sampler.

interjump times allows large numbers of jumps to be placed close to each
other with non-negligible probability. Thus, the posterior distribution of
this model has tail regions with large numbers of jumps which the rsmc-
based pg sampler algorithm rarely enters. This could also contribute to
the di�erences in the autocorrelations in Figure 4.6. Note that the e�ect
of this approximation can be reduced by decreasing the step size tn� tn�1.

4.6 Summary

In this chapter, we have demonstrated that pg samplers can be applied
to piecewise deterministic processes and have presented a number of
methodological developments in doing so. Numerical studies provide a
comparative illustration of the performance of the proposed methods.

One of the methodological developments presented in this work in-
volves a novel representation of the smc sampler from Whiteley et al.
(2011). This kind of representation, which embeds a ‘variable-dimension’
problem within a ‘�xed-dimension’ problem, may be useful more gen-
erally, e.g. for applying quasi-smc methods (Gerber & Chopin, 2015) to
variable-dimension problems. An extension of this representation to allow
for multiple-birth-move kernels is left for future research.
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Figure 4.6 Static-parameter estimates for the shot-noise Cox-process example.
Based on the rsmc-based pg sampler algorithm with 100 particles (solid line),
the vrpf-based pg sampler with 100 particles (dashed line), and an rjmcmc
sampler (dash-dotted line). Top row: kernel density estimates of the marginal
posterior densities. Vertical lines indicate true parameters; dotted lines represent
prior densities. Bottom row: autocorrelations.
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5 Non-Centred Particle Gibbs

Samplers for Compound

Poisson-Process Models

5.1 Introduction

5.1.1 Motivation

In this chapter, we devise a particle Gibbs sampler for static-parameter es-

timation in partially or noisily observed compound Poisson processes. The

algorithm is based on a non-centred parametrisation, described in Section 5.2,

in order to reduce the impact of the correlation between the latent point

process and the parameters on the mixing of the Gibbs sampler. Some modi-

�cations for enhancing the e�ciency of the (conditional) sequential Monte

Carlo algorithm at the heart of the particle Gibbs sampler are mentioned

in Section 5.3. Finally, in Section 5.4, we provide illustrative results demon-

strating the performance of the algorithm on a challenging Lévy-driven

stochastic volatility model.

This paper considers a class of statistical models which are based around
a compound Poisson process L D .Lt/t2Œ0;T �, for some T 2 .0;1/. Such
a process can be represented as

Lt WD

KX
jD1

Ej 1Œ0;t�.Sj /;

for t 2 Œ0; T � DW T. Here, the number of jumps, K , and the ordered
jump times, 0 < S1 < S2 < : : : < SK , are generated by a Poisson
process on T with �nite intensity � D l.�/ which we assume to be
constant, for simplicity. Here, l W Θ ! .0;1/ is some known function
which determines the intensity, and the jump sizes E1; E2; : : : ; EK are
iid random variables distributed according to some distribution �� on
E � R. For convenience, we hereafter write 	 WD .K; S1WK ; E1WK/.
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5 Particle Gibbs Samplers for Poisson-Process Models

Throughout, we assume that the process is latent, i.e. 	 can only be
partially or noisily observed. The aim is to conduct inference about
the parameters � that parametrise both the compound Poisson process
and the likelihood function of the observations, g�. � j /. In a Bayesian
framework, this entails computing or at least approximating the marginal

posterior distribution of �.
Usually, Markov chain Monte Carlo (mcmc) algorithms are used to

approximate such posterior distributions. In addition, to circumvent
intractable integrals, we usually have to work on an extended space
and approximate the joint posterior distribution of � and 	 , denoted
�.d� � d /. Due to the di�culty of constructing e�cient global updates
for .�;	/, the mcmc transitions are almost always based around a con-
volution of local, component-wise updates, resulting in so called Gibbs
samplers, Metropolis-within-Gibbs algorithms, or combinations of the
two. Within these algorithms, the components of 	 are usually updated
individually using a particular type of mcmc update known as reversible-
jump Markov chain Monte Carlo (rjmcmc) kernel (Green, 1995). A single
sweep of such a sampler is outlined in Algorithm 5.1, where �.d j�/ and
�.d� j / denote, respectively, the full conditional distributions of 	 and
of � under � .
5.1 Algorithm (centred Metropolis-within-Gibbs).

(1) Update (components of) 	 using a �.d j�/-invariant mcmc kernel.

(2) Update � using a �.d� j /-invariant mcmc kernel.

Unfortunately, as is well known, such component-wise updates impede
mixing of the mcmc chain whenever components are highly correlated.
To reduce the impact of correlation between� and	 on the mixing of the
mcmc chain, Roberts, Papaspiliopoulos and Dellaportas (2004) propose
Metropolis-Within-Gibbs samplers with single-site rjmcmc updates for
	 based on various non-centred parametrisations (ncps). Roughly speak-
ing, ncps are parametrisations under which certain subsets of paramet-
ers/latent variables are independent a-priori.

One of these ncps is based on a representation by Ferguson and Klass
(1972) which was also used by Gri�n and Steel (2006). It was found to be
highly e�ective in Roberts et al. (2004) as soon as the latent point process
	 could be updated as a single block.

[W]hen multiple updates of 	 are performed for every up-
date of the parameters, the [non-centred algorithm] that is
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based on the Ferguson–Klass representation is much more
e�cient than the others . . . [B]ig steps in parameter space
can be achieved with this scheme. However, the mixing of
	 is slow, since only small moves in the point process space
are attempted . . . Multiple updates of 	 are computationally
extremely expensive and should be avoided. We have experi-
mented extensively with more sophisticated approaches for
updating 	 , without signi�cant success. However, if more

e�cient methods for this updating step could be found, the

[non-centred algorithm] that is based on the Ferguson–Klass

representation would become very attractive [emphasis added].
(Roberts et al., 2004, pp. 387–388)

5.1.2 Contribution

With the introduction of particle Gibbs (pg) samplers in Andrieu et al.
(2010) it has become possible to jointly update all the components of 	
and thus potentially reduce the impact of correlation between the compon-

ents of 	 on the mixing of the mcmc chain. Hence, it is only natural to
devise a pg sampler that adopts the ncp based on the Ferguson–Klass
representation to simultaneously reduce the impact of the correlation
between � and 	 . This is the focus of this work. We also apply the res-
ulting non-centred pg sampler to a particularly challenging Lévy-driven
stochastic volatility model for which we also point out some identi�abil-
ity issues that have not been recognised in the literature. We note that
the utility of reparametrisations in pg samplers has also recently been
recognised by Fearnhead and Meligkotsidou (2014).

5.2 Non-Centred Metropolis-Within-Gibbs

Algorithm

5.2.1 Actual Target Distribution

A generic statistical model based around a compound Poisson process L
has a posterior distribution – the target distribution – of the form

�.d� � d / / .d� � d /
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on Θ �Ψ, where

.d� � d / WD $.d�/˘ �.d /g�.yTj / (5.1)

is some positive measure with$.d�/ being some (prior) distribution for a
set of static parameters,�, whose support is (a subset of)Θ. Furthermore,
˘ �.d / is a distribution on

Ψ WD

1[
kD0

.fkg � Tk � Ek/;

where Tk WD fs1Wk 2 Tkjs1 < s2 < : : : < skg is the support of k ordered
jump times in T. For the moment, we take E D R. The generalistion to
E D Rd is discussed Section 5.5.

The probability measure˘ �.d / is the distribution of points – ordered
according to the �rst component – which have been generated by a Poisson
point process (ppp) on T � E with intensity measure

��.ds � de/ WD � ŒLebjT˝�� �.ds � de/;

where we recall that �� is a probability measure on E and the intensity
parameter � D l.�/ is a function of the static parameters. Here and
throughout, �jC denotes the restriction of a measure � to a measurable
set C and Leb denotes the Lebesgue measure on R. To simplify the
presentation, we assume that the intensity measure �� is assumed to be
absolutely continuous with respect to the Lebesgue measure (on T � E).

Finally, g�.yTj / is the likelihood of the collection of observations
yT WD .y1; : : : ; yP /, which are recorded at times 0 < Qt1 < : : : < QtP � T .
For simplicity, we will subsequently assume that QtP D T . Moreover,
we sometimes let y.s;t� denote the subset of observations that have been
recorded in the interval .s; t �.

5.2.2 Non-Centred Parametrisation

The reparametrisation adopted in this paper is based on a representation
derived in Ferguson and Klass (1972). The use of this representation to
derive a (partially) non-centred parametrisation for compound Poisson

140



5.2 Non-Centred Metropolis-Within-Gibbs Algorithm

processes was suggested by Roberts et al. (2004) and such reparametrisa-
tions were also extensively used by Gri�n and Steel (2006) in the context
of Lévy-driven stochastic volatility models. Alternative reparametrisa-
tions were suggested in Roberts et al. (2004) but were found to be inferior
in the presence of e�cient updates of the latent point process.

The basic idea is to take points distributed according to a unit-intensity
ppp on T � Œ0; N�/, denoted z	 , where N� is some value in Œ�;1/. First,
we discard those points whose second components exceeds � and divide
the second component of the remaining points by �. This is sometimes
called thinning and leaves a set of points distributed according to a ppp
on T � Œ0; 1� with intensity measure � LebjT�Œ0;1�. These points are then
transformed into realisations of points 	 � ˘ � by applying the inverse
cumulative distribution function (cdf)-method to the second component.
For completeness and to set up some notation, we outline the formal
justi�cation of this reparametrisation below.

De�ne the space

zΨ WD

1[
kD0

.fkg � Tk � Œ0; N�//

and let z̆ .d z / be the distribution of points z	 D . zK; zS1W zK ;
zE1W zK/ which

are generated by a unit-intensity ppp on T � .0; N��. Again these points are
taken to be ordered according to their �rst components. In the following,
we describe how z	 is �rst thinned and then transformed to obtain the
desired points 	 � ˘ � .

Write Nn WD f k 2 N j k � n g. Let

H WD
˚
j 2 N zK

ˇ̌
zEj � �

	
be the indices of points in z	 whose second component does not exceed
� D l.�/ and set K WD #H . Similarly, let

yH WD
˚
j 2 N zK

ˇ̌
zEj > �

	
D N zK nH

be the set of the remaining indices and set yK WD # yH . Collect the elements
of H and yH in vectors h D h1WK and Oh D Oh1W OK , in increasing order. Note
that H; yH;h and Oh depend on � through �.
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Points 	 � ˘ � are then the result of the one-to-one reparametrisation

.�; z	/ ! .�;	; y	/; (5.2)

where the left hand side represents an ncp and the right hand side rep-
resents a centred parametrisation (cp), i.e.
(1) z	 WD . zK; zS1W zK ;

zE1W zK/ represents all the points under the ncp,
(2) 	 D .K; S1WK ; E1WK/ is a sample from the desired ppp under the cp,
(3) y	 WD . yK; yS1W yK ;

yE1W yK/ are ‘arti�cial’ points added to 	 under the cp.
In the following, we specify the one-to-one transformation involved in

Equation 5.2.

� For j 2 N yK
, the points in y	 are related to those under the ncp via

. ySj ; yEj / WD
�
zS Ohj
; zE Ohj

�
:

� For j 2 NK , the points in 	 are related to those under the ncp via

.Sj ; Ej / D �
�
�
zShj ;
zEhj
�
:

Above, letting xF � denote the (generalised) inverse of the cdf F �
associated with �� , the function �� W T � .0; ��! T � E is de�ned by

.Qs; Qe/ 7! ��.Qs; Qe/ WD ŒQs; xF �.1 � Qe=�/�:

This function transforms the thinned points from the unit-intensity ppp z	
(under the ncp) – speci�cally, those points whose second component does
not exceed N� – into the desired points 	 which make up the compound
Poisson process (under the cp). Since xF � is the (generalised) inverse of
the cdf associated with �� , the function �� can be interpreted as applying
the inverse cdf method.

Letting 	 and z	 be related as in Equation 5.2, we obtain the following
proposition, stated here for completeness.

5.2 Proposition. Let � 2 Θ and z	 � z̆ , then 	 � ˘ �
.
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Proof. The fact that 	 is the set of ordered points distributed according
to a ppp on T� E follows by the independence property and the Mapping
Theorem for ppps (Kingman, 1992, p. 18). In particular, for A 2 B.T � E/,
letting D�� denote the Jacobian of �� ,

ŒLeb˝2 jT�.0;�/ ı .��/�1�.A/

D

Z
A

jdet.D��/..��/�1.s; e//j�1ds de

D � ŒLebjT ˝ �� �.A/
D ��.A/:

Thus, the 	 is the set of ordered points distributed according to a ppp on
T � E with intensity measure �� . �

5.2.3 Extended Target Distribution

In this subsection, we specify an extended distribution Q�.d� � d /. First,
this distribution admits the distribution of interest, �.d� � d /, as a
marginal. Second, a Gibbs sampler or Metropolis-within-Gibbs algorithm
targeting this distribution makes use of an ncp based on the representa-
tion outlined above.

Centred Parametrisation. The original formulation of the model in
Equation 5.1 uses a cp, i.e. it implies prior dependence between � and
	 . To permit the reparametrisation from Equation 5.2, we augment the
target distribution �.d� � d / with

y	 � y̆ � WD z̆ jT�.�; N�� :

Here, z̆ jT�.�; N�� is the distribution of points – again ordered according to
the �rst component – that have been generated by a unit-intensity ppp
on T � .�; N��. We thus obtain a distribution O� / O over the parameters
on the right hand side in Equation 5.2, de�ned by

O.d� � d � d O / WD .d� � d / y̆ �.d O /:
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5 Particle Gibbs Samplers for Poisson-Process Models

Non-Centred Parametrisation. Recall that yT represents the collection
of all available observations (in the interval T D Œ0; T �). With the abuse
of notation induced by writing

g�.yTj Q / D g
�.yTj /

whenever 	 and z	 are related according to Equation 5.2), we can equi-
valently de�ne an extended target distribution Q� / Q parametrised via
the left hand side in Equation 5.2, i.e. by

Q.d� � d Q / D $.d�/ z̆ .d Q /g�.yTj Q /:

This parametrisation represents an ncp because� and z	 are independent
a-priori. If the observations are not too informative, then the dependence
between� and z	 under Q� should be smaller than the dependence between
� and 	 under O� . Hence, such a parametrisation is often bene�cial in
the context of Gibbs sampling.

5.2.4 The Algorithm

A single iteration of the non-centredmcmc algorithm proposed by Roberts
et al. (2004) is given in Algorithm 5.3.

5.3 Algorithm (non-centred Metropolis-within-Gibbs).

(1) Update z	 by sampling // using the cp

(i) (components of) 	 using a �.d j�/-invariant mcmc kernel,

(ii) y	 � O�.d O j�;  / D z̆ jT�.�; N��.d O /.
(2) Update � using a Q�.d� j Q /-invariant mcmc kernel. // using the ncp

5.4 Remark. Note that Step 1 is independent of the previously sampled

points in y	 as these are sampled again from their full conditional distribution.

Furthermore, assuming that an Metropolis–Hastings (mh) kernel is used to
update the parameters �, Step 2 is independent of those points in y	 that lie

in the set

T � .� _ �?; N��:

Here, �? D l.�?/, where �? is the value for � proposed as part of the mh

kernel applied in Step 2. Hence, we need not actually determine
N� nor do
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5.3 Non-Centred Particle Gibbs Sampler

points in T � .� _ �?; N�� (under the ncp) actually have to be sampled. Thus,

the algorithm can also deal with models for which � D l.�/ is not bounded

but only almost-surely �nite.

The key reason for why this sampling scheme is often preferable to
Algorithm 5.1 is that in Step 1, we are not �xing the points 	 under our
actual target distribution � . Instead, 	 is a function of � and z	 . This
will often allow greater movement in the �-direction in Step 2.

Even more so as pointed out by Roberts et al. (2004), Gri�n and Steel
(2006), the particular ncp outlined above has another advantage: a de-
crease in � D l.�/ coincides with the removal of those points from 	

that are associated with the smallest jump sizes. Similarly, an increase
in � coincides with adding points to 	 that have relatively small jumps.
The above construction is therefore termed dependent thinning in Gri�n
and Steel (2006). Usually, adding or removing a single small jump has
little impact on the posterior density. This property can further facilitate
movement in the � -direction compared the other ncps from Roberts et al.
(2004) which add or remove jumps with arbitrary jump size.

5.3 Non-Centred Particle Gibbs Sampler

5.3.1 Motivation

The ncp discussed in the previous section can help reduce the impact
of correlation between � and 	 on the e�ciency of Algorithm 5.3 but it
does not alleviate ine�ciencies resulting from the correlation between

individual components of 	 if these are still updated one-at-a-time.
A strategy for systematically updating 	 in one block is o�ered by the

conditional sequential Monte Carlo (csmc) kernels introduced by Andrieu
et al. (2010) and described in Section 3.4 of this work. Simple sequential

Monte Carlo (smc) algorithms have been applied to latent point processes
in Godsill and Vermaak (2004), Chopin et al. (2013). More sophisticated
smc algorithms based around the smc-sampler framework (Del Moral
et al., 2006b) have been developed in Del Moral et al. (2007), Whiteley
et al. (2011), Martin et al. (2013) and in Chapter 4 of this work. As pointed
out in Whiteley et al. (2011) and further analysed in Chapter 4, the latter
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5 Particle Gibbs Samplers for Poisson-Process Models

class of smc algorithms can introduce a substantial bias in the case of
exponentially-distributed interjump times (as is the case here).

We therefore employ simple smc algorithms even though these are
potentially very ine�cient (in the sense that sample impoverishment is
severe). Our smc algorithm slightly di�ers from that described in Chopin
et al. (2013) in two ways. Firstly, following Chopin (2002), we allow for
more than one observation to be included per smc step in order to speed
up the algorithm. Secondly, we employ a slightly di�erent parametrisation
which permits the use of the variance-reduction techniques: backward
sampling (bs) and ancestor sampling (as) (Whiteley, 2010; Lindsten et al.,
2012) within pg samplers. These were described in Section 3.4.

Alternatives. There are, of course, alternatives to pg samplers for con-
ducting inference in the models described here. For instance, we could
use smc-based pseudo-marginal mh algorithms known as particle mar-

ginal Metropolis–Hastings (pmmh) algorithms (Andrieu et al., 2010) or
pseudo-marginal smc algorithms based around pmmh updates known as
smc-squared (Chopin et al., 2013).

By construction, these methods are robust to strong correlation of �
and 	 under � . However, these methods tend to require large numbers
of particles. For instance, Chopin et al. (2013) report the need for around
500 to 3;000 particles for a moderately-long time series in the simplest
version of the Lévy-driven stochastic volatility model discussed in Sec-
tion 5.4. We have found such numbers of particles to be prohibitively
high for implementations in high-level programming languages such as R
(R Development Core Team, 2014) or Matlab (The MathWorks, Inc., 2015).
With smaller numbers of particles, pseudo-marginal mh kernels are well
known to su�er from the so called ‘stickiness’ problem, i.e. from long
periods of high rejection rates.

5.3.2 Conditional smc Kernel

In this subsection, we describe some of the details of the (conditional)
smc algorithms which are needed to deal with the speci�c class of models
analysed here (and in the previous chapter).

Step Size. For I 2 N we let 0 D t0 < t1 < : : : < tI D T . Here, .ti�1; ti �
is the time window of the latent compound Poisson process targeted at the
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5.3 Non-Centred Particle Gibbs Sampler

i th smc step. That is, at the i th smc step, we both assimilate observations
and propose jumps in the interval .ti�1; ti �.

Without loss of generality and to simplify the presentation, we assume
that .ti/i2NI is a subsequence of .Qtp/p2NP . Note that the commonly-used
strategy of assimilating one observation per smc step corresponds to the
special case .ti/i2NI D .Qtp/p2NP .

If the weights do not deteriorate too quickly over smc steps, i.e. if the
e�ective sample size does not decrease too steeply after a single smc step,
it can be preferable to increase this step size to reduce the computational
cost of the algorithm (Chopin, 2002).

Reparametrisation. For the csmc kernel, we need to apply a further
reparametrisation to ensure that the computational cost of performing a
single step of bs or as does not grow with T (on average). This can be
achieved by parametrising the compound Poisson process not in terms
of jump sizes but in terms of the values of the process at the jump times.
The latter coincides with the representation used in the previous chapter.

Recall that the compound Poisson process is denoted L D .Lt/t2T. We
can apply another one-to-one reparametrisation of the form

.�;	/ ! .�; P	1WI /; (5.3)

where
P	i WD .Ki ; Si;1WKi ;

zLi;1WKi /

denotes the points (as well as their number) of the latent compound Pois-
son process whose �rst component (the jump time) falls in the interval
.ti�1; ti �. These points are again ordered according to their �rst compon-
ent, i.e. ti�1 < Si;1 < : : : < Si;Ki � ti . The second components, zLi;1WKi ,
no longer represent the actual jump sizes but are now taken to be the
values of the compound Poisson process L at the jump times. That is,
zLi;j WD LSi;j , for any j 2 NKi . This is corresponds to the terminology
‘jump size’ used in the previous chapter.

With this reparametrisation, we may write the distribution targeted by
the (conditional) smc algorithm as ��.d P 1WI / / 

�.d P 1WI /, where

�.d P 1WI / WD

IY
iD1

P̆ �
i .d P i j P 1Wi�1/g

�.y.ti�1;ti �j
P 1Wi ; y.t0;ti�1�/:
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Here, P̆ �i .d P i j P 1Wi�1/ denotes the conditional prior distribution of the
points in the interval .ti�1; ti �, P	i , and we again slightly abuse notation by
writing g�.yTj P 1WI / D g

�.yTj / if 	 and P	 are related as in Equation 5.3.
Note that the observations taken in disjoint intervals are not necessarily
assumed to be independent given the ppp and given �. Indeed, in the
example considered in Section 5.4, we analytically integrate out a subset
of the static parameters which means that the observations in disjoint
intervals are no longer conditionally independent given the ppp and given
the remaining parameters.

The smc algorithm then targets ��.d P / using a sequence of interme-
diate distributions

��i .d P 1Wi/ / 
�
i .d P 1Wi/;

where

�i .d P 1Wi/ WD

iY
jD1

P̆ �
j .d P j j P 1Wj�1/g

�.y.tj�1;tj �j
P 1Wj ; y.t0;tj�1�/:

5.3.3 Full Algorithm

The full pg sampler is outlined in Algorithm 5.5. Note that the comments
made in Remark 5.4 fully apply to this algorithm, too. That is, � D l.�/
only needs to be almost-surely bounded.

5.5 Algorithm (non-centred particle Gibbs).

(1) Update z	 by // using the cp

(i) reparametrising .�;	/! .�; P	1WI /,

(ii) updating P	 using a csmc kernel (with bs/as, if possible),

(iii) reparametrising .�; P	1WI /! .�;	/,

(iv) sampling y	 � O�.d O j�;  / D z̆ jT�.�; N��.d O /.

(2) Update � using a Q�.d� j Q /-invariant mcmc kernel. // using the ncp
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5.4 Application to Lévy-Driven Stochastic

Volatility Models

5.4.1 Model Description

In this section, we apply the above-mentioned pg sampler to a Lévy-driven
stochastic volatility model and compare the algorithm’s performance with
that of a non-centred rjmcmc algorithm.

Inference for the particular model considered here, which was intro-
duced by Barndor�-Nielsen and Shephard (2001), has previously been
performed via (non-smc based) mcmc methods (Roberts et al., 2004;
Gri�n & Steel, 2006), particle mcmc methods (Andrieu et al., 2010) and
via hierarchical (or pseudo-marginal) smc samplers (Chopin et al., 2013).

Log-Asset Price Process. Under the model, the log-price of some asset
evolves according to the stochastic di�erential equation

dXt D
�
�C

MX
mD1

ˇm
p
V mt

�
dt C

p
VtdBt C

MX
mD1

�mdxLmt : (5.4)

Here, B WD .Bt/t�0 denotes standard Brownian motion, Lm WD .Lmt /t�0,
for m 2 NM , are independent Lévy processes, and xLm WD .xLmt /t�0, with
xLmt WD L

m
t � EŒLmt �, represents the compensated process associated with

Lm. In addition, ˇm; �m 2 R are the risk-premium and linear-leverage
parameters for the mth component process.

Latent Volatility Process. The (instantaneous) volatility process, de-
noted V WD .Vt/t�0, is given by

Vt WD

MX
mD1

V mt ;

where the components V 1; : : : ; V M are independent processes satisfying
the Ornstein–Uhlenbeck stochastic di�erential equation

dV mt D ��mV mt dt C dLmt :

Here, �m > 0 denotes the decay rate of the mth component-volatility
process. As in Roberts et al. (2004), Gri�n and Steel (2006) we assume,
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5 Particle Gibbs Samplers for Poisson-Process Models

for simplicity, that the marginally, V mt is gamma-distributed. This implies
that Lm reduces to a compound Poisson process with some rate �m > 0
and exponential jump-size distribution with rate � > 0, written Exp� .

The stochastic di�erential equation admits the closed-form solution

V mt D V
m
0 exp.��mt /C

KmX
kD1

Emk exp.��m.t � Smk // 1Œ0;t�.S
m
k /;

where .Km; Sm1WKm; E
m
1WKm/ DW 	

m comprises the number of jumps, the
jump times and the jump sizes associated with the compound Poisson
process driving the mth component-volatility process.

Observed Aggregate Log-Returns. Let Yp denote the pth observation,
i.e. the aggregate log-return over the time interval .Qtp�1; Qtp�. By the prop-
erties of Brownian motion, Equation 5.4 implies that conditional on the
component processes up to time Qtp , the pth aggregate log-return Yp is
distributed according to a normal distribution with mean m.Qtp�1;Qtp� and
variance V ?

.Qtp�1;Qtp�
, which are de�ned by

m.s;t� WD .t � s/�C

MX
mD1

ˇmV
m;?

.s;t�
C �m xL

m;?

.s;t�
;

V ?.s;t� WD

MX
mD1

V
m;?

.s;t�
;

where V m;?
.s;t�
WD V

m;?

Œ0;t� � V
m;?

Œ0;s� , xL
m;?

.s;t�
WD xL

m;?

Œ0;t� �
xL
m;?

Œ0;s�, and with

V
m;?

Œ0;t� WD

Z t

0
dV ms D

1
�m
.Lmt C V

m
0 � V

m
t /;

xL
m;?

Œ0;t� WD

Z t

0
dxLms D

Z t

0
dLms � EŒLmt � D L

m
t �

t�m

�
:

5.4.2 Choice of Priors

Intuitively, as argued in Roberts et al. (2004), �m and �m should be highly
correlated, a-posteriori. To improve mixing of the mcmc chain, we follow
Gri�n and Steel (2006) in reparametrising according to�

�1WM ; �1WM ; �
�
 !

�
�1WM
� ; w1WM ; �; ��1

�
;

where, de�ning "m WD �m=�m and " WD
PM
mD1 "

m,
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� �m� WD �
m �

Pm�1
lD1 �

l is the di�erence between the decay rates in the
mth and .m � 1/th component volatility processes, V m and V m�1,

� wm WD "m=" is a weight which governs the in�uence of the mth com-
ponent volatility process, V m, on the overall volatility process, V ,

� � WD "=� and !2 WD "=�2 represent the stationary mean and variance
of the overall volatility process, V .

Let Gam˛;ˇ be the gamma distribution with shape parameter ˛ and scale
parameter ˇ. If we assume that V m0 � Gamwm�2=!2;!2=� , then the latter dis-
tribution is the marginal distribution of V mt , t � 0, and hence the station-
ary distribution of the process V m. This implies that EŒV mt � D w

m� and
V ŒV mt � D w

m!2, for any t � 0. For the same reason, Vt � Gam�2=!2;!2=�

and hence EŒVt � D � as well as V ŒVt � D !
2, for any t � 0.

As in Gri�n and Steel (2006), we use a weakly informative prior on
the static parameters, .�; z�/, where

� WD .�1WM
� ; w1WM ; �; ��1/;

z� WD .�; ˇ1WM ; �1WM /:

A-priori, all parameters except w1WM are independent. The di�erences
in the component-speci�c decay-rate parameters are given the prior
�1
�; : : : ; �

M
� � Gam1;1. This choice of priors imposes the identi�abil-

ity constraint �mC1 > �m on the component processes to circumvent the
so-called label-switching problem. In addition,w1WM � Dir�M , where Dir˛
denotes the Dirichlet distribution with parameter vector ˛ and �m denotes
a vector of ones of length m. Finally, a-priori, �; ��1 � Gam2;5.

The parameters of the observation equation (Equation 5.4) are given
normal priors, i.e. , a-priori, we have z� � N

Q�0; ż0
, where Q�0 WD 0�2MC1

and where ż0 WD diag.100�2MC1/. The parameters in z� can then be in-
tegrated out and need not be sampled in the mcmc algorithm.

5.4.3 Algorithm Details

ParticleWeight Updates. In this subsection, we derive the incremental
importance weights and the bs/as weights for the Lévy-driven stochastic
volatility model.
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To simplify the notation, we write themth integrated component volat-
ility process and mth integrated compensated driving compound Poisson
process as

V m;?p WD V
m;?

.Qtp�1;Qtp�
;

xLm;?p WD xL
m;?

.Qtp�1;Qtp�
:

Furthermore, lettingAT denotes the transpose of some matrixA, we write

Zp WD
�
Qtp � Qtp�1; V

1;?
p ; : : : ; V M;?p ; xL1;?

p ; : : : ; xLM;?p

�T
;

Recall that z� D .�; ˇ1WM ; �1WM / are those static parameters that we
want to integrate out while � denotes the remaining static parameters.
Let ir be the index such that tir D Qtr , and let z$.d Q�/ denote the marginal
prior distribution of z�. Letting

�p. Q�/ WD Z
T
p
Q�;

ṗ WD

MX
mD1

V m;?p;

denote the mean and variance of the pth observation (conditional on the
volatility processes and conditional on the static parameters .�; z�/, the
incremental particle weights at the ir th smc step are then given by

g�.yqWr j P 
1WM
1Wir ; y1Wq�1/

D

Z
zΘ

� rY
pDq

N
�p. Q�/;˙p

.yp/

�
N
Q�q�1; żq�1

.d Q�/

/

�
det. żq�1/
det. żr/

rY
pDq

ṗ

��1=2
� exp

�
�
1
2

� rX
pDq

y2
p

ṗ

� Q�T
r
ż�1
r Q�r C Q�

T
q�1
ż�1
q�1 Q�q�1

��
:

Here, Q�0 and ż0 are mean and variance of the Gaussian prior on z�.
Furthermore, we de�ne

ż
r WD

� rX
pDq

ZpZ
T
p

ṗ

C ż
�1
q�1

��1
D

� rX
pD1

ZpZ
T
p

ṗ

C ż
�1
0

��1
;
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and

Q�r WD żr

� rX
pDq

Zpyp

ṗ

C ż
�1
q�1 Q�q�1

�
D żr

� rX
pD1

Zpyp

ṗ

C ż
�1
0 Q�0

�
:

Backward and Ancestor SamplingWeights. Using the notation from
above, the bs/as weights at the ir th smc step are given by the product
of the above-mentioned particle weight at Step ir multiplied by

g�.y1WP j P 
1WM
1WI /

g�.y1Wr j P 
1WM
1Wir /

/

�
det. żr/
det. żP /

lrY
pDrC1

ṗ

��1=2
� exp

�
�
1
2

� lrX
pDrC1

y2
p

ṗ

� Q�T
P
ż�1
P Q�P C Q�

T
r
ż�1
r Q�r

��
;

where

lmr WD min
˚
p 2 NP

ˇ̌
P mirC1WI has a jump in the interval .Qtr ; Qtp�

	
;

lr WD max
˚
lmr
ˇ̌
m 2 NM

	
:

We note that while Q�P and żP depend on the entire ‘future’ of the
latent volatility processes, i.e. on P mirC1WI , V m;?p and xLm;?p are identical
for all particles if p > lmr C 1 and so the latter quantities need only be
calculated once per mcmc iteration. To reduce the computation time, we
only perform as at the i th smc step if the algorithm also resamples at
that step. Recall that such adaptive bs or as schemes are justi�ed via an
appropriate choice of the function %t in Section 3.4.

5.4.4 Simulation Study

One-Component Model. In this section, we �rst present a simulation
study for a one-component Lévy-driven stochastic volatility model (i.e.
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with M D 1) based on 500 synthetic observations. The parameters used
for generating the data were � D 0, ˇ D 0:05, � D �1=2, � D 1, and
� D 0:5. The initial values for the static parameters (except for those
that are integrated out) were sampled from the prior distribution. For
each algorithm, the initial points of the ppp were generated by an smc
algorithm.

Both algorithms used 100 Gaussian random-walk mh updates per iter-
ation with standard deviations .0:1; 0:25; 0:05/ for the (log-transformed)
components .log �; log �; log ��1/. The ncp was only used with probabil-
ity 0:5. Otherwise, the cp was used. Such strategies for ‘interweaving’
ncps and cps have been studied in Yu and Meng (2011).

The algorithms di�er only in the way that the points of the ppp were
updated in each mcmc iteration. The �rst algorithm – the non-centred
pg sampler – used a csmc kernel with N D 25, N D 50 and N D 100
particles and ancestor sampling for this task. The particles where proposed
from the prior; this type of ‘bootstrap particle �lter’ was termed variable-
rate particle �lter in Godsill and Vermaak (2004). Resampling took place
whenever the e�ective sample size dropped below N=2. The smc step
size was set to ti � ti�1 D 5. On average, a single csmc run took around
2 seconds.

The second algorithm updated the points of the ppp using 400 rjmcmc
moves per iteration. These can be (a) an update of the initial value V0, (b) a
birth move, adding a new jump uniformly at random in T and sampling the
associated jump size from the prior, (c) a death move randomly deleting a
jump, (d) a move for adjusting a randomly chosen jump time by sampling
a new location uniformly at random between the previous and the next
jump time, (e) a move for adjusting a randomly chosen jump size by
sampling a new value from the prior. The probabilities for selecting one of
the Moves a to e were .0:05; 0:25; 0:25; 0:225; 0:225/ if the ppp contained
at least one jump and .0:05; 0:95; 0; 0; 0/, otherwise. On average, 400 such
rjmcmc moves took around 2 seconds.

The algorithms were implemented in Matlab (The MathWorks, Inc.,
2015) and run on a single core of an Intel®Core™i7-5820 cpu. Perform-
ance of the smc algorithm in Matlab is rather poor compared to smc
algorithms for state-space models, for instance. This is because at each
iteration, di�erent particles comprise di�erent numbers of jumps which
hinders vectorisation. Alternative smc algorithms, such as those de-
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veloped in Whiteley et al. (2011), which were also improved in Chapter 4
of this work, would be more amenable to vectorisation and parallelisation
(at the cost of introducing a bias).

Marginal kernel density estimates and sample autocorrelations based
on 100;000 iterations (of which the �rst 5;000 have been discarded as
burn-in) are displayed in Figures 5.1 and 5.2, respectively. Both algorithms
yield comparable results. The pg sampler also exhibits a slightly lower
sample autocorrelation.

Two-ComponentModel. We conclude this section by applying the non-
centred pg sampler to a two-component Lévy-driven stochastic volatility
model and again compare its performance to that of a rjmcmc-based
algorithm.

Both algorithms are designed as in the one-component model except
that the smc algorithm now uses the step size ti � ti�1 D 2 and employs
N D 50 particles while the rjmcmc-based scheme attempts 500 updates
of the ppp per iteration. Furthermore, both algorithms now attempt
200 static-parameter updates per iteration. These are again Gaussian
random-walk mh kernels each updating one of the blocks log �1W2, w1 or
.log �; log ��1/. The mh proposal kernels are parametrised through the
diagonal covariance matrices diag.Œ0:25; 1�/, 0:01, and diag.Œ0:25; 0:25�/.
Here diag.v/ denotes a diagonal matrix which has a vector v as its diag-
onal.

We study two di�erent settings. In both, we assume that the risk
premium ˇ WD ˇ1 D ˇ2 is the same for both component processes. In the
�rst setting, we additionally assume that the leverage parameters �1W2 are
known (and equal to 0). Studying models with such a slightly reduced
number of parameters was motivated by the fact that we observed poor
mixing of both algorithms unless extremely large number of observations
(around 2000) were used.

For shorter time series, this poor mixing seems to be due to the fact that
some of the static parameters are only weakly identi�able. In particular,
as shown in Figure 5.3, the marginal posterior distribution of the static
parameters is bimodal and these modes correspond to the component
weights w1W2 D .1; 0/ or w1W2 D .0; 1/. This leads to the particularly
high autocorrelation of the mcmc chain in this component as shown in
Figure 5.4.
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Figure 5.1 Estimated marginal posterior densities of the static parameters in the
one-component Lévy-driven stochastic volatility model. Based on 500 observa-
tions taken every Qtp � Qtp�1 D 1 time units and generated using true parameter
values .�; �; �; ˇ; �/ D .1; 0:5; 0; 0:05;�0:5/. Top row: � D 0:02. Middle row:

� D 0:1. Bottom row: � D 0:2. The estimates are obtained from 100;000 itera-
tions of the non-centred pg sampler with 25 particles (dotted line), 50 particles
(dash-dotted line), and 100 particles (solid line), as well as from a non-centred
rjmcmc algorithm with 400 attempted updates of the latent process in between
static-parameter updates (dashed line). Vertical lines represent the true parameter
values.
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Figure 5.2 Autocorrelation of the static-parameter estimates in the one-
component Lévy-driven stochastic volatility model. Based on 500 observations
taken every Qtp � Qtp�1 D 1 time units and generated using true parameter values
.�; �; �; ˇ; �/ D .1; 0:5; 0; 0:05;�0:5/. Top row: � D 0:02. Middle row: � D 0:1.
Bottom row: � D 0:2. The estimates are obtained from 100;000 iterations of
the non-centred pg sampler with 25 particles (dotted line), 50 particles (dash-
dotted line), and 100 particles (solid line), as well as from a non-centred rjmcmc
algorithm with 400 attempted updates of the latent process in between static-
parameter updates (dashed line).
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Since �m D wm�m=
PM
nD1 �

n=�n these modes essentially imply no
jumps in the second or �rst component process, respectively. This is a
particular concern in the context of pg samplers because having fewer
jumps increases the cost of computing the as weights (as these then
depend on the behaviour of the process much further into the future). To
reduce the computational cost, we switch to rjmcmc updates whenever
the total number of jumps in one of the component processes falls below 5.
Nonetheless, we stress that these identi�ability issues are not an artefact
of our algorithm. Rather, they appear to be inherent in this class of models
and, to our knowledge, they have not yet been pointed out in the literature.

5.5 Summary

Performance. In this chapter, we have combined particle Gibbs samplers
with sophisticated ncps to perform static-parameter estimation in stat-
istical models based around compound Poisson processes. We have also
applied our algorithm to a Lévy-driven stochastic volatility model. Some-
what surprisingly, in this model, the pg sampler does not appear signi�c-
antly more e�cient than a large number of single-site updates as part of
a more conventional mcmc kernel composed of rjmcmc updates. In ad-
dition, these models appears to be overparametrised unless a particularly
large number of observations is available. To our knowledge, this has
not been pointed out in the literature. A more formal analysis of these
identi�ability issues is left for future research.

Extensions. The approach presented in this chapter can be extended
to more general settings. As noted in Roberts et al. (2004), an extension
to a time-dependent rate parameter �t D l.t; �/ is straightforward but
notationally cumbersome. The extension to non-continuous mark distri-
butions on �� is also straightforward as long as the generalised inverse
of the cdf can be evaluated point-wise. For d -dimensional mark distri-
butions the reparametrisation proceeds as above but takes xF � to be the
inverse cdf of a one-dimensional marginal distribution of �� . The remain-
ing mark components can then be generated one-at-a-time by inversion
sampling from the inverse cdf of the relevant conditional distribution.
This is sometimes called the Rosenblatt transformation.
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Figure 5.3 Estimated marginal posterior densities of the static parameters in two-
component Lévy-driven stochastic volatility models. Based on 500 observations
taken every Qtp � Qtp�1 D 1 time units and generated using true parameter values
.�1W2; w1W2; �; �; �/ D .0:05; 0:5; 0:7; 0:3; 2; 0:7; 0/. Top row: simpli�ed model with
ˇ WD ˇ1 D ˇ2 and assuming that �1 D �2 D 0 is known. Bottom row: simpli�ed
model with ˇ WD ˇ1 D ˇ2 but now with the true parameters �1W2 D .�0:5;�0:5/
assumed to be unknown. The estimates are obtained from 100;000 iterations
of the non-centred pg sampler with 50 particles (solid line) and from a non-
centred rjmcmc algorithm with 500 attempted updates of the latent process in
between static-parameter updates (dashed line). Vertical lines represent the true
parameter values.
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Figure 5.4 Autocorrelation of the static-parameter estimates in two-component
Lévy-driven stochastic volatility models. Based on 500 observations taken
every Qtp � Qtp�1 D 1 time units and generated using true parameter values
.�1W2; w1W2; �; �; �/ D .0:05; 0:5; 0:7; 0:3; 2; 0:7; 0/. Top row: simpli�ed model with
ˇ WD ˇ1 D ˇ2 and assuming that �1 D �2 D 0 is known. Bottom row: simpli�ed
model with ˇ WD ˇ1 D ˇ2 but now with the true parameters �1W2 D .�0:5;�0:5/
assumed to be unknown. The estimates are obtained from 100;000 iterations of
the non-centred pg sampler with 50 particles (solid line) and from a non-centred
rjmcmc algorithm with 500 attempted updates of the latent process in between
static-parameter updates (dashed line).
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6 Pseudo-Marginal Monte Carlo

Optimisation

6.1 Introduction

6.1.1 Motivation

In this chapter, we perform optimisation such as (marginal) maximum

likelihood or maximum a-posteriori estimation in latent variable models. To

that end, we present a �exible framework for combining the basic idea of the

state augmentation for marginal estimation algorithm from Doucet, Godsill

and Robert (2002), outlined in Section 6.2, with state-of-the-art Markov

chain Monte Carlo kernels, such as pseudo-marginal Metropolis–Hastings

(Subsection 6.3.2) or particle Gibbs kernels (Subsection 6.3.1). These ideas are

also incorporated into population-based approaches in the form of sequential

Monte Carlo samplers, as explained in Subsection 6.3.3. Finally, in Section 6.4,

we demonstrate the e�ectiveness of our methods by performing maximum

likelihood estimation in a number of challenging models.

Let Θ be some non-empty set, e.g. some subset of Rd . In this chapter,
we assume that we want to maximise some function

h W Θ! R;

i.e. we assume that we want to �nd the set of (equivalent) global maxima

Θh WD
˚
� 0 2 Θ

ˇ̌
8 � 2 Θ W h.� 0/ � h.�/

	
;

or at least a subset thereof, assuming that Θh is well de�ned and in
particular, assuming that the cardinality of Θh, #Θh, is �nite.

As usual, minimising some function Qh can be treated as a maximisation
problem by considering the function

h WD � Qh;

instead.
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6 Pseudo-Marginal Monte Carlo Optimisation

6.1 Example (ml/map estimation). Given some data, let L.�/ denote

the (marginal) likelihood of a parameter � 2 Θ under some statistical

model. In the Bayesian paradigm, let$ 2M1.Θ/ be a prior distribution

with density Qp with respect to a suitable dominating measure, �. Thus,

(1) if h.�/ WD L.�/, then Θh is the maximum likelihood (ml) estimate;

(2) if h.�/ WD L.�/ Qp.�/, thenΘh is the (marginal) maximum a-posteriori
(map) estimate under the chosen parametrisation, determined by the

decomposition of the prior distribution into the pair .�; Qp/.

Numerical Optimisation. For a su�ciently complicated objective func-
tion h, Θh cannot be found analytically and is usually approximated
numerically. Unfortunately, numerical methods are not always reliable.
They require strong regularity conditions on h and Θ which are often
di�cult to verify. In practice, they are prone to get stuck in local maxima.

Monte Carlo Optimisation. For complicated optimisation problems
– in particular, in the presence of multi-modality – approaches based
around the Monte Carlo method can be more robust than (gradient-based)
numerical methods. This robustness often justi�es the usually higher
computational cost associated with the former.

Let Zp be a potentially large collection of auxiliary variables taking
values in Zp . The idea of Monte Carlo optimisation is to de�ne a sequence
of �nite measures .p/p2N , with p 2M.Θ � Zp/ such that the relevant
marginal of p becomes increasingly concentrated around the points in
Θh. That is, for any A 2 B.Θ/, the probability measures �p / p satisfy

�p.A � Zp/
p!1
�!

X
�2Θh

wh.�/•�.A/; (6.1)

where wh W Θh ! .0; 1� is a weighting function with
P
�2Θh

wh.�/ D 1.
We then use Monte Carlo algorithms to sample approximately from �p .

For su�ciently small p, the distribution �p should be dispersed enough to
allow Markov chain Monte Carlo (mcmc) algorithms or sequential Monte

Carlo (smc) samplers to traverse the state space and explore di�erent
modes. For su�ciently large p, the samples should be concentrated
around one point in Θh when using mcmc methods or around (some of)
the points in Θh when using smc or other population-based methods.
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6.1.2 Contribution

Throughout this chapter, we consider di�erent instances of the generic
measures p all of which are chosen to concentrate aroundΘh as p !1.
These measures are generically represented as

p.d� � dzp/ WD �.d�/Mp.�; dzp/Hp.�; zp/: (6.2)

Here, � 2M¢.Θ/ is some ¢-�nite measure on Θ which does not vanish
in a neighbourhood of the points in Θh. Furthermore,

Mp 2K¢.Θ;Zp/

is a suitable ¢-�nite kernel and

Hp W Θ � Zp ! Œ0;1/

is a suitable non-negative measurable function. All of these quantities
will be speci�ed such that Equation 6.1 holds.

Furthermore, we de�ne an annealing schedule . p̌/p2N . The values
p̌ 2 Œ0;1/ are commonly interpreted as inverse temperatures. They are

chosen to satisfy p̌ � p̌C1, for p 2 N and p̌ !1, as p !1. This
annealing schedule will be used to parametrise Mp and Hp in order to
specify the speed at which the measures p concentrate around Θh.

The remainder of this work discusses various ways of selecting suitable
componentsMp andHp and devising e�cient smc algorithms to approx-
imate the measures .p/p2N and mcmc algorithms to (approximately)
sample from their self-normalised versions .�p/p2N . A particular focus is
on situations in which (suitable maximum-preserving transformations
of) h cannot be evaluated point-wise. Our contributions are as follows.
(1) We construct a generic framework for pseudo-marginal mcmc-based

optimisation algorithms. We also combine existing optimisation
schemes with modern, sophisticated multiple-proposal kernels such
as (iterated) conditional sequential Monte Carlo (csmc) kernels.

(2) We incorporate both ideas into population-based approaches known
as smc samplers.

(3) We verify these methods on a number of tractable toy examples and
further demonstrate their e�ectiveness on challenging problems.

163



6 Pseudo-Marginal Monte Carlo Optimisation

6.2 Background

6.2.1 Simulated Annealing

Assume that h can be evaluated point-wise. In classical simulated an-

nealing (sa) (Kirkpatrick, Gelatt & Vecchi, 1983), the target measures
 sa
p 2M.Θ � Zp/ are de�ned according to Equation 6.2 with Zp � ;,
Hp.�/ D exp. p̌h.�//. That is, the target measures of sa are de�ned by

 sa
p .d�/ WD exp. p̌h.�//�.d�/:

In the particular case that � D Leb˝d is the Lebesgue measure on
Θ D Rd , h is three times continuously di�erentiable, and under further
technical conditions on Θh, Hwang (1980) showed that this family of
distributions concentrates around Θh as formalised in Equation 6.1. The
idea is then to approximate the distributions .� sa

p /p2N , where � sa
p / 

sa
p ,

using an inhomogeneous mcmc algorithm, i.e. using an mcmc chain
whose target distribution changes over iterations. Under strong regularity
conditions, converge of sawas established in Hajek (1988), Winkler (2003),
Andrieu, Breyer and Doucet (2001).

Finally, Rubenthaler, Rydén and Wiktorsson (2009) studied improve-
ments upon the annealing schedule and target measures in sa.

6.2.2 State Augmentation for Marginal Estimation

Motivation. Algorithms such as sa require point-wise evaluations of
(maximum-preserving transformations of) h. The rest of this work is
concerned with situations in which such evaluations are impossible (to
do e�ciently) but in which we can �nd some space Zp , some �nite kernel
Mp , and some measurable functionHp (which we can evaluate) such that
the measures p satisfy Equation 6.1.

More speci�cally, we assume that there exists a measurable function
H W Θ � X! Œ0;1/ and a stochastic kernel M 2K1.Θ � X/ such that

.�; dx/ WD H.�; x/M.�; dx/

de�nes a �nite kernel and such that – recalling that 1 is the unit function
on an appropriate domain – the maxima of the integral

.�; 1/ WD

Z
X
.�; dx/; (6.3)
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coincide with the maxima of h, i.e.

Θh D
˚
� 0 2 Θ

ˇ̌
8 � 2 Θ W .� 0; 1/ � .�; 1/

	
: (6.4)

For later use, we de�ne the stochastic kernel ˘ˇ by

˘ˇ .�; dx/ WD
H.�; x/ˇM.�; dx/R
XH.�; x/

ˇM.�; dx/
: (6.5)

6.2 Example (ml/map estimation, continued). Many statistical mod-

els are speci�ed through an additional set of latent variablesX taking values

in some set X. Under such a model, conditional on some � 2 Θ, X is dis-

tributed according toM.�; � /. Let G.�; x/ denote the completed likelihood,

i.e. the likelihood of some observed data given the parameters and latent

variables, .�; x/. Unfortunately, the marginal likelihood

L.�/ D

Z
X
G.�; x/M.�; dx/

is often intractable. To still perform optimisation in this setting, we can take

(1) H.�; x/ WD G.�; x/ for the purpose of marginal ml estimation,

(2) H.�; x/ WD G.�; x/ Qp.�/ for the purpose of marginal map estimation.

A mcmc algorithm for performing optimisation in such problems called
state augmentation for marginal estimation (same) was introduced in an
mcmc context by Doucet et al. (2002) (see also Gaetan & Yao, 2003;
Jacquier, Johannes & Polson, 2007). Here, we describe the slightly more
general construction developed by Johansen et al. (2008) which allows
for non-integer inverse temperatures p̌ . Again, . p̌/p2N is a sequence
in Œ0;1/ such that p̌ " 1.

Extended Target Measure. At the pth iteration, the same algorithm
augments the space with d p̌e replicas of the random variable X D Xp ,
i.e. Zp WD X 1Wdˇpe. The extended target distributions � same

p /  same
p on

Θ � Zp with Zp WD Xdˇpe, are then de�ned by letting  same
p be given by

Equation 6.2 with

Mp.�; dzp/ WD
dˇpeY
iD1

M.�; dxip/;
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and with

Hp.�; zp/ WD H.�; x
dˇpe
p /ˇ

]
p

bˇpcY
iD1

H.�; xip/;

where ˇ] WD ˇ � bˇc. Whenever p̌ 2 N ,Z
A�Zp

 same
p .d� � dzp/ D

Z
A

.�; 1/ˇp�.d�/;

so that under suitable regularity conditions, by Equation 6.4, the �-
marginal of � same

p concentrates around Θh as p !1.

Algorithm. The same algorithm is usually implemented as an inhomo-
geneous Gibbs sampler or inhomogeneous Metropolis-within-Gibbs al-
gorithm as summarised in Algorithm 6.3. Therein, Qp denotes some
mcmc kernel which is invariant with respect to the full conditional dis-
tribution of � under � same

p and Rp is an mcmc kernel targeting(
˘
˝dˇpe
1 .�; � /; if p̌ 2 N ,

˘
˝bˇpc
1 ˝˘

ˇ
]
p
.�; � /; otherwise,

where ˘ˇ was de�ned in Equation 6.5. Furthermore,

Sp 2K1
�
Θ � Xdˇp�1e;Xdˇpe�dˇp�1e

�
is some suitable proposal kernel for augmenting the space with additional
latent variables X dˇp�1eC1Wdˇpep�1 , whenever d p̌e > d p̌�1e. To simplify the
notation, we write the thus augmented vector of latent variables as

zZp�1 WD X
1Wdˇpe
p�1 D

�
Zp�1; X

dˇp�1eC1Wdˇpe
p�1

�
:

This random vector takes values in the set zZp�1 WD Xdˇpe.

6.3 Algorithm (same). At the nth iteration,

(1) if dˇne > dˇn�1e, sample X
dˇn�1eC1Wdˇne
n�1 � Sn..�n�1; zn�1/; � /,

(2) sample Zn D X
1Wdˇne
n � Rn..�n�1; Qzn�1/; � /,

(3) sample �n � Qn..�n�1; zn/; � /.
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Potential Drawbacks. Usually, the same algorithm is implemented as
an inhomogeneous Gibbs sampler or Metropolis-within-Gibbs algorithm.
This can lead to poor mixing of the mcmc chain for two reasons.
(1) It is often impossible to update X 1Wdˇpe

p using a Gibbs step and devis-
ing another e�cient form for the mcmc kernel Rp can be di�cult,
especially if X is high-dimensional.

(2) If� andZp are highly correlated under � same
p , then component-wise

updates are known to be ine�cient.
To alleviate the �rst potential drawback, we propose to combine the
same approach with sophisticated multiple-proposal mcmc kernels such
as (iterated) csmc kernels (Andrieu et al., 2010; Whiteley, 2010). This is
described in the next section. To alleviate the second potential drawback,
we also present a sequence of further extended distributions. This permits
the combination of the same approach with pseudo-marginal mcmc
kernels (Beaumont, 2003; Andrieu & Roberts, 2009).

6.2.3 Optimisation Using smc Samplers

Even if the objective function h (and also . � ; 1/) is unimodal, the intro-
duction of the latent variables X 1Wdˇpe

p often leads to an extended measure
 same
p with varying degrees of multimodality. This can hamper mixing of

the inhomogeneous mcmc algorithms targeting the distributions � same
p .

Furthermore, if Θh contains multiple maxima, a single same chain will
eventually become trapped around one of them.

To improve robustness, Johansen et al. (2008) devise a population-based
version of the same idea. More precisely, they incorporate the same
approach into the smc-sampler framework from Del Moral et al. (2006b,
2007), Peters (2005) which is summarised in Subsection 2.3.2. Such smc
samplers have already been successfully employed to realistic problems in
air-tra�c management (Kantas, Maciejowski & Lecchini-Visintini, 2009,
2010).

At the t th step, the smc sampler uses (forward) proposal kernels which
move the particles according to an mcmc kernel zPt , given by

zPt..�t�1; Qzt�1/; d�t � dzt/
WD Rt..�t�1; Qzt�1/; dzt/Qt..�t�1; zt/; d�t/:
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This mcmc kernel is applied after having extended each particle via
St 2 K1.Θ � Zt�1;Xdˇte�dˇt�1e/, in the case that dˇte > dˇt�1e. In
summary, recalling that zZp�1 D X 1Wdˇpe

p�1 , the Step-t proposal kernel is

Pt..�t�1; zt�1/; dxdˇt�1eC1Wdˇtet�1 � d�t � dzt/
WD St.�t�1; zt�1/; dxdˇt�1eC1Wdˇtet�1 /

� zPt..�t�1; Qzt�1/; d�t � dzt/:

As stressed in Johansen et al. (2008), this is not the most general smc
implementation of the same idea; letting zPt be an mcmc kernel is often
convenient but not actually necessary.

The smc sampler marginally targets the measure  same
t by targeting

an extended measure constructed via backward Markov kernels,

Lt�1..�t ; zt/; d�t�1 � d Qzt�1/

WD
zPt..�t�1; Qzt�1/; � /

d same
t

.�t ; zt/
same
t .d�t�1 � d Qzt�1/:

In other words, this is the usual approximation to the optimal backward
kernel described in Example 2.15. This backward kernel is commonly
employed whenever mcmc kernels are used to move the particles within
an smc sampler.

With these backward kernels, and with Ut WD .�t ; Zt ; X dˇt�1eC1Wdˇtet�1 /,
the incremental importance weights at Step t are de�ned by

Gt.u1Wt/ WD
Qt

Qt�1 ˝ St
.�t�1; Qzt�1/:

This may also be derived by viewing the single step of the smc sampler
as two consecutive smc steps. The �rst step then changes the extended
target distribution (and potentially adds additional variables using the
proposal kernel St ), leading to the above-mentioned incremental weight.
The second step simply applies the mcmc kernel zPt to the particles using
time-reversal backward kernels. As noted in Example 1.9, this second step
does not modify the weights.
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6.3 Novel Methodology

6.3.1 Pseudo Gibbs Samplers

In this section, we present two approaches which can be interpreted as
extensions of same. Both of these approaches employ an even larger
number of replicas of the latent variable X than the standard same
algorithm. Whilst this increases the number of random variables which
need to be sampled at each iteration, these approaches are even more
amenable to parallelisation than the standard same algorithm for whom
this was already exploited in Zhao, Jiang and Canny (2014).

First, in this subsection, we assume that Gibbs sampling-type imple-
mentations of the same idea are desirable because correlation of � and
Zp under � same

p is not too severe or because it can be circumvented
using some reparametrisation, e.g. along the lines of the non-centred
parametrisation from Papaspiliopoulos (2003), Papaspiliopoulos, Roberts
and Sköld (2007).

Unfortunately, it is often impossible to sample directly from ˘1.�; � /

(or ˘
ˇ
]
p
.�; � /) and letting Rp be a concatenation of Metropolis-within-

Gibbs steps can be ine�cient, in particular if X is high-dimensional. Below,
we present a scheme that mimics the intractable Gibbs step (Step 2 in
Gibbs-sampling implementations of Algorithm 6.3) by employing multiple-
proposal mcmc kernels. Particularly useful instances of such multiple-
proposal kernels are given by the (iterated) csmc kernels from (Andrieu
et al., 2010, 2013) which were described in Section 3.4

Conditional smc-based optimisation. We target the standard same
target distribution but rather than sampling from˘1.�; � / (or˘

ˇ
]
p
.�; � /),

which is assumed to be infeasible, we apply some (multiple-proposal)
instance of the generic mcmc kernel from Subsection 3.2.3 within Step 2
of Algorithm 6.3. Algorithm 6.5 summarises a single iteration of the
resulting procedure if the speci�c instance of the generic mcmc kernel
is one of the (iterated) csmc kernels from Section 3.4, potentially with
backward sampling or ancestor sampling. In this case, X D Xp is to be
understood as an entire particle trajectory.

6.4 Example (hidden Markov models). Though applicable much more

widely, (conditional) smc methods are often used to propose values for
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6 Pseudo-Marginal Monte Carlo Optimisation

the latent states in (general state-space) hidden Markov models (hmms).
Assume that we have observations up to some time T 2 N . In this case,

M.�; � / represents the conditional prior distribution of the vector of latent

states up to Time T , denoted X , given the static parameters �. Likewise,

G.�; x/ is the likelihood of the observations given the static parameters and

given the latent states.

We set Rp WD R˝p;1Wdˇpe, where Rp;l is the plain (iterated) csmc kernel
(induced by Algorithm 3.23), the (iterated) csmc kernel with backward
sampling (induced by Algorithm 3.24) or the (iterated) csmc kernel with
ancestor sampling (induced by Algorithm 3.26). In each case, this kernel
targets the probability measure(

˘1.�; � /; if l � b p̌c,
˘
ˇ
]
p
.�; � /; if l D d p̌e > b p̌c.

In addition, the space is augmented with extra replicas of the latent
variable by sampling from the kernel Sp WD S˝

p;1Wdˇpe�dˇp�1e whenever
d p̌e > d p̌�1e. Here, Sp;k.�; � / denotes the marginal distribution of one
particle trajectory under the extended target distribution

N�T .�; � / / NT .�; � /

associated with an smc algorithm described in Chapter 2 (which may
now depend on � ), assuming that the smc algorithm targets a measure
proportional to(

˘1.�; � /; if k � b p̌c � d p̌�1e;

˘ˇ]p.�; � /; if k D d p̌e � d p̌�1e and p̌ … N .

6.5 Algorithm (csmc-based same). At the nth iteration,

(1) if dˇne > dˇn�1e, sample X
dˇn�1eC1Wdˇne
n�1 � Sn..�n�1; zn�1/; � /,

(2) sample Zn D X
1Wdˇne
n � Rn..�n�1; Qzn�1/; � /,

(3) sample �n � Qn..�n�1; zn/; � /.

We stress that (iterated) csmc kernels are only one possible instance
of the generic mcmc kernel from Subsection 3.2.3. In many situations, it
may be desirable to employ other instances of the generic mcmc kernel
from Subsection 3.2.3 in Step 2.

170



6.3 Novel Methodology

6.3.2 Pseudo-Marginal Optimisation

Motivation. Component-wise updates within the same algorithm can
induce poor mixing of the mcmc chain if � and X are correlated under
� / �˝  because then � and Zp are correlated under �p . However,
recall thatX has only been introduced because the integral in Equation 6.3
is intractable and this prohibits the use of some ‘ideal’ marginal sa al-
gorithm targeting distributions on the marginal space Θ, e.g. targeting
�p.d�/ / .�; 1/ˇp�.d�/ at Iteration p. It is well known that Monte
Carlo methods are typically more e�cient on a smaller space (unless
better proposal distributions can be constructed on an extended space).

To mimic the behaviour of such an intractable marginal sa algorithm,
we propose to adopt the pseudo-marginal framework (Beaumont, 2003;
Andrieu & Roberts, 2009). To that end, we construct a di�erent instance of
the extended measure p.d� � dzp/ D �.d�/Mp.�; dzp/Hp.�; zp/ from
Equation 6.2, denoted  pm

p .

Generic Extended Target Measure. Recall that we want to �nd the
values � 2 Θ that maximise .�; 1/. To employ pseudo-marginal ideas,
we augment the space with extra auxiliary variables (compared to the
same approach). More speci�cally, let xX WD .X;K;X ; Y / so that

N.�; d Nx/ D .�; dx/ x̆ ..�; x/; dk � dx � dy/;

is some instance of the generic mosis target measure from Section 1.4
(but which is now indexed by � ). This generic target measure is thus
obtained by extending the measure .�; dx/ D H.�; x/M.�; dx/ using a
stochastic kernel x̆ as de�ned in Section 1.4. We recall that the normalised
version of the thus extended measure, N�.�; � / / N.�; � /, satis�es

xX � N�.�; � / ) XK
� �.�; � / / .�; � /:

Also as in Section 1.4, we let
N .�; d Nx/ D  .�; dx � dy/�..�;x; y/; dk/•xk.dx/

be some extended proposal distribution but whose components may now
depend on � , too. Furthermore, assuming that N.�; � / � N .�; � /, we
de�ne the Radon–Nikodým derivative

xw� WD
d N.�; � /
d N .�; � /

:
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6 Pseudo-Marginal Monte Carlo Optimisation

The extended target distribution of the pseudo-marginal same al-
gorithm is then written as � pm

p / 
pm
p , where  pm

p is a measure on Θ�Zp
withZp WD xX 1Wdˇpe

p . Writing Zp WD xX
dˇpe, where xX WD X�K�X�Y, the

measure  pm
p is de�ned by Equation 6.2 with

Mp.�; dzp/ WD
dˇpeY
iD1

N .�; d Nxip/;

Hp.�; zp/ WD xw
�. Nx
dˇpe
p /ˇ

]
p

bˇpcY
iD1

xw�. Nxip/:

Above, we have again set ˇ] WD ˇ � bˇc.
Whenever p̌ 2 N , since N.�; � / admits .�; � / as a marginal,Z
A�Zp

 pm
p .d� � dzp/ D

Z
A�Xdˇpe

 same
p .d� � dx1Wdˇpe

p /

D

Z
A

.�; 1/ˇp�.d�/:

Hence, under suitable regularity conditions, by Equation 6.4, the marginal
of � pm

p in the �-component concentrates around Θh as p !1.

Implementation. As in Subsection 1.4.3, we may again set

zT .�; � / WD N .�; � / ı . xw�/�1:

This reparametrisation allows us to turn the potentially high-dimensional
target measure  pm

p into a measure Q pm
p on the often lower-dimensional

space Θ � Vdˇpe, where V WD Œ0;1/. The measure Q pm
p is given by

Q pm
p .d� � dv1Wdˇpe/

WD �.d�/.vdˇpe/ˇ
]
p

�bˇpcY
iD1

vi
� dˇpeY
iD1

zT .�; dvi/:

Pseudo-marginal optimisation schemes then target . Q� pm
p /p2N using some

instance of the generic mcmc kernel from Subsection 3.2.3.
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6.3 Novel Methodology

In particular, if we target these distributions using mh kernels, we
obtain the pseudo-marginal mh-based optimisation scheme which is out-
lined in Algorithm 6.6, where Qp 2K1.Θ;Θ/ is some suitable proposal
kernel for �.

6.6 Algorithm (pseudo-marginal mh-based same). At Step n,

(1) If dˇne > dˇn�1e, sample V
dˇn�1eC1Wdˇne
n � zT ˝.dˇne�dˇn�1e/.�n�1; � /.

(2) Propose # � Qn.�n�1; � / and W
1Wdˇne � zT ˝dˇne.#; � /.

(3) Set .�n; V
1Wdˇne
n / WD .#;W 1Wdˇne/ with probability

1 ^
�.d#/Qn.#; d�n�1/
�.d�n�1/Qn.�; d#/

�bˇncY
iD1

wi

vin�1

��
wdˇne

v
dˇne
n�1

�ˇ]n
;

otherwise, set .�n; V
1Wdˇne
n / WD .�n�1; V

1Wdˇne
n�1 /.

6.7 Example (hidden Markov models, continued). Assume that the

goal is to perform ml estimation in an hmm. Then .�; � / is proportional

to the conditional posterior distribution of the latent states given some data

and given the parameter � . Similarly, �˝  can be interpreted as (being

proportional to) the joint posterior distribution of the parameters and the

latent states. If ˇn D 1 and if N.�; � / and N .�; � / represent the extended
target measure and extended proposal distribution of the generic smc al-

gorithm presented in Chapter 2 (but now indexed by � ), the pseudo-marginal

same kernel from Algorithm 6.6 reduces to a standard particle marginal
Metropolis–Hastings (pmmh) kernel. In particular, this means that W 1

is equal to the normalising-constant estimate obtained from the smc al-

gorithm. In constrast, if ˇn > 1, then the pseudo-marginal same kernel

employs dˇne smc algorithms and W i
is equal to the normalising-constant

estimate obtained from the i th smc algorithm.

Pseudo-marginal mh kernels are well known to su�er from the so-
called ‘stickiness’ problem. That is, a high variance of V i can lead to long
periods during which the algorithm rejects the proposed values at every
iteration. This happens when one or more of the V is in the denominator
of the above acceptance probability takes a particularly large value.

To improve mixing, Beaumont (2003) proposes the Monte Carlo within

Metropolis (mcwm) algorithm (so named in O’Neill et al. (2000)) which
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6 Pseudo-Marginal Monte Carlo Optimisation

samples new values for the V is at every iteration. While this introduces
bias, it can sometimes improve mixing of the algorithm (Medina-Aguayo,
Lee & Roberts, 2015). Moreover, the bias may be less problematic here
because we are essentially only trying to �nd the mode. A single iteration
of an optimisation scheme incorporating the mcwm-idea is summarised
in Algorithm 6.8.

6.8 Algorithm (mcwm-based same). At Step n,

(1) propose # � Qn.�n�1; � /,

(2) Sample V 1Wdˇne � zT ˝dˇne.�n�1; � / and W
1Wdˇne � zT ˝dˇne.#; � /.

(3) Set �n WD # with probability

1 ^
�.d#/Qn.#; d�n�1/
�.d�n�1/Qn.�; d#/

�bˇncY
iD1

wi

vi

��
wdˇne

vdˇne

�ˇ]n
;

otherwise, set �n WD �n�1.

Finally, as shown in Part I of this work, particular instances of the gen-
eric measure N.�; � / allow us to use a wide range of proposal distributions
zT .�; � / within this framework, e.g. we may use smc algorithms sample
the variables V i . In this case, Algorithm 6.6 is essentially an inhomogen-
eous pmmh algorithm with multiple independent sets of particles.

We can also employ other, more general instances of the mosis ap-
proach to devise the pseudo-marginal target distribution � pm

p (or, equi-
valently, Q� pm

p ). Additionally, it is not necessary to target this distribution
via mh kernels. Any other instance of the generic mcmc kernel from
Subsection 3.2.3 can be used instead.

RelationWith same. While we have constructed the pseudo-marginal
mcmc optimisation schemes as a generalisation of the same approach
(on the space Θ � X), its extended target distribution may also be viewed
as a special case of distribution targeted by the same algorithm (on the
extended space Θ � xX), i.e. as a same algorithm with latent variable
X D xX , and with

H.�; Nx/ D xw�. Nx/;

M.�; � / D N .�; � /:
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6.3.3 Incorporation Into smc Samplers

In this subsection, we brie�y describe how the mcmc kernels devised in
this section can be incorporated into smc samplers.

Incorporating the csmc-based same algorithm (Algorithm 6.5) into
an smc sampler can be achieved exactly as described in Subsection 6.2.3
but with the particular choice of the kernels Qt , Rt and St speci�ed in
Subsection 6.3.1.

Incorporating pseudo-marginal same (Algorithm 6.6) into an smc
sampler proceeds again as in Subsection 6.2.3 but now with zPt being
de�ned by Steps 2 and 3 of Algorithm 6.6 (with n D t ). Furthermore,
in this case, the kernel for augmenting the space with additional latent
variables, St 2K1.Θ;Xdˇte�dˇt�1e/ is de�ned by

St.�t�1; � / WD zT
˝.dˇte�dˇt�1e/.�t�1; � /:

6.4 Applications

6.4.1 Student-t Toy Model

As a �rst application of the pseudo-marginal same idea, we perform ml
estimation the Student-t toy model from Gaetan and Yao (2003).

Model. In this case, the objective function is the (marginal) likelihood
associated with observations y D y1W4 D .�20; 1; 2; 3/which are assumed
to have been generated from a non-central Student-t distribution with
(known) � WD 0:05 degrees of freedom and unknown location parameter
� 2 Θ WD R. This distribution is denoted t�;� and we use the same symbol
for its Lebesgue-density. That is, the objective function is

h.�/ D

4Y
tD1

t�;�.yt/ /
4Y
tD1

�
1C .yt � �/2=�

��.�C1/=2
:

Let Gam˛;ˇ denote the gamma distribution with shape parameters ˛
and scale parameter ˇ and let Nm;v2 denote the normal distribution with
mean m 2 R and variance v2 > 0. Again, we use the same symbols for
Lebesgue-densities of these distributions. It is well known and can easily
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Figure 6.1 Log-objective function, i.e. loglikelihood, in the Student-t toy model.

be checked that the Student-t distribution arises if a gamma prior is placed
over the precision (the reciprocal variance) of a normal distribution and
if the precision-parameter is then integrated out, i.e.

t�;�.yt/ D
Z

R
N�;1= Qxt .yt/Gam�=2;2=�.d Qxt/:

Recall that we want to approximate the ml estimate of � . Thus, in the
notation from this chapter, h.�/ D .�; 1/ D

R
XH.�; x/M.�; dx/, where

X D zX1W4 takes values in X D R4, and with

H.�; x/ WD

4Y
tD1

N�;1= Qxt .yt/;

M.�; dx/ WD
4Y
tD1

Gam�=2;2=�.d Qxt/:

In this case, due to the conjugacy outlined above, the objective function
h can actually be evaluated point-wise. As illustrated in Figure 6.1, it has a
global maximum at around 1:997 and has further local maxima at around
�19:993, 1:086, and 2:906. However, to test the methods developed in the
previous section, we pretend that we cannot evaluate h point-wise, i.e.
we pretend that we cannot solve the integral h.�/ D .�; 1/ analytically.

Algorithms. We compare a number of algorithms which are listed below.
Within the pseudo-marginal type algorithms, X i

p WD .
zX
i;1
p;1W4; : : : ; zX

i;N
p;1W4/

denotes the all the latent variables associated with the i th same replica at
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Iteration p, i.e. i 2 Ndˇpe. Furthermore, N 2 N is the number candidates
in a multiple-proposal mcmc kernel or the number of pseudo-marginal
replicas, i.e. the number of candidates involved in the construction of the
i th weight in the acceptance probability, V ip .

(i) The �rst algorithm is a pseudo-Gibbs sampling implementation of
same which updates the latent variables using the forced-move
kernel from Subsection 3.3.1.

(ii) The second algorithm is a pseudo-marginal mh version of same.
(iii) The third algorithm is an mcwm-type version of same.
(iv) The fourth algorithm is an ‘idealised’ Gibbs-sampling implementa-

tion of same whose performance Algorithm i seeks to mimic.
(v) The �fth algorithm is the ‘idealised’ marginal sa algorithm whose

performance Algorithms ii and iii seek to mimic.

For Algorithms i to iii, we compare the performance of two di�erent
proposal distributions for the latent variables.
(a) The �rst proposal simply entails sampling the latent variables from

their prior distribution, i.e.

 .�; dxip/ WD
4Y
tD1

NY
nD1

Gam�=2;2=�.d Qxi;np;t /:

Intuitively, this proposal distribution is ine�cient because it takes
neither the current value of � nor the observations into account.

(b) Into the second proposal, we incorporate information about � and
about the observations. More precisely, letting Exp� denote the
exponential distribution with rate � > 0, we instead take

 .�; dxip/ WD
4Y
tD1

NY
nD1

Exp1=.1Cjyt�� j/.d Qx
i;n
p;t /:

The algorithms are all initialised by sampling values for � from the dis-
tribution � 2 M1.Θ/ which we take to be the uniform distribution on
Œ�50; 50� and which could be interpreted as the prior in the Bayesian
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6 Pseudo-Marginal Monte Carlo Optimisation

paradigm. The speci�c form of this distribution on the estimates of Θh
should diminish as p !1.

We use 5;000 iterations. The inverse temperature increases linearly
from ˇ1 D 0:1 to ˇ4;000 D 5 and then remains constant for the last 1;000
iterations. At the nth iteration, � is updated using a Gaussian random-
walk mh kernel with variance 10=ˇn.

Results. We run each of these algorithms 200 times. Figure 6.2 shows
the behaviour of the �rst three algorithms as the number of forced-move
candidates/pseudo-marginal replicas,N , increases. IncreasingN is clearly
bene�cial in each algorithm. Also bene�cial is the incorporation of inform-
ation about � and about the observations into the proposal distribution
for the latent variables (which is done in Algorithms ib and vb).

Figure 6.3 shows the estimates obtained from Algorithms i to iii. Inter-
estingly, for large N and when using an e�cient proposal distribution for
the latent variables, the mcwm-type algorithm outperforms the ‘exact’
pseudo-marginal mh-type algorithms.

The Gibbs-sampling implementation of same (Algorithm iv) and the
marginal sa algorithm (Algorithm v) perform even better. However, we
stress that these algorithms rely on structure which is not available in
more complicated scenarios. That is, sa requires point-wise evaluation of
(a maximum-preserving) transformation of the objective function h while
the Gibbs-sampling implementation of same requires the full conditional
distributions of X under � same

p to be tractable. These algorithms are only
included here as a benchmark because they represent, in some sense,
idealised algorithms whose behaviour Algorithms i to iii seek to mimic.

6.4.2 Linear Gaussian State-Space Model

Model. In this subsection, we apply the algorithms developed in the
previous section to perform ml estimation in a linear Gaussian hmm,
given by X0 � N0;1 and for t 2 N ,

zXt D A zXt�1 C B"t ;

Yt D C zXt CD�t ;

where "t ; �t � N0;1 are iid and where we set C D 1 to ensure identi�ab-
ility. We assume that we have obtained observations Y1WT D y1WT .

178



6.4 Applications

5;0000

Iteration

iiib

5;0000

Iteration

iiib

5;0000

Iteration

iiib

5;0000

Iteration

iiib

5;0000

Iteration

iiib

�

iiiaiiiaiiia

�

iibiibiibiibiib

�

iiaiiaiiaiiaiia

�

ibibibibib

�

N D 100

ia

N D 50

ia

N D 5

ia

N D 2

ia

N D 1

ia

�

iiiaiiia

�50

0

50

�50

0

50

�50

0

50

�50

0

50

�50

0

50

�50

0

50

Figure 6.2 Traces of the �rst 50 runs of Algorithms i to iii in the Student-t
toy model with varying numbers of forced-move candidates/pseudo-marginal
replicas, N . The dashed line represents the location of the global maximum.
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Figure 6.3 ml estimates from 200 runs of Algorithms i to iii with varying num-
bers of forced-move replicas/pseudo-marginal replicas, N , and from 200 runs
of Algorithms iv and v, in the Student-t toy model. For each mcmc chain, an
estimate is obtained by averaging over the last 1;000 iterations. The horizontal
solid line and dotted lines represent the location of the global maximum and of
local maxima, respectively.
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We want to �nd � WD �1W3 WD .A; logB; logD/ 2 Θ WD R3 which max-
imises the (marginal) likelihood h.�/ D .�; 1/ D

R
XH.�; x/M.�; dx/,

where the latent states X WD zX0WT take values in X WD RTC1 and where

H.�; x/ WD

TY
tD1

N Qxt ;D2.yt/;

M.�; dx/ WD N0;1.d Qx0/
TY
tD1

NA Qxt�1;B2.d Qxt/:

Finally, we de�ne the dominating measure � 2M1.Θ/ as follows. Un-
der�, the components of� are independent and we take 1=B2 � Gam1:5;1
as well as 1=D2 � Gam1:5;1. Additionally, we assume that the Markov
chain .Xt/t2N is non-explosive (i.e. jAj < 1) and therefore restrict the
support of A to .�1; 1/ by taking A � Unif .�1;1/. Again, the e�ect of �
on the estimates of Θh should diminish as p !1.

Algorithms. We compare the following �ve algorithms based around
smc methods with a constant number of particles, N WD N1 D : : : D NT .

(i) The �rst algorithm mimics an ‘idealised’ Gibbs-sampling implement-
ation of same by updating the latent variables using an iterated
csmc algorithm with ancestor sampling (as) and using N D 100
particles.

(ii) The second algorithm is a pmmh version of same in which we
propose the latent variables by running an smc algorithm with
N D 1;00 particles. It seeks to mimic an ‘idealised’ marginal sa
algorithm.

(iii) The third algorithm is an mcwm-type version of Algorithm ii but
with only N D 500 particles to account for the fact that this al-
gorithm requires running twice as many smc algorithms.

(iv) The fourth algorithm is the ‘idealised’ Gibbs-sampling implementa-
tion of same which samples the latent states zX1WT from their full
conditional posterior distribution via standard forward–backward
recursions (Rauch et al., 1965).

(v) The �fth algorithm is the ‘idealised’ marginal sa algorithm which
exploits the fact that the latent variables can actually be integrated
out analytically in this model. The recursions needed to calculate
these integrals are known as the Kalman �lter (Kalman, 1960).
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In Algorithms i to iii, the smc algorithm used to generate the latent
variables propose the Step-t particles from the conditional prior distri-
bution of the t th state, zXt , given zX1Wt�1 D Qx1Wt�1, i.e. from NA Qxt�1;B2 . The
resulting algorithm is often called a ‘bootstrap’ particle �lter.

The algorithms are all initialised by sampling values for � from the
‘prior’ distribution �. We use 5;000 iterations. The inverse temperature
increases linearly from ˇ1 D 1 to ˇ4;000 D 10 and then remains constant
for the last 1;000 iterations.

In each algorithm, at the nth iteration, the parameters � are updated us-
ing a mixture Gaussian random-walk mh kernel. The underlying normal
distribution has diagonal covariance matrix diag.Œ1; 1; 1�/=.50ˇn/, with
probability 0:8 and has covariance matrix diag.Œ1; 1; 1�/=50, with probab-
ility 0:2. Here, diag.v/ denotes a diagonal matrix whose diagonal is equal
to the vector v. The support of the �rst component in the proposal kernels
is restricted to .�1; 1/. In Algorithms i and Algorithms iv, we perform
100 such �-updates at each iteration as these are relatively cheap.

Results. We obtain T D 200 observations from the model with true
parameters A D 0:9 and B D D D 1. However, for a �nite number of
observations, the ml estimate does generally not coincide with the true
parameter value.

We run the algorithms 15 times. Trace plots of the resulting Markov
chains are shown in Figure 6.4. In addition, Figure 6.5 illustrates the
variability in the estimates obtained from these algorithms.

6.4.3 Simple Stochastic Volatility Model

Model. In this subsection, we perform ml estimation in a simple uni-
variate stochastic volatility model (Jacquier, Polson & Rossi, 1994). This
model is given by zX1 � N�7;1 and, for t > 1, we have

zXt D ˛ C ı zXt�1 C �"t ;

Yt D exp. zXt=2/�t :

where "t ; �t � N0;1 are again iid. We assume that we have obtained
observations Y1WT D y1WT , for some T 2 N .

Assuming the model to be non-explosive, i.e. assuming that jıj < 1, we
want to �nd � WD �1W3 WD .˛; ı; �/ 2 Θ WD R � .�1; 1/ � .0;1/ maxim-
ising the (marginal) likelihood h.�/ D .�; 1/ D

R
XH.�; x/M.�; dx/.
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Figure 6.4 Traces obtained from 15 runs of Algorithms i to v in the linear
Gaussian hmm. The dashed line represents the location of the global maximum.
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Figure 6.5 ml estimates obtained from 15 runs of Algorithms i to v in the
linear Gaussian hmm. The horizontal line represents the location of the global
maximum.

In this model, the states X WD zX1WT take values in X WD RT and

H.�; x/ WD

TY
tD1

N0;exp. Qxt /.yt/;

M.�; dx/ WD N�7;1.d Qx1/
TY
tD2

N˛Cı Qxt�1;�2.d Qxt/:

Finally, we de�ne the dominating measure � 2 M1.Θ/ following
‘prior’ distribution. Under �, ˛, ı and � are independent and ˛ � N0;100,
ı � Unif .�1;1/ and 1=� � Gam5;1.

Algorithms. We compare the following three algorithms, all based around
a simple bootstrap particle �lter with N particles.

(i) The �rst algorithm mimics an ‘idealised’ but intractable Gibbs-
sampling implementation of same by updating the latent variables
using an iterated csmc algorithm with as and using N D 100
particles.

(ii) The second algorithm is pmmh version of same using N D 1;000
particles. It aims to mimic an intractable ‘idealised’ marginal sa
algorithm.

(iii) The third algorithm is an mcwm-type version of Algorithm ii with
only N D 500 particles to account for the fact that this algorithms
requires running twice as many smc algorithms as the second.
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Figure 6.6 Traces obtained from 10 runs of Algorithms i to iii in the simple
stochastic volatility model.

The algorithms are all initialised by sampling values for � from the
‘prior’ distribution �. We use 5;000 iterations. The inverse temperature
increases linearly from ˇ1 D 1 to ˇ4;000 D 3 and then remains constant
for the last 1;000 iterations.

In each algorithm, at the nth iteration, the parameters � are updated us-
ing a Gaussian random-walk mh kernel with diagonal covariance matrix
diag.Œ1; 1; 1�/=.2ˇn/. In Algorithm i, we again perform 100 such updates
at each iteration as these are comparatively cheap relative to the latent-
variable updates.

Results. We obtain T D 500 observations from the model with true
parameters ˛ D �0:363, ı D 0:95, and � 2 D 0:26. We run the algorithms
30 times. Trace plots �-components of the resulting Markov chains are
shown in Figure 6.6.
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6 Pseudo-Marginal Monte Carlo Optimisation

6.5 Discussion

In this chapter, we have presented methods for performing optimisation
in latent-variable settings with the help of sophisticated modern Monte
Carlo methods such as (iterated) csmc and pseudo-marginal kernels.

Previously, Poyiadjis, Doucet and Singh (2011), Olsson, Cappé, Douc and
Moulines (2008), Yıldırım, Singh and Doucet (2013), Nemeth, Fearnhead
and Mihaylova (2015) have developed alternative algorithms for smc-
based optimisation. However, their methods are essentially gradient-
based and it is not clear how they fare in settings in which the objective
function is multimodal. Furthermore, these methods are restricted to
parameter estimation in hmms and then typically require point-wise
evaluation of densities of the transition kernels associated with the latent
states. Closed-form expressions for these densities are often unavailable
in realistic models.

In contrast, the approaches presented here only require the ability to
sample from the these transition kernels which is often feasible. A number
of examples of such models can be found in Ionides, Bretó and King (2006).
In addition, our methods can deal with much broader settings, e.g. with
marginal ml or map estimation in non-Markovian models.

Work on the algorithms presented in this chapter is ongoing:
(1) Assume that the distribution of the individual weights W i in Al-

gorithm 6.6 does not depend on the parameter � and that their vari-
ance V ŒW i � DW � 2

N decreases linearly in the parameter N which gov-
erns the number of ‘candidates’ in some underlying mosis scheme,
e.g. N may be the number of particles when smc algorithms are used
to sample the weights. For simplicity, we assume that � 2

N D �
2=N ,

for some � 2 > 0. Meanwhile, assume that the computational cost
of sampling W i

increases linearly in N (as is typically the case for
standard is or smc algorithms).

In this setting, for ˇn D 1, Sherlock et al. (2015), Doucet et al. (2015)
show that for maximal e�ciency of pseudo-marginal mh kernels, N
should be chosen in such a way that � 2

N is around 1 (though more
precisely, Andrieu and Vihola (2014) demonstrate that the variance
of the weight is not always the right quantity by which to rank the
e�ciency of di�erent pseudo-marginal mh kernels).
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6.5 Discussion

For inverse temperatures ˇn 2 N n f1g, the ‘combined’ weight in the
pseudo-marginal same kernel is given by the product

Qˇn
iD1W

i . For
any � 2 Θ, its (conditional) variance is given by

V

� ˇnY
iD1

W i

ˇ̌̌̌
� D �

�
D E

� ˇnY
iD1

.W i/2
�
�

�
E

� ˇnY
iD1

W i

��2

D

ˇnY
iD1

.V ŒW i �C EŒW i �2/ �

ˇnY
iD1

EŒW i �2

D .� 2=N C 1/ˇn � 1; (6.6)

since the weights are conditionally independent given Θ D � , since
their (conditional) distribution is constant in � , and since we can
assume that EŒW i � D 1 without loss of generality.
Solving Equation 6.6 for N suggests that we should take

N D O

�
� 2

21=ˇn � 1

�
;

i.e. e�ectively increase N linearly in ˇn, to keep the variance of the
‘combined’ weight in the pseudo-marginal same kernel at around 1
as the inverse temperature increases. We are currently working on
schemes for adaptively choosing N in this respect.

(2) We are currently also working towards extending the convergence
analysis carried out in Andrieu et al. (2001) to the pseudo-marginal
same setting.

(3) Finally, we are currently implementing the algorithms used in the
examples in Section 6.4 within smc samplers as described in Sub-
section 6.3.3. Furthermore, we are also currently applying our op-
timisation schemes to perform ml estimation in some of the more
complicated Lévy-driven stochastic volatility models which were
described in Chapter 5.
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Conclusion

Summary

In this thesis, we have introduced a number of sophisticated non-standard
Monte Carlo algorithms (1) for conducting inference in a challenging class
of statistical models based around point processes, (2) for performing
optimisation in latent-variable settings. These are based on a combination
of Markov chain Monte Carlo (mcmc) methods, sequential Monte Carlo

(smc) methods and pseudo-marginal ideas.
To ease the explanation of the wide array of complex algorithms em-

ployed in this work, we have also presented a unifying Monte Carlo
framework which is best described as marginalised one-sample importance

sampling (mosis). Following Andrieu and Roberts (2009), Andrieu et al.
(2010), Lee, Andrieu and Doucet (in prep.), Lee, Murray and Johansen
(in prep.), this framework admits essentially any Monte Carlo scheme,
including mcmc and smc methods, as a special case.

Repeatedly applying mosis also justi�es nesting smc within mcmc or
smc within smc (as in pseudo-marginal smc algorithms). Furthermore,
mosis forms the heart of a generic mcmc kernel which admits essentially
any mcmc kernel as a special case, including (randomised) Metropolis–

Hastings (mh) kernels and their extension to multiple proposals.
Further exploiting the mosis framework, this thesis has also presented

new insights into the relationship between a number of modern Monte
Carlo schemes. For instance, we have formally established the relationship
� between the discrete particle �lter from Fearnhead (1998), Fearnhead

and Cli�ord (2003) and other more conventional smc methods,
� between the particle mcmc methods from Andrieu et al. (2010) and the

ensemble mcmc methods from Neal (2011),
� between backward sampling (Whiteley, 2010) and ancestor sampling

(Lindsten et al., 2012) for particle Gibbs samplers.
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Conclusion

Contributions

Part I. Speci�cally, this thesis comprises the following novel contribu-
tions. In Part I, we have constructed the generic mosis framework which
admits essentially all Monte Carlo schemes as special cases when viewing
them on a suitably extended space. We have successfully applied this
framework to analyse and enhance a number of existing algorithms.

Chapter 1 constructed the generic mosis framework. The structure of
mosis estimators is not new. Indeed, they are based on the import-

ance sampling (is) schemes from Andrieu and Roberts (2009), Andrieu
et al. (2010). However, our novel contribution in Part I has been to
demonstrate that this framework represents the extended state-space
justi�cation of essentially all Monte Carlo schemes.

Chapter 2 presented a generic smc algorithm and showed that it, too,
represents a special case of mosis. Again, the justi�cation of smc
methods as (one-sample) is on an extended space is not new. It was
already used in Andrieu et al. (2010) and extended to non-exchangeable

and adaptive resampling schemes in Lee, Murray and Johansen (in
prep.). In light of this, our contribution has been threefold.

� We have extended the construction from Lee, Murray and Johansen
(in prep.) to also allow for ‘biased’ resampling schemes.
� We have shown that the discrete particle �lter from Fearnhead (1998)

is a special case of the generic smc algorithm.
� We have slightly generalised the ‘importance tempering’ approach

from Gramacy et al. (2010) to re-use all the particles generated by an
smc sampler for approximating integrals. The resulting scheme may
be viewed as a ‘doubly’ Rao–Blackwellised version of the recycling
scheme from Nguyen et al. (2014).

Chapter 3 showed that mcmc algorithms, too, can be viewed as a special
case of mosis. Employing the same framework at a lower level, we
have also devised a generic mcmc kernel which admits essentially any
mcmc kernel as a special case. Again, this generic kernel is not entirely
new. It can be viewed as an extension of the approach from Tjelmeland
(2004) and similar constructions can be found in Lee, Andrieu and
Doucet (in prep.).
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Contributions

Our �rst contribution has therefore been pedagogical. We have shown
that special cases of the generic mcmc kernel include mh kernels
(Metropolis et al., 1953; Hastings, 1970), randomised mh kernels (Ceper-
ley & Dewing, 1999; I. Murray et al., 2006), Barker’s kernel (Barker,
1965), forced-move kernels (Chopin & Singh, 2013), ensemble mcmc
kernels (Neal, 2011), and (iterated) conditional sequential Monte Carlo

(csmc) kernels (Andrieu et al., 2010). Our second contribution is to
have established connections between various complex mcmc kernels.
Speci�cally, we have shown the following.

� Iterated csmc algorithms with backward sampling (bs) (Andrieu et
al., 2010; Whiteley, 2010) and with ancestor sampling (as) (Lindsten
et al., 2012) share the same extended target distribution.
� The ensemble mcmc method from Shestopalo� and Neal (2013) is a

pseudo-marginal mh kernel and more speci�cally, it can be viewed
as a non-standard particle marginal Metropolis–Hastings (pmmh)
kernel (Andrieu et al., 2010) in which all the parent indices are ana-
lytically integrated out in order to form the unbiased estimate of the
normalising constant.

Part II. In Part II, we have combined a number of ideas from Part I
to analyse, improve, and extend Monte Carlo schemes for a number of
challenging problems.

Chapter 4 performed inference on the static parameters and latent vari-
ables in a class of piecewise deterministic processes via particle Gibbs

(pg) samplers, based around a novel reformulation of the smc �lter
from Whiteley et al. (2011). Speci�cally, our methodological contribu-
tions have been threefold.

� We have provided new insight into the approximation induced by
this smc �lter and by related algorithms used in Del Moral et al.
(2006b, 2007), Martin et al. (2013). We have also suggested a way of
ensuring the existence of the importance weights.
� We have derived a new representation of this smc �lter which per-

mits the use of bs and as within pg samplers for piecewise determ-
inistic processes.
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Conclusion

� We have devised a novel pg step for rejuvenating a subset of the
potentially large number of auxiliary variables used in an smc �lter.
This reduces the impact of these auxiliary variables on the mixing of
the pg chain while often also lowering the computational cost.

Chapter 5 performed pg-based inference on the static parameters (and
latent variables) in a similar class of point-process models as Chapter 4.
However, whereas Chapter 4 dealt with improving the underlying
smc algorithm, Chapter 5 focussed on reducing correlation in order to
improve mixing of the (particle) Gibbs chain. Our contributions can be
summarised as follows.

� We have combined a pg sampler with a non-centred parametrisation
introduced by Roberts et al. (2004).

� We have applied the algorithms to a particularly challenging Lévy-
driven stochastic volatility model.

Chapter 6 devised sophisticated Monte Carlo algorithms for performing
optimisation in latent-variable settings, i.e. in situations in which the ob-
jective function cannot be evaluated point-wise. Such settings include
marginal maximum likelihood and marginal maximum a-posteriori
estimation. Speci�cally, we have extended the state augmentation for

marginal estimation (same) algorithm from Doucet et al. (2002) in
a number of directions which, among other bene�ts, allows smc al-
gorithms to be used as proposal distributions. Our contributions can
be summarised as follows.

� We have combined same with multiple-proposal type mcmc ker-
nels such as (iterated) csmc kernels. The resulting algorithm can
be viewed as mimicking an intractable ‘idealised’ Gibbs-sampling
implementation of same.

� We have combined same with pseudo-marginal mcmc kernels such
as pmmh kernels. The resulting algorithm can be viewed as mimick-
ing an intractable ‘idealised’ marginal simulated annealing algorithm.

� We have proposed population-based versions of these approaches
by incorporating them into smc samplers.
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Future Directions

Future Directions

Throughout Part I, we have shown that the generic mosis framework is
particularly useful for structuring and comparing various Monte Carlo
schemes. It also guarantees unbiased estimates of integrals with respect
to a user-supplied target measure.

However, as we have stressed throughout this work, this construction
is fundamentally importance sampling based on a single sample point.
It therefore does not guarantee consistency. In particular, knowing that
mcmc and smc methods are a special case of the mosis framework does
not abolish the need to check that mcmc kernels are ergodic or that smc
algorithms are stable in a suitable sense.

It would therefore be desirable to establish conditions under which a
more general mosis-based estimator is consistent. This would be a step
towards a unifying mathematical framework for analysing convergence
properties of Monte Carlo approximations.

In addition, the work in this thesis suggests the following more speci�c
avenues of further research.
� As mentioned in Subsection 3.4.3, the fact that (iterated) csmc al-

gorithms with bs and as both target the same extended distribution
could perhaps be exploited to analyse and compare the convergence
properties of these algorithms. This could potentially be achieved by
slightly generalising the approach taken in Andrieu et al. (2013).
� As pointed out in Section 4.6, it would be desirable to extend the re-

formulation of the smc �lter for piecewise deterministic processes to
allow for multiple-birth-moves. Such an extension would reduce or
even remove the bias introduced by using only single-birth moves.
� As discussed in Section 5.5, it would be useful to more formally char-

acterise the identi�ability issues in multiple-component Lévy-driven
stochastic volatility models for which these properties we empirically
observed in Section 5.4.4.
� As stressed in Section 6.5, it would be bene�cial to analyse the conver-

gence properties of the same algorithm and the various extensions to
it proposed in Section 6.3. For instance, it would be of interest to gain
some more formal insight into the relationship between the choice of
temperature schedule and the number of particles and to choose the
latter automatically and adaptively.
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A Resampling Schemes

A.1 Overview

In this appendix, we summarise a number of widely used resampling schemes

for smc algorithms. For completeness, we also state the conditional versions

of the resampling schemes as derived in Andrieu et al. (2010), Whiteley et al.

(2010), Lee, Murray and Johansen (in prep.). These are required for sampling

from csmc kernels, e.g. within particle Gibbs kernels.

A full comparison of resampling schemes was undertaken in Douc,
Cappé and Moulines (2005). We only present schemes with a �xed number
of particles. Resampling schemes which induce a random number of
particles have been developed in Crisan et al. (1998).

To simplify the presentation, we drop the dependence on Z1Wt�1 from
all subsequent notation. We note that when using an unbiased resampling
schemes (such as multinomial, strati�ed, and systematic resampling) at
Step t and if �t.u1Wt ; � / D UnifNNt

, then use of the time-reversal kernel
from Assumption 2.9 implies

�t..u1Wt ; ot�1; a
k
t�1/; fkg/ D

zRm
t�1.k; fa

k
t�1g/

W
akt�1
t�1

:

As a result, the ‘marginal’ resampling distribution zRm
t�1.k; fa

k
t�1g/ cancels

out in the expression of the particle weights in Equation 2.5 and does not
actually have to be computed.

A.2 Multinomial Resampling

Multinomial resampling was employed within the �rst smc algorithms
(Stewart & McCarty Jr, 1992; Gordon et al., 1993). In this case, the joint
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A Resampling Schemes

resampling scheme factorises as

zRt�1 WD Mul˝NtWt�1
;

whereWt�1 WD .W
1
t�1; : : : ; W

Nt�1
t�1 / denotes the vector of Step-.t � 1/ self-

normalised weights and Mulp represents the multinomial distribution for
some vector of probabilities, p.

By (conditional) independence, the marginal distribution associated
with the parent index of the kth o�spring is then de�ned by

zRm
t�1.k; � / WD MulWt�1 :

The conditional resampling distribution given the kth parent index is
given by the product of the remaining Nt � 1 marginals.

A.3 Strati�ed Resampling

Strati�ed resampling (Kitagawa, 1996) generates the vector of parent
indices according to

zRt�1.fat�1g/ WD

Z
Œ0;1�Nt

�.du/
NtY
nD1

Nt�1X
lD1

1Dl .u
n
C n � 1/•l.fant�1g/;

where U WD U 1WNt , � WD Unif˝Nt
Œ0;1� , and

Dl
WD Nt

� l�1X
mD1

W m
t�1;

lX
mD1

W m
t�1

�
:

Hence, by (conditional) independence of the elements in the vector U ,
the marginal resampling distribution simpli�es to

zRm
t�1.k; fa

k
t�1g/

D

Z
Œ0;1�

Unif Œ0;1�.du/
Nt�1X
lD1

1Dl .uC k � 1/•l.fakt�1g/

D Leb.Dakt�1 \ .k � 1; k�/:

For the same reason, the conditional resampling distribution given the
kth parent index is again the product of the remaining Nt � 1 marginals.
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A.4 Systematic Resampling

A.4 Systematic Resampling

Systematic resampling (Carpenter, Cli�ord & Fearnhead, 1999) induces a
similar joint distribution over the parent indices as strati�ed resampling,
except that we now take

�.du/ WD Unif Œ0;1�.du1/
NtY
nD2

•u1.dun/:

The marginal resampling distribution is then the same as in the case of
strati�ed resampling.

However, in contrast to strati�ed resampling, the parent indices are not
conditionally independent. To sample from the conditional resampling
distribution given the kth parent index, Akt�1, we may simply extend the
space to include U 1 in the marginal resampling distribution. Then the
conditional distribution of U 1 under this distribution is

LebjŒ0;1�.du/
PNt�1
lD1 1Dl .uC k � 1/•l.fakt�1g/

Leb.Dakt�1 \ .k � 1; k�/
D Uniffv2Œ0;1�jvCk�12Dakt�1\.k�1;k�g.du/:

Having determined U 1 (and, by extension, U 2WNt ) the remaining parent
indices A�kt�1 are then determined.

A.5 Optimal Finite-State Resampling

In this section, we describe the resampling scheme for the discrete particle
�lter from Fearnhead (1998) (and whose conditional version was derived by
Whiteley et al. (2010)) which is also brie�y summarised in Subsection 2.3.4.

Having used Fearnhead (1998, Algorithm 5.2) to solve

Nt�1X
nD1

Œ1 ^ Ct�1W n
t�1� DMt ;

for Ct�1 > 0,
� de�ne Ls WD #fn 2 Kt�1 j W n

t�1 > 1=Ct�1 g and Ht WD Kt�1 n Lt ,
� let lt W N#Lt ! Lt and ht W N#Ht ! Ht be the functions which map m

to the mth largest element in Lt and Ht , respectively.
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Writing I WD .I1; : : : ; IMt�#Lt /, I WD N#Ht , and I WD IMt�#Lt , the joint
resampling distribution can be represented as

zRt�1.fat�1g/ WD

�#LtY
nD1

•lt .n/.fa
n
t�1g/

�
�

�X
i2I

xRt�1.fi g/

Mt�#LtY
nD1

•ht .in/.fa
#LtCn
t�1 g/

�
�

KY
nD2

•
a
1WMt
t�1

.fa
.n�1/MtC1WnMt

t�1 g/; (A.1)

where xRt�1 represents a systematic resampling scheme for generating
parent indices associated with Mt � #Lt o�spring based on #Ht parents
which are associated with the re-normalised weights SW 1W#Ht

t�1 , de�ned via

SW n
t�1 WD

W
ht .n/
t�1P

m2Ht
W m
t�1
D
Ct�1W

ht .n/
t�1

Mt � #Lt
;

for n 2 N#Ht , where the last equality is due to the de�nition of Ct�1.
The marginal resampling distribution for generating the parent index

for the kth o�spring is thus given by zRm
t�1.k; � / D •lt .k/, in the case

that k mod Mt � #Lt . Else, if k mod Mt > #Lt , by the properties of
systematic resampling,

zRm
t�1.k; fa

k
t�1g/ D Leb

�
xDh�1t .a

k
t�1/ \Dk

�
; (A.2)

where h�1t is the inverse ht and

Dk WD ..k mod Mt/ � #Lt � 1; .k mod Mt/ � #Lt �;

xDl
WD .Mt � #Lt/

� l�1X
mD1

SW m
t�1;

lX
mD1

SW m
t�1

�
:

As in Subsection 2.3.4, we take �t.u1Wt ; � / to be the uniform distribution
on Z.ut�1/MtC1;utMt

. By Assumption 2.9, we then have

�t..u1Wt ; ot�1; a
k
t�1/; fkg/ D

zRm
t�1.k; fa

k
t�1g/

1 ^ Ct�1W
akt�1
t�1

:
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Note that only the denominator is therefore needed to calculate the
particle weights in an smc algorithm.

In a csmc algorithm, to sample a particular particle index Bt D K

conditional on knowing the associated parent index AKt�1 and to perform
conditional resampling in order to generate the remaining the parent
indices, we proceed as follows.
� IfCt�1W

akt�1
t�1 > 1, we set k WD l�1t .akt�1/, where l�1t denotes the inverse

of lt , and sample the remaining parent indices according to the right
hand side in Equation A.1 (ignoring the kth factor in the �rst product).
� If Ct�1W

akt�1
t�1 < 1, we sample K D k according to the distribution pro-

portional to right hand side in Equation A.2 (interpreted as a measure
in k). We then only need to perform a conditional version of the system-
atic resampling scheme xRt�1. This proceeds as described in Section A.4.
The remaining parent indices AMtC1WNt

t�1 are then also determined.
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Notation

� . . . . . . . . . . ‘is absolutely continuous with respect to’
WD;DW . . . . . . . . ‘is de�ned as’, ‘de�nes’
�;/ . . . . . . . . . ‘is distributed according to’, ‘is proportional to’
min;^Imax;_ . . . . minimum; maximum
inf ; sup . . . . . . . . in�mum, supremum
˝ . . . . . . . . . . tensor product
#A . . . . . . . . . . cardinality of a set A
‰g.�/ . . . . . . . . Boltzmann–Gibbs transformation of a measure � under g
E;V IE�;V� . . . . . expectation, variance under P ; under �
id . . . . . . . . . . . identiy function
1A; 1 . . . . . . . . . indicator function of a set A, unit function
O;OP . . . . . . . . ‘big O’, ‘big O in probability’ asymptotic notation
N;Z;R . . . . . . . . set of positive integers, integers, real numbers
Nk . . . . . . . . . . set of positive integers up to k (fn 2 N j n � kg)
Zk;l . . . . . . . . . set of integers from k to l (fz 2 Z j k � z � lg)
B.X/ . . . . . . . . . Borel ¢-algebra on X
F .X;Y/ . . . . . . . . set of B.X/=B.Y/-measurable functions
L.�/;Lp.�/ . . . . . set of �-integrable, p-times �-integrable real functions
M¢.X/;M.X/ . . . . . set of positive ¢-�nite and positive �nite measures on X
M1.X/ . . . . . . . . set of probability measures on X
K¢.X;Y/;K.X;Y/ . . set of positive ¢-�nite, positive �nite kernels from X to Y
K1.X;Y/ . . . . . . . set of stochastic kernels from X to Y
•x . . . . . . . . . . Dirac measure/point mass centred at x
Exp� . . . . . . . . . exponential distribution with rate �
Dir˛ . . . . . . . . . Dirichlet distribution with parameter vector ˛
Gam˛;ˇ . . . . . . . . gamma distribution with shape, scale parameters ˛, ˇ
Leb . . . . . . . . . . Lebesgue measure on R

Mulp . . . . . . . . . multinomial distribution with probabilities p
N�;˙ . . . . . . . . . normal distribution with mean �, covariance matrix ˙
t�;�;� . . . . . . . . . non-central Student-t distribution with � degrees of freedom
UnifA . . . . . . . . . uniform distribution on a set A
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as . . . . . . . . . . ancestor sampling
bs . . . . . . . . . . backward sampling
cdf . . . . . . . . . cumulative distribution function
clt . . . . . . . . . central limit theorem
cp . . . . . . . . . . centred parametrisation
csmc . . . . . . . . . conditional sequential Monte Carlo
dpf . . . . . . . . . discrete particle �lter
ess . . . . . . . . . . e�ective sample size
ffbs . . . . . . . . . forward �ltering–backward smoothing
hmm . . . . . . . . . (general state-space) hidden Markov model
iid . . . . . . . . . . independent and identically distributed
is . . . . . . . . . . importance sampling
map . . . . . . . . . maximum a-posteriori
mcmc . . . . . . . . Markov chain Monte Carlo
mcwm . . . . . . . . Monte Carlo within Metropolis
mh . . . . . . . . . . Metropolis–Hastings
ml . . . . . . . . . . maximum likelihood
mosis . . . . . . . . marginalised one-sample importance sampling
ncp . . . . . . . . . non-centred parametrisation
pdp . . . . . . . . . piecewise deterministic process
pg . . . . . . . . . . particle Gibbs
pmmh . . . . . . . . particle marginal Metropolis–Hastings
ppp . . . . . . . . . . Poisson point process
rjmcmc . . . . . . . reversible-jump Markov chain Monte Carlo
rsmc . . . . . . . . . reformulated sequential Monte Carlo
sa . . . . . . . . . . simulated annealing
same . . . . . . . . . state augmentation for marginal estimation
sir . . . . . . . . . . sequential importance resampling
slln . . . . . . . . . strong law of large numbers
smc . . . . . . . . . sequential Monte Carlo
vrpf . . . . . . . . . variable-rate particle �lter
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