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The objective of the predictive pointing system is to minimise the 

cognitive, visual and physical effort associated with acquiring an 

interface component when the user input is perturbed due to a situational 

impairment, for example, to aid drivers select icons on a display in a 

moving car via free hand pointing gestures. In this chapter, we discuss the 

ability of the predictive pointing solution to simplify and expedite human 

computer interaction when the user input is perturbed due to health 

induced impairments and disability, rather than a situational impairment. 

Examples include users with tremors, spasms, or other motor 

impairments. Given the flexibilities acceded by the Bayesian formulation, 

the applicability of the predictive pointing to inclusive design in general 

is addressed. Its intent prediction functionality can be adapted to the 

user’s physical capabilities and pointing characteristics-style, thereby 

catering for wide ranges of health induced impairments, such as those 

arising from ageing. It is concluded that predictive displays can 

significantly facilitate and reduce the effort required to accomplish 

selection tasks on a display when the user input is perturbed due to health 

or physical impairments, especially when pointing in 3D via free hand 

pointing gestures. 

 

 

INTRODUCTION 

 

Interactive displays, such as touchscreens, are becoming an integrated part 

of the car environment due to the additional design flexibilities they offer 

(e.g., combined display-interaction-platform-feedback module whose 

interface can be adapted to the context of use through a reconfigurable 

Graphical User Interface GUI) and their ability to present large quantities 

of information associated with In-Vehicle Infotainment Systems IVIS (1-

4). The latter factor is particularly important since the complexity of IVIS 

has been steadily increasing to accommodate the growing additional 

services related to the proliferation of smart technologies in modern 

vehicles (5). Using an in-car display typically entails undertaking a free 

hand pointing gesture to select an on-screen GUI icon. Whilst this input 

modality is intuitive, especially for novice users, it requires dedicating a 

considerable amount of attention (visual, cognitive and physical) that can 

be otherwise available for driving (4). Additionally, the user pointing 

gesture and input on the display can be subject to in-vehicle accelerations 
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and vibrations due to the road and driving conditions, which can lead to 

erroneous selections (6). This source of perturbations is dubbed 

Situationally Induced Impairment and Disability (SIID). Figure 1 depicts 

an example of free hand pointing gestures, in 3D, subjected to high levels 

of perturbations (i.e., SIID) in a moving car. The notable impact of the in-

vehicle SIID originated perturbations is clearly visible in the pointing 

motion as jolts or jumps. Adapting to the present noise and/or rectifying 

incorrect selections will tie up more of the user’s attention. This can render 

interacting with the touchscreen highly distracting, with potential safety 

consequences (4, 7). 

Predictive interactive displays, proposed in (8, 9), utilise a gesture 

tracker to capture, in real-time, the pointing hand/finger locations in 3D in 

conjunction with appropriate probabilistic destination inference algorithm. 

It can establish the icon the user intends to select on the display, 

remarkably early in the free hand pointing gesture, and in the presence of 

perturbations due to road and driving conditions, i.e., SIID. The smart 

intent-aware display then accordingly simplifies and expedites the target 

acquisition by applying a pointing facilitation scheme. This can be in the 

form of, among other options, expanding or colouring the intended GUI 

icon(s) or even selecting the predicted item on behalf of the user, who then 

need not touch the display surface. Therefore, predictive displays can 

notably improve the usability of in-car interactive displays by reducing 

distractions and workload associated with using them. The Bayesian 

formulation of the fundamental problem of intent inference, see (8), 

enables the predictive displays to effectively handle varying levels and 

types of present SIID-originated perturbations and/or user pointing 

behaviour as well as incorporating additional sensory or contextual data 

when available. It is noted that several pointing gesture trackers, which can 

accurately track, in real-time, a pointing gesture in 3D, have emerged 

lately, e.g., Microsoft Kinect, leap motion and others. They are motivated 

by extending Human-Computer Interaction (HCI) beyond traditional 

keyboard input and mouse pointing. 
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Figure 1. Full pointing finger-tip trajectories in 3D during three pointing gestures 

aimed at selecting a GUI item (circles) on the in-vehicle touchscreen surface (blue 

plane), whilst the car is driven over a harsh terrain with severe perturbations present. 

Arrows indicate the direction of travel over time, starting at 𝐭𝟏 < 𝐭𝐤. 

 

Figure 2. Several 2D mouse cursor tracks to acquire on-screen GUI icons (classical 

Fitt’s law task, ISO 9241) for user with cerebral palsy (20). Starting position is at the 

centre and nominal targets (shown by circles) are distributed in a circular formation.  
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On the other hand, using technological devices and the ubiquitous 

touchscreens becoming commonplace in everyday life, whether in work or 

domestic environments, led to the task of acquiring targets on a graphical 

user interface (e.g., to select buttons, menus, etc.) being a part of modern 

life and a frequent human-computer interaction undertaking. Hence, 

facilitating on-screen target acquisition (pointing and selection), reducing 

the effort incurred and improving its accuracy is critical for realising 

effective user interfaces. This is typically tackled by applying a pointing 

assistive strategies (e.g., expanding icon, altering its activation area, etc.), 

preceded by a mechanism to establish the intended GUI icon, i.e., to 

identify which icon to expand or alter, for example see (10-19). Whilst the 

user population is diverse and includes motion impaired, elderly and non-

expert users, these HCI studies often consider able-bodied computer users 

and focus on pointing in 2D on a computer screen using a mouse or a 

mechanical device. However, similar to users experiencing SIID, the 

pointing-selection task can be challenging for users with a motion-visual 

impairment, i.e., Health Induced Impairment and Disability HIID (19-24), 

for example, Figure 2 shows 2D mouse cursor pointing tracks of a user 

suffering from cerebral palsy. The prediction approaches developed for 

mouse pointing are also in general unsuitable for pointing in 3D using free 

hand pointing gestures and/or have high computational-training 

requirements (8). Thereby, suitable prediction algorithms for pointing in 

3D under situational impairment are proposed in (8), within a flexible 

Bayesian framework. Statistical techniques based on Kalman filtering and 

advanced state-space particle filter method are employed to smooth 2D 

pointing mouse cursor trajectories and 3D tracks of free hand pointing 

gestures (8, 19, 20). They compensate for (remove) HIID and SIID related 

perturbations, such that the resultant 2D or 3D pointing trajectories move 

only in the intended direction.  

In this chapter, we highlight the potential of applying the predictive 

display solution, which was developed for perturbations due to SIID in 

automotive contexts and supports pointing gestures input modality in 3D, 

to facilitate HCI for users with a wide range of health induced impairment 

and disability. This includes HIID that arises from age, and not only severe 
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forms of physical disability. Therefore, this HCI solution can be viewed as 

a means to promote inclusion. Inclusive design examines designed product 

features with particular attention to the functional demands they make on 

the perceptual, thinking and physical capabilities of diverse users. A 

predictive display can extend the usability of the interactive displays to a 

diverse population of users, for example, motion impaired or able-bodied 

users, elderly or young users, expert or non-expert users as well as those 

that are situationally impaired. 

Here, we exploit the transferability of HCI solutions for HIID to SIID 

scenarios (and vice versa) (23, 26). This transferability assumes that any 

human user can be impaired (disabled) in their effectiveness by 

characteristics of their environment, the task and the design of the GUI. 

Such impairment may take the form of perceptual, cognitive and physical 

movement functional limitations, which translate into inability. For 

instance, attempting to enter text on an in-car touchscreen (e.g., for 

navigation) whilst driving in an off-road environment presents difficulties 

in perceiving the interface for multiple tasks (seeing on-screen icons, 

outside driving environment and vehicle controls), performing the 

attentional tasks necessary for safe driving (track/correct vehicle 

movement, maintaining car controls as well as monitor/correct the texting 

task), and carrying out the required physical movements (pointing, 

pressing, steering, braking, etc.). The Bayesian intent predictor applied 

within a predictive display system relies on defining a Hidden Markov 

Model (HMM) of the pointing motion in 3D, effectively capturing the 

influence of the intended endpoint on the pointing finger/hand movements 

(8). This is distinct from previous HCI research on endpoint prediction in 

2D scenarios, e.g., (11-18), which often follow from Fitt’s law type 

analysis and uses a static setting/model. The statistical modelling approach 

permits capturing the variability among users, motor capabilities and the 

noise of the motion tracking sensor via Stochastic Differential Equations 

(SDE) that represent the destination-motivated pointing motion in 3D or 

even 2D. 
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INCLUSIVE DESIGN FROM DISABILITY TO HCI  

 

Increasingly, mobile technology is proliferating, and due to the expected 

contribution of the Internet of Things (IoT), 5G and recent mobile 

communications technology, a plethora of possible applications integrating 

sensor networks, cloud based processing and storage and mobile contexts 

will present HCI challenges to interaction designers (24, 27). Challenges 

range from: network latencies, and lack of them; processing limitations; 

fusion of multiple sources of data, and the potential to overload the user’s 

capabilities, both in terms of physical responses and also cognitive 

capacity. The field of inclusive design relates the capabilities of the 

population to the design of products by better characterising the user–

product relationship. Inclusion refers to the quantitative relationship 

between the demand made by design features and the capability ranges of 

users who may be excluded from use of the product because of those 

features. By 2020, almost half the adult population in the UK will be over 

50, with the over 80s being the most rapidly growing sector. These 

“inclusive” populations contain a great variation in sensory, cognitive and 

physical user capabilities, particularly when non-age-related impairments 

are taken into account. Establishing the requirement of end users is 

intrinsically linked to the user centred design process. In particular, a 

requirements specification is an important part of defining and planning the 

variables to be tested and measured as well as the technology use cases to 

be addressed during the user trials. 

In particular, inclusive design is a user-centred approach that examines 

designed product features with particular attention to the functional 

demands they make on the perceptual, thinking, and physical capabilities 

of diverse users, particularly those with reduced capabilities and ageing. It 

is known, for example, that cognitive capabilities such as verbal and 

visuospatial IQ show a gradually decreasing performance with aging. 

Attending to goal-relevant, task features and inhibiting irrelevant ones is 

important in interaction and this is known to be affected by ageing. 

Attentional resources may also be reduced by ageing, such that more 

mistakes are made during divided attention, dual task situations (28-30). 
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Another perspective on inclusive design is that of ordinary and 

extraordinary design that aims to improve design for older, impaired users 

of low functionality while at the same time enhancing design for the 

mainstream and ordinary users in extreme environments. On this basis, 

design should focus on the extraordinary or impaired first, accommodating 

mainstream design in the process (31). 

Not all functional disabilities result from ageing. Some common 

examples of non-age-related impairment include specific conditions such 

as stroke and head injury, which may affect any or all of perception, 

memory and movement. Other conditions are generally associated with 

movement impairment. For example, Parkinson’s disease and cerebral 

palsy involve damage to the brain causing effects such as tremor, spasms, 

dynamic coordination difficulties, and language and speech production 

impairment. Of course, many other conditions such as Down’s syndrome 

and multiple sclerosis may affect cognitive capability either directly, 

through language learning and use, or indirectly through its effects on 

hearing, speech production and writing. Of all the variations discussed, 

many differentially affect normal population ranges of capability. They 

may be rapidly changing and vary in intensity both within and between 

individuals, leading to a demanding design environment that requires close 

attention to conflicting user requirements and a better understanding of 

user capability. Again, this confirms that interaction design for future 

generations of products must be inclusive. 

One area offering mitigation to these challenges is design of integrated 

multimodal display and control technologies for ease of input and task 

completion (20-23). Initially, in the domain of better design for elderly and 

impaired computer and TV users, this work is directly transferrable to the 

domain of the situationally impaired interface disability users as proposed 

by (26) and in the form of extraordinary user interfaces (32). This approach 

assumes that any human user can be impaired (disabled) in their 

effectiveness by characteristics of their environment, the task, and the 

design of the user interface they are presented with. Importantly, an 

inclusive design approach extends beyond the scope of conventional 

usability methods as it must accommodate extremes of capability range or 
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situational contexts of task or stress, that are not normally accommodated 

by product design. For this reason, the predictive interactive display within 

a Bayesian framework is well suited to the human centred design of new 

information-rich and multimodal interfaces. It can effectively incorporate 

variabilities in physical-motor capabilities, interaction style, contextual 

information and additional sensory data (when available), within the 

stochastic pointing movement and measurement models as well as the 

modelling priors. In this chapter, we start with a specific case, whereby the 

proposed statistical predictive techniques aim to facilitate the GUI icons 

acquisition on an in-vehicle touchscreen by a driver in a moving car, i.e., 

the pointing gestures can be heavily perturbed due to SIID. This has 

proven to be very effective in reducing the workload associated with using 

an interactive in-car display. Thus, the developed predictive displays 

framework is a promising approach to achieving substantial significant 

usability improvements to health impaired users, i.e., HIID, in similar 

pointing tasks. If so, this solution can significantly enhance the HCI 

capabilities of individuals with severe physical impairments such as 

tremor, spasm and athetosis.  

 

 

BAYESIAN FORMULATION AND SUITABILITY 

 

The free hand pointing gesture movements towards an on-screen interface 

item in 3D are not deterministic, but are rather governed by a complex 

motor system. They can also be subjected to external motion, vibrations, 

acceleration (e.g., in a moving platform), etc. Nonetheless, stochastic 

models can capture the variability in the pointing finger movements, albeit 

being driven by premeditated intent (33). Hence, predictions of the 

pointing object (e.g., finger) motion are not single fixed paths, but are 

rather probabilistic processes, such that the object position at a future time 

expressed as a probability distribution in space. By adequately 

incorporating this uncertainty, relatively simple models of the pointing 

finger motion can be used successfully to track finger movements and 

evaluate the corresponding observation likelihoods (8, 33). It is noted that 



Bashar I Ahmad, Patrick M Langdon and Simon J Godsill. 10 

the objective of a predictive pointing is not to accurately model the 

complex human motor system. It suffices to utilise approximate pointing 

motion models that facilitate establishing the on-display endpoint of a free 

hand pointing gesture, hence intent. Therefore, calculating the transition 

density of a stochastic model, for example, between two successive 

observation times is required to condition the tracked pointing finger state 

𝐗𝑡, (e.g., position, velocity, etc.) on a nominal endpoint on the display 𝒟𝑖 

(33). Continuous-time motion models are a natural choice in such cases, 

where the tracked pointing object dynamics are captured by a continuous-

time stochastic differential equation. This SDE can be integrated to obtain 

a transition density over any time interval (8, 33). Although numerous 

models exist, the class of Gaussian linear time invariant models for the 

evolution of 𝐗𝑡 has proven to be effective to establishing the user intent 

and also lead to a low-complexity inference procedure (8, 33, 34). This 

class includes many models used in tracking applications, such as constant 

velocity and the linear destination reverting (LDR) models. 

 

Intent inference 

Predictive displays aim to estimate, in real-time, the probability of each of 

the selectable icons of the displayed GUI being the intended endpoint of 

the undertaken pointing task. At time instant 𝑡𝑘 where the available 

pointing object (finger or mouse cursor) observations (e.g., positions) are 

𝐦1:𝑘 = {𝐦1, 𝐦2, … , 𝐦𝑘}, the system calculates 

 

𝒫(𝑡𝑘) = {𝑃(𝒟𝐼 = 𝒟𝑖|𝐦1:𝑘) , 𝑖 = 1,2, … , 𝑁}. (1) 

 

The intended destination, which is unknown a priori, is notated by 𝒟𝐼 

such that 𝒟𝐼 ∈ 𝔻 = {𝒟1, 𝒟2, … , 𝒟𝑁} and 𝔻 is the set of selectable GUI 

items. It is noted that the locations of the interface components in 𝔻 are 

known, however, no assumptions are made on their distribution or layout 

on the display. Following Bayes’ rule, we can write: 𝑃(𝒟𝐼 = 𝒟𝑖|𝐦1:𝑘) ∝

𝑃(𝒟𝐼 = 𝒟𝑖)𝑃(𝐦1:𝑘|𝒟𝐼 = 𝒟𝑖), for each of the selectable GUI icons. The 

prior 𝑃(𝒟𝐼 = 𝒟𝑖) is independent of the current pointing task and can 

represent contextual information, user profile, frequency of use, etc. 
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Sequentially determining the probabilities in Equation 1 demands only 

calculating the likelihoods 𝑃(𝐦1:𝑘|𝒟𝐼 = 𝒟𝑖) at the arrival of a new 

observation (i.e., up-to-date position of the pointing finger or mouse 

cursor). 

After evaluating 𝒫(𝑡𝑘) in Equation 1, a simple intuitive approach to 

establish the intended destination at 𝑡𝑘 is to select the most probable 

endpoint via 

 

𝐼(𝑡𝑘) = arg max
𝒟𝑖∈𝔻

 𝑃(𝒟𝐼 = 𝒟𝑖|𝐦1:𝑘). (2) 

 

Decision criterion other than Equation 2 can be applied within the 

Bayesian framework, see (8). For the linear destination reverting models, 

Kalman filters can be used (one per nominal destination) to calculate 

𝑃(𝒟𝐼 = 𝒟𝑖|𝐦1:𝑘) in Equation 1 as per (8, 34). Adopting nonlinear motion 

or observation models can lead to advanced statistical inference methods 

such as sequential Monte Carlo or other related methods for online 

filtering. 

 

Linear destination-reverting motion models  

Since the pointing motion is intrinsically driven by the intended on-screen 

icon, destination-reverting models can be suitable for predictive pointing 

under health or situationally induced impairments. Following the 

integration of their respective SDEs and assuming that the intended 

endpoint is 𝒟𝑖, LDR models can be expressed by 

 

𝐗𝑖,𝑘 = 𝐅𝑖,𝑘𝐗𝑖,𝑘−1 + 𝛋𝑖,𝑘 + 𝐰𝑘, 𝑖 = 1,2, … , 𝑁, (3) 

 

where 𝐗𝑖,𝑘−1 and 𝐗𝑖,𝑘 are the hidden model state vectors at two 

consecutive time instants t𝑘−1 and t𝑘. For example, the state 𝐗𝑖,𝑘 can 

include the true pointing-finger location in 2D or 3D and other higher order 

motion dynamics such as velocity, acceleration, etc. Matrix 𝐅𝑖,𝑘 is the state 

transition and 𝛋𝑖,𝑘 is a time varying constant (both are with respect to 𝒟𝑖), 

and the motion model dynamic noise is 𝐰𝑘. For 𝒟𝑖 ∈ 𝔻 possible endpoints 
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on the display (i.e., selectable GUI icons), 𝑁 such models can be 

constructed and their corresponding likelihoods are calculated with the 

appropriate statistical filtering algorithm where the (also) linear 

observation model is given by 

 

𝐦𝑘 = 𝐇𝑘𝐗𝑖,𝑘 + 𝐧𝑘 . (4) 

 

The noise introduced by the sensor is represented by 𝐧𝑘. For more 

details on the LDR models and their characteristics with and without the 

bridging distributions, the reader is referred to (8, 33, 34). 

Bayesian inference with a hidden Markov model offers flexibility in 

terms of modelling the pointing motion with either HIID or SIID via the 

SDE and its integration in Equation 3. We recall that the variability in the 

pointing movement, e.g., due to the user behaviour and/or impairment, can 

be introduced through the noise element of the state 𝐗𝑘 and the noise 

generated from the employed sensor (e.g., a particular gesture tracker) can 

be incorporated via the measurement noise in the observation model in 

Equation 4. Most importantly, the statistical filter utilised to determine the 

intent of the tracked object (e.g., mouse cursor in 2D or pointing finger for 

pointing gestures in 3D) can be applied to the same class of motion 

models, albeit altering the applied pointing motion model.  

 

Smoothing noisy trajectories 

The results of the 𝑁 statistical filters applied to determine 𝒫(𝑡𝑘) in 

Equation 1 can be employed to remove the unintentional perturbations-

impairment-related movements as shown in (8, 34). However, in certain 

scenarios (e.g., severe perturbations) where it is desirable to maintain a 

simple linear motion model for the intent inference functionality, a pre-

processing step/stage can be added such that the raw pointing data is 

filtered, e.g., using a particle filter (20, 25). The filtered track is 

subsequently used by the destination inference module. The effectiveness 

of the state-space-modelling for removing unintentional impairment-

related pointing movement were demonstrated in (8, 19, 20, 25, 33, 34).  
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(a) 

 
(b) 

Figure 3. Workload scores for interacting with an in-vehicle touchscreen with and 

without the predictive capability for 20 participants under varying levels of 

experienced in-vehicle perturbations (9). (a) Minimum perturbations (motorway); (b) 

Mild-severe perturbations (badly maintained road). 

 

Examples: Situational and motor impairments 

 

Figure 3 depicts results of utilising an in-vehicle predictive display under 

varying levels of SIID due to road/driving conditions when the predictive 

capability is off and on. In the former case, the experiment becomes a 
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conventional task of interacting with an in-car touchscreen where the user 

has to physically touch the intended icon on the screen to select it. The 

benefits of the predictive display are assessed in terms of the system ability 

to reduce the workload of interacting with the in-car touchscreen and the 

pointing tasks durations 𝑇𝑝. NASA TLX forms, widely utilised in HCI 

studies, are used to evaluate the subject workload experienced by the users. 

In this study, a Leap Motion controller is employed to produce, in real-

time, the locations of the pointing finger in 3D, i.e., 𝐦𝑘 = [𝑥𝑡𝑘
 𝑦𝑡𝑘

 𝑧𝑡𝑘
 ]

′
 at 

𝑡𝑘. Pointing finger observations are then used by the probabilistic intent 

predictor to calculate the probabilities 𝒫(𝑡𝑘) in Equation 1. The predictive 

display auto-selects the intended on-screen icon once a particular level of 

prediction certainty is achieved (the user need not touch the display surface 

to make a selection). This pointing facilitation scheme is dubbed mid-air 

selection (9). Figure 3 demonstrates that the predictive display system can 

reduce the subjective workload of interacting with an in-car display by 

nearly 50%. It can also be noticed that workload notably increases as more 

perturbations are experienced. Measured durations of pointing task also 

show that 𝑇𝑝 can be reduced by over 35% under mild to severe 

accelerations-vibrations due to the road conditions (e.g., driving on a badly 

maintained road). Therefore, the predictive display system that uses a 

suitable Bayesian formulation can significantly simplify and expedite on-

screen target acquisitions via free hand pointing gestures. 

Figures 4 and 6 illustrate the ability of a sequential Monte Carlo 

method, namely the variable rate particle filter, to remove highly non-

linear perturbation-related unintentional pointing movements when 

interacting with a touchscreen using pointing gestures in 3D and selecting 

icons of a GUI displayed on a computer screen via a mechanical mouse. 

Whereas, in figure 5 Kalman filtering is applied. The raw cursor movement 

data in figures 4 and 5 is for a user that suffers from cerebral palsy. Figure 

4 exhibits the confidence ellipses obtained from the sequential Monte 

Carlo filter, which has visibly removed the health-induced-impairment 

jumping behaviour of the mouse cursor position and can assist identifying 

the user’s intended destination (despite the ambiguity of the raw pointing 
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data). On the other hand, unintentional situational-induced-impairment-

related pointing finger movements in 3D are successfully removed in 

Figure 6. 

 

  

(a) 

  

(b) 

Figure 4. Filtering noisy mouse cursor trajectories due to HIID using a particle filter 

and showing the confidence ellipses (20). (a) Raw noisy 2D cursor trace data; (b) 

filtered traces. Units on the axes are pixels. 



Bashar I Ahmad, Patrick M Langdon and Simon J Godsill. 16 

 

Figure 5. Smooth cursor track in 2D for a severe HIID-related perturbations (19). User 

is targeting two GUI icons (target 1 is the blue circle and then target 2 is the green 

circle). The start point is the black circle. 

 

Figure 6. 3D pointing track before (blue) and after (dashed) applying a variable rate 

particle filter (25). 
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CONCLUSION 

 

Using the Bayesian formulation developed for able-bodied touchscreen 

users in a perturbed environment has proved successful in improving 

performance and reducing workload. There is no reason to suppose these 

benefits may not be realised in the case of health-induced impairment and 

disability. We reported preliminary tests of this assumption, providing 

promising results. Spasm, weakness, tremor and athetosis can be mitigated 

or largely eliminated by the predictive approach based on the described 

Bayesian algorithms, original developed for automotive applications. In 

particular, motion impaired users, who may have difficulty pointing-

selecting on interactive displays will benefit not only from prediction and 

automated selection (i.e. auto-selection), but also from the reduction of 

workload reported by the automotive trial participants, measured using 

NASA TLX scores. 

Additionally, from an inclusive design perspective, the predictive 

display technology may greatly benefit those with age related or mild 

physical or perceptual impairments by enhancing performance in pointing-

selection and reducing the associated workload. Mild functional 

impairments such as physical movement (reach and stretch, dexterity), 

visual acuity, and cognitive capacity could be improved. This predictive 

approach is also applicable to special purpose designs for specific cases, 

extreme impairment and disability. Experimental studies will be 

superseded by trials of the same algorithms and detection technologies 

with interfaces in mobile displays, walking scenarios, wheelchair use and 

on public transportation. Predictive displays are capable of incorporating 

and fusing additional sensory data or input modalities, e.g., eye-gaze or 

voice-based commands, via the Bayesian framework succinctly described 

in this chapter. In conclusion, encouraging results suggest that these 

specific advanced predictive algorithms for pointing and selection have 

utility in a range of interfaces where performance is impaired, whether by 

situation or by health. The health based impairment is a rich area for future 

investigation. 
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