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Abstract

Time series arise all over the sciences and engineering, with numerous important applications
in many different fields. In the ‘Big Data Era’, the tasks of time series modelling, inference
and prediction have become more critical than ever. In this thesis, we introduce a collection
of statistical ideas and algorithmic tools to build a general Bayesian framework for modelling
and inference with time series data, which is found to be effective in a number of practical
settings, including both discrete and real-valued observations.

For discrete-valued time series, we describe a novel Bayesian framework based on
variable-memory Markov chains, called Bayesian Context Trees (BCT). This is a rich class of
high-order Markov chains that admit parsimonious representations by allowing the memory of
the process to depend on the values of the most recent observations. A general prior structure
is introduced and a collection of methodological and algorithmic tools are developed, allowing
for efficient, exact Bayesian inference in this setting. It is shown that the evidence (averaging
over all models and parameters) can be computed exactly, and that the a posteriori most likely
models can be precisely identified. The relevant algorithms have only linear complexity in the
length of the data and can be updated sequentially, facilitating online prediction. We provide
extensive experimental results illustrating the efficacy of our methods in a number of statistical
tasks, as well as theoretical results that further justify their use.

The proposed approach is then extended to real-valued time series, where it is employed
to develop a general hierarchical Bayesian framework for building mixture models. At the
top level, a set of discrete contexts (or ‘states’) are extracted from quantised versions of the
observations. The set of all relevant contexts are represented as a context tree. At the bottom
level, a different real-valued time series model is associated with each state. This defines
a very general framework that can be used in conjunction with any existing model class to
build flexible and interpretable mixture models. We show that, again, effective computational
tools can be developed allowing for efficient, exact Bayesian inference. The utility of the
general framework is illustrated when autoregressive models are used as the base model,
resulting in a nonlinear AR mixture, and when conditional heteroscedastic models are used,
resulting in a flexible mixture model that gives a systematic way of modelling the well-known
volatility asymmetries in financial data. The proposed methods are found to outperform the
state-of-the-art techniques in various settings, both with simulated and real-world data.
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Chapter 1

Introduction

Time series data arise all over the sciences and engineering, in a wide range of areas including
economics, finance, neuroscience, genomics, the health sciences, the social sciences, meteo-
rology, and ecology, among others. As such, the tasks of time series modelling, inference and
prediction are critical tasks in statistics and machine learning, with countless applications in
various settings. Although a number of previous approaches have been developed for these
tasks throughout the years, the need for yet more flexible and effective model classes and
inference methods in the ‘Big Data Era’ is more striking than ever. In this direction, broadly
speaking, the goal of this thesis is to develop a general framework for modelling and inference
with time series data that is applicable and effective in a number of practical settings.

Elaborating further, in view of the above general motivation and direction, the main
purpose and contribution of this thesis will be to:

1. Develop flexible model classes that are appropriate and effective in various time
series settings. The motivation leading to the development and the precise formulation of the
model class in each case is to overcome the specific challenges that arise in the corresponding
settings, as well as the limitations of previous approaches.

2. Introduce a Bayesian inference framework for the resulting model classes. This
includes introducing an appropriate prior structure, together with associated methodological
and algorithmic tools that allow for efficient and effective, exact Bayesian inference.

3. Evaluate the performance and the practical utility of the proposed methods, comparing
with state-of-the-art approaches in real-world applications. The emphasis here is on the core
statistical tasks of model selection, estimation and prediction, but more specialised tasks
including entropy estimation and change-point detection are also considered.

4. Provide theoretical results and justifications that further support the use of the
proposed methodology in practice.
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Throughout this thesis we only consider discrete-time data, which is the most typical time
series setting, in which the time series consist of a sequence of observations equally spaced
in time. Depending on the possible values that the observations can take, time series can be
divided in two broad categories: discrete-valued and real-valued. Both of these settings are
of high practical importance, each one having numerous applications in various areas, and
are therefore both studied in detail here. As the motivation and the specific tools developed
in each case are slightly different, the rest of this thesis is roughly divided in two parts,
considering respectively the discrete-valued and the real-valued case.

1.1 Discrete-valued time series

In this setting, we consider time series {Xn} taking values in a finite alphabet, A, of size m.
Without any loss of generality, we take A = {0,1, . . . ,m−1}.

1.1.1 Motivation

Higher-order Markov chains are frequently the first and most natural modelling choice for
discrete-valued time series with significant – apparent or suspected – temporal structure,
especially when no specific underlying data generating mechanism can be assumed. But the
description of a full Markov chain of order d taking values in a finite set of size m, requires
the specification of md(m− 1) parameters, which makes the use of full Markov chains
problematic in practice. As has been often noted (Bühlmann and Wyner, 1999; Raftery, 1985;
Sarkar and Dunson, 2016), the dimension of the parameter space grows exponentially with
the memory length, and the resulting model class lacks modelling wealth and flexibility. This
lack of flexibility severely hinders, among other things, the important goal of balancing the
bias-variance tradeoff between more complex models that fit the data closely, and simpler
models that generalise well.

To address these issues and to offer better solutions to a wealth of related scientific and
engineering problems that arise in connection with discrete time series, numerous approaches
have been developed since the mid-1980s.

The mixture transition distribution (MTD) models introduced by Raftery (1985) and later
generalised in Berchtold and Raftery (2002); Raftery and Tavaré (1994), allow for more
parsimonious parametrisations of the transition distribution of some dth order Markov chains,
as mixtures of first order transition matrices corresponding to different lags. MTD models
make it possible to consider longer memory lengths d and to quantify the relative importance
of different lags, but the resulting model class is still structurally poor.
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A much more flexible class of Markov chain models with variable memory are the tree
sources introduced in the celebrated work of Rissanen (1983a,b, 1986a). The gist of this
approach is that the length of the memory that determines the transition probability of the
chain can depend on the exact pattern of the most recently occurring symbols. Initially
tree sources received a lot of attention in the information-theoretic literature in connection
with data compression (Weinberger et al., 1994; Willems et al., 1995). One of their first
applications outside information theory was by Ron et al. (1996), who introduced the notion
of a probabilistic suffix tree (PST) as an effective structure for representing variable-memory
chains. The PST point of view, along with the associated model selection technique Learn-
PSA, have been used for bioinformatics problems and other machine learning tasks (Bejerano
and Yona, 2001; Gabadinho and Ritschard, 2016).

In the statistics literature, tree-structured models were examined by Bühlmann (2000);
Bühlmann and Wyner (1999). Their variable-length Markov chains (VLMCs) and the
associated model selection tools are based, in part, on Rissanen’s tree sources and his
CONTEXT algorithm. The VLMC approach has been successful in applications (Busch et al.,
2009; Mächler and Bühlmann, 2004) that include DNA modelling (Ben-Gal et al., 2005;
Browning, 2006) and linguistics (Abakuks, 2012; Galves et al., 2012).

Tree sources and VLMC models group together certain patterns of past symbols that
lead to the same conditional distribution for the chain, under the constraint that each such
group consists of all patterns of length d that share a common suffix. A more general class
of parsimonious Markov models, known as Sparse Markov Chains (SMC), arises when this
constraint is removed. Originally introduced as “minimal Markov models” by García and
González-López (2011), they were later examined in more detail by García and González-
López (2017); Jääskinen et al. (2014); Xiong et al. (2016). But the lack of structure of this
vast model class makes it difficult to identify appropriate models in practice.

A different class of high-order Markov models was recently introduced by Sarkar and
Dunson (2016), who used conditional tensor factorisations (CTF) to give parsimonious
representations of the full transition probability distribution (viewed as a high-dimensional
tensor) of a Markov chain. These representations are based on earlier ideas on tensor
factorisation for categorical regression (Yang and Dunson, 2016). CTF effectively shrinks
the high-dimensional transition probability tensor to a lower-dimensional structure that can
still capture high-order dependence. Unlike MTD, CTF accommodates complex interactions
between the lags, and is accompanied by computational tools for Bayesian inference.

In this work we revisit the class of variable-memory Markov models. We introduce a new
Bayesian framework for a version of these models, and we develop algorithmic tools that
lead to very effective and efficient exact inference.
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1.1.2 Overview of contributions

Bayesian Context Trees. In Chapter 2 we define a class of models for variable-memory
Markov chains that admit natural representations as context trees. Given an alphabet A, and a
maximal memory length D ≥ 0, the class T (D) contains all variable-memory chains with
values in A and memory no longer than D. A new family of prior distributions πD(T ;β ) on
models T ∈ T (D) is introduced, indexed by a hyperparameter β ∈ (0,1). Roughly speaking,
πD penalises larger and more complex models by an exponential amount. Given a model T ,
we place independent Dirichlet priors π(θ |T ) on the associated parameters θ . We refer to
the models in T (D) equipped with this prior structure as Bayesian Context Trees (BCT).

Inference Algorithms. Chapter 2 also contains our core methodological results in this
setting, in the form of three exact inference algorithms for BCTs. First we show that a version
of the Context Tree Weighting (CTW) algorithm (Willems et al., 1995; Willems, 1998)
can be used to not only evaluate the marginal likelihoods P(x|T ) =

∫
P(x|θ ,T )π(θ |T )dθ

of observations x with respect to models T , but also the prior predictive likelihood P∗
D(x),

averaging over all models and parameters,

P∗
D(x) := ∑

T∈T (D)

πD(T ;β )P(x|T ) = ∑
T∈T (D)

πD(T ;β )
∫

P(x|θ ,T )π(θ |T )dθ . (1.1)

The CTW algorithm computes P∗
D(x) exactly, and its complexity is only linear in the length of

the time series x. This quantity, also known as the evidence (MacKay, 2003), plays a pivotal
role in Bayesian inference, as it is the normalising factor of the posterior distribution. In fact,
the most basic obstacle to performing effective Bayesian inference is typically the inability
to compute this term (Bernardo and Smith, 1994; Gelman et al., 2013). So, it is clear that the
exact nature of the results produced by the CTW algorithm should facilitate the development
of efficient methods for numerous core statistical tasks and related applications.

Furthermore, we describe the Bayesian context tree (BCT) algorithm and prove that it
identifies the maximum a posteriori probability (MAP) model. This is a generalisation of
the “context tree maximizing” algorithm of Willems and Volf (1994). Finally, we show that
a new algorithm, the k-BCT algorithm, can be used to identify the top-k a posteriori most
likely tree models, for any k ≥ 1. Despite the fact that the class T (D) is vast, consisting
of doubly-exponentially many models in D, the complexity of both the BCT and k-BCT
algorithms is only linear in D and in the length of the time series. However, the complexity
of k-BCT grows with k, limiting its practical applicability to moderate values of k.

In order to enable broader exploration of the posterior distributions π(T |x) and π(θ ,T |x),
we also develop a new family of variable-dimension Markov chain Monte Carlo (MCMC)
algorithms (Robert and Casella, 2004; Tierney, 1994) that obtain samples from π(θ ,T |x).
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Experimental Results. Closing Chapter 2, we present extensive experimental results il-
lustrating the performance of the BCT framework on both simulated and real-world data
from a wide range of applications. We focus on the fundamental statistical tasks of model
selection, estimation and sequential prediction, and compare with state-of-the-art approaches.
The proposed methods are found to be very effective in practice, outperforming the previous
approaches both in terms of efficacy and computational requirements.

The BCT predictor in particular is found to have two significant advantages. The first is
that the posterior predictive distribution can be computed exactly via the CTW algorithm,
as P∗

D(xn+1|x1, . . . ,xn) = P∗
D(x1, . . . ,xn+1)/P∗

D(x1, . . . ,xn). This way, the induced predictor
is obtained by implicitly averaging over all models with respect to their exact posterior
probabilities, thus avoiding the need to perform approximate model averaging via simulation
or other numerical integration methods. The second advantage is that it can be updated
sequentially in a very efficient manner, something that is very important in practice.

Theoretical Results. The Bayesian perspective adopted in this thesis is neither purely
subjective nor purely objective. For example, we think of the model posterior distribution as
a summary of the most accurate, data-driven representation of the regularities present in a
given time series, but we also examine the frequentist properties of the resulting inferential
procedures (Bernardo and Smith, 1994; Gelman et al., 2013).

In Chapter 3 we derive an alternative representation of the BCT posterior distribution
on model space, π(T |x), in a terms of a simple branching process. Apart from providing a
practical way of obtaining independent and identically distributed (i.i.d.) samples from the
posterior, this representations also allows to establish theoretical results that further justify
the use of the BCT framework. In particular, we show that the posterior asymptotically
almost surely concentrates on the “true” underlying model, and derive an explicit rate for this
convergence as a function of the sample size. Analogous results are established in the case
of out-of-class modelling, when the data are generated by a model outside the BCT class.
Importantly, the limiting model is explicitly identified in this case, and is shown to be the
model in T (D) that is closest in some sense to the true underlying model.

1.1.3 Additional results

Apart from the methodological contributions and the extensive experimental results focusing
on the primary tasks of model selection, estimation and prediction, in Chapters 4 and 5 we
also consider some more specialised statistical tasks for discrete-valued time series. More
specifically, we consider Bayesian entropy estimation and change-point detection, both of
which come with important applications in a number of practical settings.
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Entropy Estimation. In Chapter 4 we consider the task of estimating the entropy rate from
empirical data, an important and challenging problem that dates back to the original work of
Shannon on the entropy of English text (Shannon, 1951). Since then, this task has received a
lot of attention, perhaps most notably in connection with neuroscience (London et al., 2002;
Nemenman et al., 2004; Strong et al., 1998), where the entropy rate plays a crucial role in
efforts to describe and quantify the amount of information communicated between neurons.
Many different approaches have been developed for this task throughout the years, including
Lempel-Ziv (LZ) estimators (Ziv and Lempel, 1977), prediction by partial matching (PPM)
(Cleary and Witten, 1984), the CTW algorithm (Gao et al., 2008), and block sorting methods
(Cai et al., 2004); for an extensive review of the relevant literature, see Verdú (2019).

In contrast with most earlier work, here we adopt a fully-Bayesian approach. The BCT
framework makes it possible to effectively sample from (and hence estimate) the actual
posterior distribution of the entropy rate, which of course provides a much richer picture
than the simple point estimates employed in most applications. The performance of the BCT
entropy estimator is illustrated on both simulated and real-world data, where it is found to
outperform several state-of-the-art methods. Also, we establish theoretical results that further
justify our methodology: We show that the posterior asymptotically concentrates on the true
underlying value of the entropy rate, and that it is asymptotically normal.

Change-Point Detection. In Chapter 5 we consider the tasks of segmentation and change-
point detection with discrete-valued time series. Among others, the perhaps more notable
application in this setting is the segmentation of genetic data, for which Hidden Markov Mod-
els (HMMs) have been used widely and with great success throughout the years (Churchill,
1989, 1992; Durbin et al., 1998; Lander et al., 2001). Here, we take a different, Bayesian
approach, modelling each segment of the time series as a variable-memory Markov chain.

In Chapter 5, we introduce a Bayesian modelling framework for piecewise homogeneous
time series. A uniform prior is placed on the number of change-points, and an “order statistics”
prior is placed on their locations (Fearnhead, 2006; Green, 1995), which penalises short
segments to avoid overfitting. Each segment is described by a BCT model, thus defining a
new class of piecewise homogeneous variable-memory chains.

Having as a starting point the methodology of Chapter 2, we develop a new class of
Bayesian methods for inferring the number and location of change-points in empirical
data. A collection of MCMC algorithms is introduced for sampling directly and efficiently
from the desired posterior distribution of the number and the location of the change-points,
hence providing significant additional information on top of point estimates for them. The
performance of our methods is illustrated on simulated and real-world data, where they are
found to perform at least as well as state-of-the-art approaches.
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1.2 Real-valued time series

In this setting we consider time series {Xn} taking values in R, which is the most natural
setting in numerous real-world problems, opening the door to many more applications.

1.2.1 Motivation

Real-valued time series arise all over the sciences and engineering, in a wide range of
applications from many different fields. This explains why numerous approaches have been
developed throughout the years for the tasks of modelling, inference and prediction of real-
valued time series. These include classical statistical methods (Box et al., 2015; Hamilton,
2020; Tsay, 2005), as well as modern machine learning (ML) techniques, notably matrix
factorisations (Faloutsos et al., 2018; Yu et al., 2016), Gaussian processes (GPs) (Frigola,
2015; Rasmussen and Williams, 2006; Roberts et al., 2013), and neural networks (Alexandrov
et al., 2020; Benidis et al., 2020; Zhang et al., 1998). Despite their popularity, there has not
been conclusive evidence that in general the latter outperform the former in the time series
setting (Ahmed et al., 2010; Makridakis et al., 2018a,b).

Motivated in part by the two well-known limitations of neural network models (Benidis
et al., 2020), namely, their lack of interpretability and data efficiency, we propose a general
class of flexible Bayesian mixture models that are both naturally interpretable and suitable for
applications with limited training data. Also, we provide computationally efficient – linear
complexity – algorithms for inference and prediction, offering another practical advantage
compared to standard ML methods, which have greater computational requirements due to
the heavier training involved (Makridakis et al., 2018b).

Roughly speaking, time series models can be broadly categorised in two classes, depend-
ing on the absence or presence of an underlying hidden state process. The first class includes
the family of autoregressive (AR) and autoregressive integrated moving average (ARIMA)
models, along with their extensions and generalisations, which directly model the map-
ping from previous to current observations. Besides the classical AR and ARIMA models,
nonlinear AR models have been proposed, using both GPs (Candela et al., 2003; Girard
et al., 2002; Murray-Smith and Girard, 2001; Roberts et al., 2013) and neural networks to
model nonlinear dynamics. Feed-forward neural networks have been used since the 90s in
this setting (Zhang et al., 1998), as in the neural network autoregressive (NNAR) model.
More recently, recurrent neural networks (RNNs) have also been employed (Graves, 2013;
Oreshkin et al., 2019; Salinas et al., 2020), with the DeepAR model of (Salinas et al., 2020)
that uses long short-term memory (LSTM) cells (Hochreiter and Schmidhuber, 1997) being
one of the most successful approaches.
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The second class contains the family of state space models (SSMs) (Durbin and Koopman,
2012), which can describe more complex dynamics by allowing an underlying hidden state
process (state transition) together with an observation model (emission). Classical approaches
here include the linear Gaussian SSM, for which the Kalman filter (Kalman, 1960) can be
used for inference, and exponential smoothing methods; see Hyndman et al. (2008) for a
detailed review. Again, various extensions have been proposed by making the transition
and/or emission equations nonlinear, using both GPs (Eleftheriadis et al., 2017; Frigola et al.,
2013, 2014; Turner et al., 2010; Turner, 2012) and neural networks (Chung et al., 2015;
Karl et al., 2016; Krishnan et al., 2017, 2015; Rangapuram et al., 2018; Zheng et al., 2017).
However, inference in these settings becomes a quite challenging task, requiring sophisticated
and computationally-intense approximate techniques, including particle MCMC (Andrieu
et al., 2010; Doucet et al., 2001) and variational methods like stochastic gradient variational
Bayes (SGVB) (Kingma and Welling, 2013; Rezende et al., 2014).

In this work, we introduce an intermediate Bayesian modelling approach that combines
important features of both the above classes. We first identify meaningful discrete states,
but these are observable rather than hidden, and given by the discretised values of some
of the most recent samples. Then we associate a different time series model with each of
these discrete context-based states, ultimately defining a very general class of hierarchical
Bayesian mixture models for real-valued time series.

1.2.2 Overview of contributions

General Bayesian Mixture Models. In line with the above direction, in Chapter 6 we
define a hierarchical Bayesian model, which at the top level selects the set of relevant
states (that can be viewed as providing an adaptive partition of the state space), and at the
bottom level associates an arbitrary time series model to each state. These collections of
states (equivalently, the corresponding state space partitions) are naturally represented as
discrete context-tree models, which are shown to admit a natural interpretation and to enable
capturing important aspects of the structure present in the data. We refer to the resulting
model class as the Bayesian Context Trees State Space Model (BCT-SSM).

Although we refer to the BCT-SSM as a ‘model’, it is in fact a very general framework
for building Bayesian mixture models for time series, that can be used in conjunction with
any existing model class as a base model. The resulting family of mixture models is much
richer, more flexible and general than the class one starts with. For example, using any of
the standard linear families (like the classical AR or ARIMA) leads to much more general
models that can in fact capture highly nonlinear trends in the data. At the same time, the
resulting mixture models are also easily interpretable.
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Inference Algorithms. In Chapter 6, we show that in addition to resulting in the construction
of flexible model classes, employing this particular type of observable state process (as
opposed to a conventional hidden state) also makes it is possible to perform effective
Bayesian inference. This is achieved by exploiting the structure of context-tree models and
by extending the algorithms of Chapter 2, which were previously used only in the much more
restricted setting of discrete-valued time series.

These tools make the BCT-SSM a powerful Bayesian framework that allows for exact
and computationally very efficient Bayesian inference. In particular, the prior predictive
likelihood, also known as the evidence, can be computed exactly, with all models and
parameters integrated out. Also, the a posteriori most likely (MAP) partition (i.e., the MAP
set of discrete states) can be identified, along with its exact posterior probability. Following
the Bayesian approach here is particularly important, as it means that the data automatically
select the set of relevant states. In contrast, maximum likelihood would overfit and select
a large number of irrelevant states, with consequences both in the interpretation and the
out-of-sample prediction performance of the fitted model.

Importantly, all the associated algorithms still have very low computational complexity,
which is linear in the length of the time series. In fact, it is shown that we can perform
inference in this much richer class of mixture models at essentially no additional cost
compared to fitting a single model from the original base-model class. Also, our algorithms
allow for efficient sequential updates, which are ideally suited for online forecasting, and
provide an important practical advantage compared to other approaches.

Autoregressive Mixture Models. To illustrate the application of the general framework, we
study in detail the case where AR models are used as building blocks for the BCT-SSM, with
a different AR model associated to each discrete state. We refer to the resulting model class
as the Bayesian Context Trees Autoregressive (BCT-AR) model. This is shown to be a flexible
nonlinear AR mixture model that generalises popular AR mixtures, including the threshold
AR (TAR) models (Tong, 2011; Tong and Lim, 1980) and the mixture AR (MAR) models
of Wong and Li (2000). The BCT-AR model is found to outperform several state-of-the-art
methods in simulated and real-world applications of nonlinear time series from economics
and finance, both in terms of forecasting accuracy and computational requirements.

Volatility Modelling. As a second example, we associate conditional heteroscedastic models
to each discrete state, something that is particularly important for financial applications. This
results in a flexible mixture model that gives a systematic and powerful way of modelling the
well-known asymmetric response in volatility due to positive and negative shocks, which is
an important feature of financial time series (Tsay, 2005). Again, our method is found to
outperform previous approaches that were developed to capture this effect.
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1.3 Outline

In closing this Introduction we give an outline of the rest of this thesis, including a brief
summary of the contents in each chapter.

Chapter 2. This chapter contains our core methodological contributions for discrete-valued
time series, along with extensive experimental results for the fundamental statistical tasks of
model selection, estimation and prediction. Its contents have been published before in:

• I. Kontoyiannis, L. Mertzanis, A. Panotopoulou, I. Papageorgiou, and M. Skoularidou.
Bayesian Context Trees: Modelling and exact inference for discrete time series. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 84(4):1287–1323,
2022.

• I. Papageorgiou, I. Kontoyiannis, L. Mertzanis, A. Panotopoulou, and M. Skoularidou.
Revisiting context-tree weighting for Bayesian inference. In 2021 IEEE International
Symposium on Information Theory (ISIT), pages 2906–2911, 2021.

Chapter 3. In this chapter, we derive an alternative representation of the BCT posterior in
terms of a branching process, providing a practical way of sampling from it and allowing to
establish theoretical results that further justify the BCT framework. This work appears in:

• I. Papageorgiou and I. Kontoyiannis. Posterior representations for Bayesian Context
Trees: Sampling, estimation and convergence. Bayesian Analysis, to appear, 2023.

• I. Papageorgiou and I. Kontoyiannis. The posterior distribution of Bayesian Context-
Tree models: Theory and applications. In 2022 IEEE International Symposium on
Information Theory (ISIT), pages 702–707, 2022.

Chapter 4. In this chapter, we consider the challenging task of entropy estimation. Having
as a starting point the BCT framework, we develop a fully-Bayesian methodology for this
task, and provide extensive experimental and theoretical results for it. This work is also
contained in:

• I. Papageorgiou and I. Kontoyiannis. Posterior representations for Bayesian Context
Trees: Sampling, estimation and convergence. Bayesian Analysis, to appear, 2023.

• I. Papageorgiou and I. Kontoyiannis. Truly Bayesian entropy estimation. In 2023 IEEE
Information Theory Workshop (ITW), pages 497–502, 2023.
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Chapter 5. In this chapter, we consider the challenging task of change-point detection. We
develop a Bayesian modelling framework based on piecewise homogeneous BCTs, along
with a collection of tools for inferring the number and location of change-points. These
contributions appear in:

• V. Lungu, I. Papageorgiou, and I. Kontoyiannis. Bayesian change-point detection
via context tree weighting. In 2022 IEEE Information Theory Workshop (ITW),
pages 125–130, 2022.

• V. Lungu, I. Papageorgiou, and I. Kontoyiannis. Change-point detection and segmenta-
tion of discrete data using Bayesian Context Trees. Submitted for publication, arXiv
preprint arXiv:2203.04341, 2022.

Chapter 6. In this chapter, we develop a very general Bayesian framework for building
flexible mixture models for real-valued time series that are based on context trees. The
proposed framework can be combined with any existing model class as a base model, with a
number of different examples and applications illustrating its practical utility. This work will
appear in the following conference paper and preprint:

• I. Papageorgiou and I. Kontoyiannis. Context-tree weighting for real-valued time series:
Bayesian inference with hierarchical mixture models. In 2023 IEEE International
Symposium on Information Theory (ISIT), 2023.

• I. Papageorgiou and I. Kontoyiannis. The Bayesian Context Trees State Space Model:
Interpretable mixture models for time series. In preparation, 2023.

Chapter 7. This final chapter contains some concluding remarks, including a brief summary
of the contributions of this thesis as well as a discussion of some promising directions for
future research.





Chapter 2

Bayesian Context Trees for Discrete
Time Series

This chapter contains our core methodological contributions for discrete-valued time series.
First we introduce the model class that we will be using, and then we develop an appropriate
prior structure for it, together with effective tools for Bayesian inference. Finally, extensive
experimental results are presented for the critical tasks of model selection, estimation and
prediction, in which our methods are found to outperform the state-of-the-art approaches.

2.1 Variable-memory Markov chains

The distribution of a full dth order Markov chain {Xn} with values in the finite state space,
or alphabet, A, is identified by its conditional distributions,

θs(a) := Pr(Xn = a|Xn−1 = xn−1,Xn−2 = xn−2, . . . ,Xn−d = xn−d), a ∈ A,

for every context s = (xn−1,xn−2, . . . ,xn−d) ∈ Ad of length d. If the alphabet A has size m,
the description of these conditional distributions requires the specification of (m− 1)md

parameters, which grows quickly with m and d. But suppose, for example, that A = {0,1,2},
and that when the most recent symbol xn−1 is a “1” the distribution of the next symbol is
independent of the remaining values xn−2, ...,xn−d , that is, the conditional probabilities,

Pr(Xn = a|Xn−1 = 1,Xn−2 = xn−2, . . . ,Xn−d = xn−d),

only depend on a. An example of how the distribution of such a 5th order, variable-memory
Markov chain may be represented by a labelled tree is shown in Figure 2.1.
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Figure 2.1: The tree model and parameters of a 5th order variable-memory chain.

Each leaf of the tree corresponds to a string s containing between one and five symbols
from A, determined by the labels along the path from the root to that leaf. Whenever the
string s consists of the same sequence of symbols as the most recent xi’s, the probability
that the next value of the chain will be “a” is θs(a), given by the distribution θs which is
associated to that leaf. For example,

Pr(Xn = 2|Xn−1 = 0,Xn−2 = 1,Xn−3 = 1, . . .) = Pr(Xn = 2|Xn−1 = 0,Xn−2 = 1) = θ01(2).

Note that, since the tree model for this chain has 13 leaves, instead of the full 2×35 = 486
parameters, it suffices to only specify 2×13 = 26.

2.1.1 Model description

Let {Xn} be a dth order Markov chain with values in an alphabet of size m. Without loss
of generality, we take A = {0,1, . . . ,m− 1} throughout. The model describing {Xn} as a
variable-memory chain will always be represented by a tree as in the example above.

Let T be an m-ary tree of depth no greater than d, which is proper, in that, if a node
in T is not a leaf, then it has exactly m children. This means that every length-d context
s := (x−1,x−2, . . . ,x−d) ∈ Ad has a unique suffix (x−1, . . . ,x− j) which is a leaf of T , for
some j ≤ d. Let C be the function that maps each context s ∈ Ad to a leaf of T . Viewing T
as the collection of its leaves, it is the range of C,

C : Ad → T ⊂
d⋃

i=0
Ai,

with the convention that A0 = {λ} contains only the empty string λ .
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For indices i ≤ j, we write X j
i for the vector of random variables (Xi,Xi+1, . . . ,X j) and

similarly x j
i ∈ A j−i+1 for a string (xi,xi+1, . . . ,x j) representing a particular realisation of

these random variables. Then the Markov property for a variable-memory chain {Xn} with
model T takes the form:

P(xn
1|x0

−d+1) := Pr(Xn
1 = xn

1|X0
−d+1 = x0

−d+1) =
n

∏
i=1

P(xi|xi−1
i−d) =

n

∏
i=1

P(xi|C(xi−1
i−d)). (2.1)

The complete description of the distribution of {Xn}, in addition to the model T , requires
the specification of a set of parameters, θ = {θs ; s ∈ T}. To every s ∈ T we associate a
probability vector,

θs := (θs(0),θs(1), . . . ,θs(m−1)),

where the θs( j) are nonnegative and sum to one. Then (2.1) can be written as,

P(xn
1|x0

−d+1) =
n

∏
i=1

θC(xi−1
i−d)

(xi) = ∏
s∈T

∏
j∈A

θs( j)as( j), (2.2)

where each element as( j) of the count vector as = (as(0),as(1), . . . ,as(m−1)) is,

as( j) := # times symbol j ∈ A follows context s in xn
1. (2.3)

2.2 Bayesian modelling and inference

Throughout this work, we consider every dth order, variable-memory chain {Xn} as described
by a (proper) tree model T with associated parameters θ = {θs ; s ∈ T}. Here we define a
family of prior distributions on (T,θ).

2.2.1 Prior structure

Model prior. For a maximal depth D ≥ 0 and an alphabet A = {0,1, . . . ,m− 1} of size
m ≥ 2, let T (D) denote the collection of all (proper) tree models T on A with depth no
greater than D. Given an arbitrary β ∈ (0,1), we define the prior distribution,

π(T ) := πD(T ;β ) := α
|T |−1

β
|T |−LD(T ), T ∈ T (D), (2.4)

where α := (1−β )1/(m−1), |T | denotes the number of leaves of T , and LD(T ) denotes the
number of leaves of T at depth D. As it is described below in more detail, the essence of this
prior is to penalise the larger trees by an exponential amount.
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The following lemma, proved in Appendix B.1, states that (2.4) does indeed define a
proper probability distribution.

Lemma 2.1. For any D ≥ 0 and any β ∈ (0,1): ∑T∈T (D)πD(T ;β ) = 1.

Choice of β . The first factor, α |T |−1, in the definition of the model prior πD(T ;β ) is the
more important and easier one to interpret, showing that larger models are penalised by an
exponential amount, while the second factor, β |T |−LD(T ), adds a less intuitive penalty only to
the leaves at depth strictly smaller than D.

Consider two models S,T ∈ T (D) such that S is a subtree of T . If T is produced by
adding a single branch of m nodes to one of the leaves, s, say, of S, and s is at depth D−2 or
smaller, then |T |= |S|+m−1 and LD(T ) = LD(S), so that,

πD(T ;β )

πD(S;β )
= (1−β )β m−1,

which, as desired, is always less than one. But if T is produced from S by adding a branch of
m nodes to a node s at depth D−1, then LD(T ) = LD(S)+m, and,

πD(T ;β )

πD(S;β )
=

1−β

β
.

This is strictly decreasing in β , and for β < 1/2 it is greater than one, while for β > 1/2 it is
smaller than 1. Therefore, πD(T ;β ) penalises larger trees by an exponential amount as long
as β ≥ 1/2, and larger values of β make the penalisation more severe.

Also, for larger alphabet sizes, α = (1−β )1/(m−1) becomes very close to 1 and the
second factor dominates, an effect which is unintuitive and less desirable. Therefore, in
practice we will always take the default value to be β ≈ 1−2−m+1, so that α ≈ 1/2, unless
there are specific reasons for a different choice.

A more explicit interpretation of β is given in Chapter 3, where an alternative description
of the prior πD(T ;β ) is given in terms of a simple branching process.

Prior on θ . Given a model T ∈ T (D), we place an independent Dirichlet prior with
parameters (1/2,1/2, . . . ,1/2) on each θs so that, π(θ |T ) = ∏s∈T π(θs), where,

π(θs) = π(θs(0),θs(1), . . . ,θs(m−1)) =
Γ(m/2)

πm/2

m−1

∏
j=0

θs( j)−
1
2 ∝

m−1

∏
j=0

θs( j)−
1
2 . (2.5)

Although we take the parameter vector of the Dirichlet prior for all θs to be (1/2, . . . ,1/2),
corresponding to the Jeffreys prior (Jeffreys, 1998; Robert et al., 2009), the extension of all
our results to arbitrary Dirichlet parameters is straightforward as outlined in Appendix B.1.
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2.2.2 Marginal likelihood and prior predictive likelihood

Likelihood. Given the model T and its associated parameters θ = {θs ; s ∈ T}, from (2.2) it
is easy to obtain the likelihood,

P(xn
1|x0

−d+1,θ ,T ) = ∏
s∈T

m−1

∏
j=0

θs( j)as( j), (2.6)

where as are the count vectors defined in (2.3). By convention, when we write ∑s∈T or ∏s∈T ,
we take the corresponding sum or product over all the leaves s of the tree, not all its nodes.
Also, in order to avoid cumbersome notation, in what follows we often write x for the entire
time series xn

1 and suppress the dependence on its initial context x0
−d+1, so that, for example,

P(x|T,θ) := P(xn
1|x0

−d+1,θ ,T ).

Marginal likelihood. A useful property of the BCT framework is that the parameters θ can
easily be integrated out, so that the marginal likelihoods P(x|T ) can be expressed in closed
form. This result, stated without proof in Lemma 2.2, is based on a standard computation.

Lemma 2.2. The marginal likelihood P(x|T ) of the observations x given a model T is,

P(x|T ) =
∫

P(x,θ |T )dθ =
∫

P(x|θ ,T )π(θ |T )dθ = ∏
s∈T

Pe(as),

where the count vectors as = (as(0),as(1), . . . ,as(m−1)) are defined in (2.3) and the esti-
mated probabilities Pe(as) are defined by,

Pe(as) :=
∏

m−1
j=0 [(1/2)(3/2) · · ·(as( j)−1/2)]

(m/2)(m/2+1) · · ·(m/2+Ms −1)
, (2.7)

where Ms := as(0)+as(1)+ · · ·+as(m−1), with the convention that any empty product is
taken to be equal to 1.

Prior predictive likelihood. In terms of inference, one of the main objects of interest is the
model posterior distribution,

π(T |x) = P(x|T )π(T )
P(x)

,

where the denominator P(x) is its normalising constant, also known as the prior predictive
likelihood, or evidence (MacKay, 2003). Recalling (1.1), this term is given by,

P(x) = P∗
D(x) := ∑

T∈T (D)

πD(T ;β )P(x|T ) = ∑
T∈T (D)

πD(T ;β )
∫

P(x|θ ,T )π(θ |T )dθ .
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The difficulty in computing P∗
D(x) comes, in part, from the fact that the class T (D) of

variable-memory models is enormously rich, even for moderate (or even small) alphabet
sizes m and maximal depths D. The size of T (D) grows doubly exponentially in D; in fact, a
simple computation shows that,

|T (D)| ≥
D−1

∑
d=0

2md
−D. (2.8)

In the next section, we describe three exact inference algorithms for the class of Bayesian
context trees. We show that, perhaps somewhat surprisingly, P∗

D(x) can be computed exactly
and in a very efficient manner, and that the mode of the posterior π(T |x) as well as the next
few most likely models can be explicitly identified.

2.3 Inference algorithms

This section contains our core methodological contributions, which form the basis for most
of the statistical and learning tasks that can be performed within the BCT framework. In
particular, we develop a collection of methodological and algorithmic tools which are proven
to allow for exact and very efficient Bayesian inference.

The CTW algorithm is first described in Section 2.3.1, and it is proved that it indeed
computes the prior predictive likelihood P∗

D(x) of a time series x. Section 2.3.2 introduces the
BCT algorithm, which identifies the maximum a posteriori probability (MAP) tree model T ∗

1

given the data x, along with its exact posterior probability π(T ∗
1 |x). A more general algorithm,

the k-BCT algorithm, is described in Section 2.3.3. This is proven to identify not just the
mode T ∗

1 of the posterior π(T |x) on model space, but the top-k a posteriori most likely tree
models, T ∗

1 ,T
∗

2 , . . . ,T
∗

k , for any k ≥ 1. All three algorithms are implemented in the publicly
available R package BCT (Papageorgiou et al., 2022).

We also discuss how the posterior probability π(T |x) of any model T can be easily
computed, and we identify the full conditional density of the parameters, π(θ |x,T ). In order
to explore the posterior distribution further, a family of variable-dimension MCMC samplers
are developed in Section 2.3.4. Finally, in Section 2.3.5 we describe how the CTW, BCT and
k-BCT algorithms can all be updated sequentially, and show that their complexity is only
linear in the length of the time series x. In particular, the fact that the CTW algorithm can be
implemented in a sequential fashion means that it can be effectively used for efficient online
prediction, some which is very important in practice; cf. Section 2.6.
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2.3.1 The Context Tree Weighting (CTW) algorithm

The CTW algorithm takes as input: The size of the alphabet m ≥ 2, the maximum context
depth D ≥ 0, a time series of observations xn

1 together with the initial context x0
−D+1, all

taking values in the alphabet A, and the value of the prior parameter β ∈ (0,1).

Algorithm description. The CTW algorithm executes the following steps:

(i) Build an m-ary tree, TMAX, whose leaves are all the contexts xi−1
i−D, i = 1,2 . . . ,n, that

appear in the observations xn
−D+1. If some node s of TMAX is at depth d < D and some

but not all of its children are in TMAX, then add all its remaining children as well, so
that TMAX is a proper tree.

(ii) Compute the count vector as as in (2.3), at every node s of the tree TMAX (not only at
the leaves), so that as will be the all-zero vector for the additional leaves included in
the last step of (i).

(iii) Compute the estimated probability Pe,s := Pe(as) given by (2.7), at each node s of the
tree TMAX, with the convention that Pe(as) = 1 when as is the all-zero count vector.

(iv) Write s j for the concatenation of context s and symbol j, corresponding to the jth
child of node s. Starting at the leaves and proceeding recursively towards the root, at
each node s of the tree TMAX compute the mixture (or weighted) probabilities:

Pw,s :=

{
Pe,s, if s is a leaf,
βPe,s +(1−β )∏

m−1
j=0 Pw,s j, otherwise.

(2.9)

(v) Output the weighted probability Pw,λ at the root λ .

Theorem 2.1. The weighted probability Pw,λ at the root λ computed by the CTW algorithm
is exactly the prior predictive likelihood of the observations,

Pw,λ = P∗
D(x) = ∑

T∈T (D)

πD(T ;β )
∫

θ

P(xn
1|x0

−D+1,θ ,T )π(θ |T )dθ ,

where the sum is over all proper context-tree models of depth no greater than D.

Proof. Theorem 2.1 is proved in Appendix B.1. Its proof is by induction and is based on
some structural properties of the BCT prior πD(T ;β ). □
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2.3.2 The Bayesian Context Tree (BCT) algorithm

The BCT algorithm takes the same input as CTW and executes the following steps:

(i) Build the m-ary tree TMAX and compute the count vectors as and the estimated proba-
bilities Pe,s = Pe(as) at all nodes s of TMAX, as in steps (i)–(iii) of CTW.

(ii) Starting at the leaves and proceeding recursively towards the root, at each node s of the
tree TMAX compute the maximal probabilities,

Pm,s :=


Pe,s, if s is a leaf at depth D,
β , if s is a leaf at depth < D,

max
{

βPe,s, (1−β )∏
m−1
j=0 Pm,s j

}
, otherwise.

(2.10)

(iii) Starting at the root and proceeding recursively with its descendants, for each node s: If
the maximum in (2.10) can be achieved by the first term, then prune all its descendants
from the tree TMAX; otherwise, repeat the same process at each of the m children of s.

(iv) After all nodes have been exhausted in (iii), output the resulting tree T ∗
1 and the

maximal probability at the root Pm,λ .

Theorem 2.2. For all β ≥ 1/2, the tree T ∗
1 produced by the BCT algorithm is the MAP tree

model (or one of the MAP tree models, in case the maximum below is not uniquely achieved),

π(T ∗
1 |x) = max

T∈T (D)
π(T |x), (2.11)

and the maximal probability at the root satisfies,

Pm,λ = P(x|T ∗
1 )πD(T ∗

1 ;β ) = P(x,T ∗
1 ). (2.12)

Proof. This theorem is also proved in Appendix B.1. □

2.3.3 The top-k Bayesian Context Trees (k-BCT) algorithm

Although the k-BCT algorithm is conceptually a natural generalisation of BCT, the precise
description of its most efficient implementation is quite lengthy. So, for the sake of both
clarity and brevity, we first describe here a less practical, idealised version of k-BCT, which
is conceptually identical with its the actual practical version and only differs from it in the
initialisation step of the leaves at depth d < D. The actual practical algorithm is given in
Appendix A, along with a discussion of its implementation complexity.
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Algorithm description. The idealised k-BCT algorithm takes the same input as CTW,
together with the number k ≥ 1 of the a posteriori most likely models to be determined. It
executes the following steps:

(i) Let TMAX be the complete m-ary tree at depth D (this is the “idealised” part), and
compute the count vectors as and the estimated probabilities Pe,s = Pe(as) at all nodes s
of TMAX as in steps (ii) and (iii) of CTW.

(ii) Starting at the leaves and proceeding towards the root, at each node s compute a list of k
maximal probabilities P(i)

m,s and k position vectors c(i)s = (c(i)s (0),c(i)s (1), . . . ,c(i)s (m−1)),
for i = 1,2, . . . ,k, where each c(i)s ( j) is an integer between 0 and k, recursively, as
follows.

(iia) At each leaf s, we let P(1)
m,s = Pe,s and c(1)s = (0,0, . . . ,0), where the all-zero

vector c(1)s indicates that P(1)
m,s corresponds to the value of Pe,s and does not depend

on the children of s (since there are none). For i = 2,3, . . . ,k, we leave P(i) and
c(i)s undefined.

(iib) At each node s having only m descendants (which are necessarily leaves),
we compute the two probability-position vector pairs βPe,s, (0,0, . . . ,0) and
(1−β )∏

m−1
j=0 P(1)

m,s j, (1,1, . . . ,1) (where the all-1 vector indicates that the latter
probability only depends on the first maximal probability of each of the children),
and sort them as P(1)

m,s , c(1)s and P(2)
m,s , c(2)s in order of decreasing probability. For

i = 3,4, . . . ,k, we leave P(i) and c(i)s undefined.

(iic) A general internal node s has m children, where each child s j has a list of k j (for
some 1 ≤ k j ≤ k) probability-vector pairs P(i)

m,s j,c
(i)
s j , 1 ≤ i ≤ k j. We compute the

probability βPe,s with associated position vector (0,0, . . . ,0), and all possible
probability-position vector pairs,

(1−β )
m−1

∏
j=0

P(i j)
m,s j, (i0, i1, . . . , im−1), (2.13)

for all possible combinations of indices 1 ≤ i j ≤ k j for 0 ≤ j ≤ m− 1. We
then sort these k′ = 1+ k0 × k1 ×·· ·× km−1 probabilities in order of decreasing
probability, and rename the top-k of them as P(i)

m,s, for i = 1,2, . . . ,k, together with
their associated position vectors c(i)s . [Of course, if k′ < k, after sorting we leave
the remaining k− k′ probability-position vector pairs undefined.]

(iii) Having determined all maximal probabilities P(i)
m,s for all nodes s and 1 ≤ i ≤ k, we now

determine the “top-k” trees T ∗
1 ,T

∗
2 , . . . ,T

∗
k from the corresponding position vectors c(i)s .
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For each i we repeat the following process, starting at the root and proceeding until all
available nodes of the tree TMAX have been exhausted.

(iiia) Depth d = 0. At the root node λ , we examine c(i)
λ

. If it is the all-zero vector,
then T ∗

i is the tree consisting of the root node only. Otherwise, we add to T ∗
i

the branch of m children starting at the root, and proceed to examine each of the
nodes corresponding to the m children recursively.

(iiib) Depth d = 1. Reaching node s = j corresponding to the jth child of the root,
means that t = c(i)

λ
( j) is nonzero. We examine c(t)s : If it is the all-zero vector,

then we prune from T ∗
i all the descendants of s and move to the next unexamined

node; otherwise, we add to T ∗
i the branch of m children starting at s, and proceed

to examine each of the nodes corresponding to the m children recursively.

(iiic) General depth 1 ≤ d ≤ D− 1. Reaching a node s j at depth d from its parent
node s means that we decided to visit s j because t = c(u)s ( j) is nonzero for the
appropriate index u (corresponding to the position vector c(u)s that was examined
at node s). We examine c(t)s j : If it is the all-zero vector, then we prune from T ∗

i all
the descendants of s j and move to the next unexamined node; otherwise, we add
to T ∗

i the branch of m children starting at s j, and proceed to examine each of the
nodes corresponding to the m children recursively.

(iiid) Depth d = D. Reaching a node s at depth D means we have reached a leaf of
TMAX, so we simply add s to T ∗

i and proceed to the next unexamined node.

(iv) Output the k resulting trees T ∗
i and the k maximal probabilities at the root, P(i)

m,λ , for
i = 1,2, . . . ,k.

Theorem 2.3. For any β ≥ 1/2, the trees T ∗
1 ,T

∗
2 , . . . ,T

∗
k produced by the k-BCT algorithm

are the k a posteriori most likely tree models. For each i = 1,2, . . . ,k,

π(T ∗
i |x) = max(i)

T∈T (D)
π(T |x), (2.14)

where max(i)t∈T f (t) of a function f defined on a discrete set of arguments t ∈ T denotes the
ith largest value of f . Moreover, the ith maximal probability at the root satisfies,

P(i)
m,λ = P(x|T ∗

i )πD(T ∗
1 ;β ) = P(x,T ∗

i ), i = 1,2, . . . ,k.

Proof. Theorem 2.3 is also proved in Appendix B.1. We note that, if some of the maxima
in (2.11) are not uniquely achieved, then T ∗

1 , . . . ,T
∗

k are one of the equivalent collections of k
a posteriori most likely models. □
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Computation of posterior probabilities

In addition to the prior predictive likelihood P∗
D(x) = Pw,λ computed by CTW, and the

a posteriori most likely models identified by the BCT and k-BCT algorithms, there are several
other useful quantities that can easily be obtained through the results of these algorithms.

Model posterior probabilities. For any model T ∈ T (D),

π(T |x) = P(x|T )π(T )
P∗

D(x)
=

π(T )∏s∈T Pe(as)

Pw,λ
, (2.15)

where P∗
D(x) = Pw,λ is the prior predictive likelihood computed by CTW, and the numerator

is given as in Lemma 2.2. If a model T has a leaf s that is not included in the tree TMAX

generated by CTW, we follow the convention of setting Pe(as) = 1.

Full conditional density of θ . Conditional on a model T and observations x, the density of
the parameters θ = {θs ; s ∈ T} is,

π(θ |x,T )∝ P(x|θ ,T )π(θ |T )∝

(
∏
s∈T

m−1

∏
j=0

θs( j)as( j)

)(
∏
s∈T

m−1

∏
j=0

θs( j)−
1
2

)
,

where we have used the definition of the prior on θ in (2.5) and the expression for the
likelihood (2.6). Therefore, the full conditional density π(θ |x,T ) is the product of Dirichlet
densities,

π(θ |x,T )∼ ∏
s∈T

Dir(as(0)+1/2,as(1)+1/2, . . . ,as(m−1)+1/2). (2.16)

2.3.4 MCMC samplers

The k-BCT algorithm can identify the k a posteriori most likely models, including in cases
where the posterior π(T |x) is multimodal, but its computational complexity grows with k,
limiting its practical applicability to moderate values of k. In this section, we describe a
family of effective variable-dimension MCMC samplers (Robert and Casella, 2004) that
make it possible to explore π(T |x) further, and to sample from the posterior π(θ ,T |x) jointly
on models and parameters.

The random walk (RW) sampler for π(T |x) is a Metropolis-Hastings (MH) algorithm (Hast-
ings, 1970; Metropolis et al., 1953) with a proposal distribution that, at each step, either adds
or removes an m-tuple of leaves from the current tree. It takes as input the same parameters
as CTW together with: An initial model T (0) ∈ T (D) and the tree TMAX along with the
estimated probabilities Pe,s at all its nodes, as computed by CTW.
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RW sampler. It executes the following steps at each MCMC iteration t = 1,2, . . . ,N −1:

(i) Given T (t), propose a new tree T ′ as follows:

(a) If T (t) is the empty tree Λ := {λ} consisting only of the the root node, let T ′ be
the complete tree at depth 1, Tc(1).

(b) If T (t) is the complete m-ary tree at depth D, Tc(D), choose uniformly at random
one of the internal nodes s at depth D−1 and let T ′ be the same as T (t) but with
the m children of s removed.

(c) Otherwise, with probability 1/2 decide to propose a larger tree T ′, formed by
choosing uniformly at random one of the leaves of T (t) at depths ≤ D−1 and
adding its m children to form T ′;

(d) Or, with probability 1/2 decide to propose a smaller tree T ′, formed by choos-
ing uniformly at random one of the internal nodes s of T (t) that only have m
descendants and removing the m leaves that stem from s, to form T ′.

(ii) Either accept T ′ and set T (t+1) = T ′, or reject it and set T (t+1) = T (t), with correspond-
ing probabilities α(T (t),T ′) = min{1,r(T (t),T ′)} and 1−α(T (t),T ′), respectively;
explicit expressions for the accept-reject ratios r(T,T ′) follow easily from standard
MH methodology (Chib and Greenberg, 1995), and are given in Appendix B.4.

The jump sampler for π(T |X) is a modification of the RW sampler, which, in addition to
nearest neighbour moves, also allows for jumps to any one of the k most likely models. This
way we overcome the common difficulty of RW samplers to move between separated modes
of multimodal posterior distributions.

Jump sampler. It takes as input the same parameters as the the RW sampler, and also the
value of a jump parameter p ∈ (0,1) and the collection T ∗ = {T ∗

1 , . . . ,T
∗

k } of the top-k trees
computed by k-BCT. It executes the following steps at each iteration t = 1,2, . . . ,N −1:

(i) Given T (t), propose a new tree T ′ as follows:

(a) With probability (1− p), propose a new tree T ′ as in steps (ia)–(id) of the RW
sampler;

(b) Or, with probability p, propose a jump move: Let T ′ be one of the top-k trees T ∗
i ,

uniformly chosen from T ∗.

(ii) Either accept T ′ and set T (t+1) = T ′, or reject it and set T (t+1) = T (t), with correspond-
ing probabilities α(T (t),T ′) = min{1,r(T (t),T ′)} and 1−α(T (t),T ′), where the ratios
r(T,T ′) are given explicitly in Appendix B.4.
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Note that a jump move to one of the top-k models T ∗
i may be proposed from any state T (t) of

the sampler, but it only has a nonzero probability of being accepted if T (t) itself is either one
of the T ∗

i or a neighbour of one of them. This suggests that the jump parameter should be
chosen so that (1− p) is not too small; in all of our experiments below we take p = 1/2.

MCMC convergence. The target distribution of both the RW and jump samplers is the
posterior π(T |x), T ∈ T (D), on model space. Unlike with most MCMC samplers used
in Bayesian inference, here we can in fact compute the value of the target distribution
π(T |x) exactly, for any specific T ∈ T (D), as noted in (2.15). So, knowing the posterior
probabilities π(T |x) precisely (not only up to a multiplicative constant) means that it is easy
to obtain a good first indication of whether the sampler has converged, or at least whether
it has spent the “right” amount of time in the important areas of the support of π(T |x) near
its mode(s): Simply compute the frequency of each of the top-k models T ∗

i in the MCMC
sample, and compare it with its actual posterior probability π(T ∗

i |x).
Although we have not observed convergence issues in any of our experiments, we note

that more sophisticated MCMC methods can also be used, e.g., tempering the likelihood
(Robert and Casella, 2004) or using a Wang-Landau-style algorithm to force the sampler to
spend a specified proportion of time at models of each depth (Atchade and Liu, 2004).

Joint sampler. Being able to obtain MCMC samples {T (t)} for π(T |x), and knowing the
full conditional density π(θ |x,T ) of the parameters explicitly as in (2.16), it is simple to
obtain a corresponding sequence of samples {(θ (t),T (t))} for the posterior π(θ ,T |x) jointly
on models and parameters. This can be done by drawing a conditionally independent sample
θ (t) ∼ π(θ |x,T (t)) at each MCMC iteration.

2.3.5 Sequential updates and computational complexity

As more observations become available, the results of all the three exact inference algorithms
can be updated sequentially, in a very efficient manner. This facilitates their online use in
applications where it is important that data be processed sequentially rather than in large
blocks, as in the critical task of prediction; cf. Section 2.6.

For CTW, having computed P∗
D(x

n
1|x0

−D+1) and given an additional sample xn+1, the
new prior predictive likelihood P∗

D(x
n+1
1 |x0

−D+1) can be obtained in O(D) operations. In
specific, if we denote sD,sD−1, . . . ,s0 to be the contexts of lengths D,D−1, . . . ,0 immediately
preceding xn+1, so that in particular sD = xn

n−D+1 and s0 = λ , then updates need to be
performed only at these D+ 1 nodes in the tree TMAX. This can be done by executing
steps (ii)–(iv) of CTW only at these nodes, as follows.
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Sequential updates. If xn+1 = j, at each of the nodes sD,sD−1, . . . ,s0 in the tree TMAX

already constructed, in that order and only there:

(ii′) Update as( j) and Ms by increasing each of their values by 1.

(iii′) Update Pe,s = Pe(as) by multiplying its earlier value by (as( j)−1/2)/(m/2+Ms−1),
using the updated values of as( j) and Ms.

(iv′) Re-compute the probability Pw,s.

The required result P∗
D(x

n+1
1 |x0

−D+1) is the (updated) weighted probability Pw,λ at the root.
The corresponding update rules for the BCT and k-BCT algorithms are analogous and easy
to determine and implement.

Computational complexity. Next we briefly discuss the implementation complexity of the
three algorithms in Sections 2.3.1–2.3.3, as a function of the parameters n,m,D, and k. The
complexity of CTW is linear in each of n,m and D, and in fact it is of order O(nmD).

To see this, observe that in step (i), for each xi, 1 ≤ i ≤ n, a new node is created for
each of the (D+1) contexts of xi, of lengths 0,1, . . . ,D. This requires O(nD) operations and
produces the tree TMAX which has no more than nD+1 nodes. The second and third steps,
where the count-vectors as and the probabilities Pe(as) are computed, can be integrated into
the first one. For each i, when we visit each of the (D+1) contexts s of xi, we increase the
corresponding counts as(xi) by one and update the values of Pe(as), using a constant number
of operations. Therefore, the additional complexity of steps (ii) and (iii) is again O(nD).
Finally, to compute the weighted probabilities in step (iv), at each node of TMAX (which are
no more than nD+1 in total), we perform O(m) operations, so that the overall computational
complexity is O(nD)+O((nD+1)m) = O(nmD) operations.

Following the same reasoning, it is easy to see that the complexity of the BCT algorithm
is also O(nmD). A similar argument shows that, as a function of n and D, the complexity of
the k-BCT algorithm is also O(nD). However, in order to determine the exact complexity of
k-BCT as a function of all the parameters n,m,D and k, we actually need its most-efficient
implementation, as described in Appendix A. As outlined in more details there, by using a
priority queue to maintain all possible candidates and efficiently pick the top-k combinations
for the lists of the maximal probabilities Pm,s, the complexity of the k-BCT algorithm in its
most-efficient implementation can be reduced to O(nmD× km log(km)).

From the above discussion and the description of the algorithms it is also easy to see that
the memory requirements of the CTW and BCT algorithms are of order O(nmD), while for
the k-BCT algorithm they are of order O(nmDk).
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2.3.6 Bibliographical remarks

The CTW algorithm was first introduced for data compression in 1993. It was originally
described for binary observations (m = 2) and only in the special case of β = 1/2 by
Willems et al. (1993a). The general version of CTW for chains on non-binary alphabets
and arbitrary β was introduced by Tjalkens et al. (1994), without reference to Bayesian
inference. The connection between CTW and the prior predictive likelihood P∗

D(x) established
in Theorem 2.1 was given in the restricted setting m = 2,β = 1/2 in the unpublished work
of Willems et al. (1993c), and the outline of a corresponding argument in the case of general β

(still only for binary time series) was later described in Willems et al. (2002). Another
approach investigating the Bayesian interpretation of CTW in the setting of data compression
was studied in Matsushima and Hirasawa (1994, 2009). The result of Theorem 2.1 at the
level of generality stated here is new, as is the class of prior distributions πD(T ;β ).

A special case of the BCT algorithm, termed the Context Tree Maximizing (CTM)
algorithm, was first introduced, again in the context of data compression, by Willems and
Volf (1994, 1995); Willems et al. (1993c), for binary observations (m = 2) and only in the
special case of β = 1/2. An extension for arbitrary β (still only for m = 2) was later given in
Willems et al. (2002); the general version of the BCT algorithm presented here is new. The
fact that the BCT algorithm identifies the MAP tree model was established in the restricted
setting m = 2, β = 1/2 in Willems et al. (1993c, 2000), and some generalisations (still
restricted to m = 2) are discussed in Willems et al. (2002). Theorem 2.2 at the level of
generality stated here is new.

The k-BCT algorithm, Theorem 2.3, and the MCMC samplers of Section 2.3.4 are new.
All the methodological contributions, algorithms and theoretical results presented in the rest
of this thesis are also new, broadening the scope of applications of context-tree models by a
lot, in a number of different practical settings.

Further connections and comments. Another point of view which naturally relates to the
present development is Rissanen’s celebrated Minimum Description Length (MDL) principle
(Grünwald, 2007; Rissanen, 1987, 1989). The MDL principle provides a broad operational
foundation for statistical inference, as well as constructive tools and appealing metaphors
for selecting prior distributions (Chipman et al., 2001). In particular, MDL considerations
underpin much of the original work on CTW and our own choice of priors. A method
commonly used for model comparison is the Bayesian Information Criterion (BIC), derived
by Schwarz (1978) as an asymptotic approximation to twice the logarithm of the Bayes
factor between two models (Kass and Raftery, 1995). The form of the BIC and its familiar
“(1/2) logn-per-degree-of-freedom” log-likelihood penalty also shares deep connections with
the MDL principle (Barron et al., 1998; Csiszár and Shields, 2000).
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2.4 Model selection

Here, we compare the model selection performance of the BCT algorithms of Section 2.3
with the VLMC and MTD approaches described in the Introduction. In the remaining of this
section we give brief descriptions of how these three different techniques will be used, and
then present extensive experimental results with simulated and real data.

Bayesian Context Trees. Variable-memory models describe a flexible and rich class of
higher-order Markov chains that admit parsimonious parametrisations and allow for natural
graphical representations of important structural dependencies. In particular, the shape of the
context tree can be easily interpreted and provides useful information about the regularities
present in the data (Bejerano and Yona, 2001; Mächler and Bühlmann, 2004). However,
since BCTs are a vast model class, global model selection techniques based, e.g., on criteria
like AIC and BIC, cannot be applied directly via, say, exhaustive search.

This is why it is so important that the BCT framework provides a consistent foundation
for learning and evaluating appropriate models for a given data set x. The BCT and the
k-BCT algorithms can be used to identify the top-k a posteriori most likely models T ∗

i ,
i = 1,2, . . . ,k, for some reasonable k, and we can further explore the model posterior π(T |x)
using the MCMC samplers of Section 2.3.4. With the interpretation of π(T |x) as a measure
of the “truth” of a model T (Chipman et al., 2001), the posterior probability provides a
quantitative confidence measure for the resulting models.

Variable-length Markov chains. The VLMC class (Bühlmann, 2000; Bühlmann and Wyner,
1999) consists of tree models very similar to those in the BCT class T (D), except for the
fact that VLMC trees are not necessarily proper. The associated VLMC model selection
algorithm also has similarities with the pruning procedure of the BCT algorithm. First, a
version of the tree TMAX is constructed and the count vectors as are computed similarly
with BCT. And then, TMAX is pruned based on a cut-off parameter K, which plays a role
analogous to β , finally producing the fitted model. Theoretical justifications for the resulting
VLMC model are provided in Bühlmann and Wyner (1999), where general conditions for
asymptotic consistency are established.

The VLMC results in our experiments below are obtained using the implementation
in the R package VLMC (Mächler, 2022). Since the algorithm that uses the default value of
the cut-off parameter K (“default-VLMC”) generally gives significantly inferior results, we
also examine the results obtained by optimizing the choice of K in order to minimise the
BIC or the AIC score (“best-BIC-VLMC” and “best-AIC-VLMC”). But these parameter
optimisations are computationally very costly, as we point out in more detail in the discussion
at the end of Section 2.4.1.



2.4 Model selection 29

Mixture transition distribution models. The original ‘single-matrix’ version of the MTD
model (Raftery, 1985) is based on a different way of parsimoniously representing the Dth
order transition probabilities of a Markov chain, as a mixture of the form,

P(x0|x−1
−D) =

D

∑
d=1

λdQ(x0|x−d),

where (λ1,λ2, . . . ,λD) are lag parameters and Q = (Q( j|i)) is a stochastic matrix. Numerical
methods for fitting this model via approximate maximum likelihood were developed by
Raftery and Tavaré (1994), and a generalisation, the multi-matrix MTD model, or MTDg,
was introduced by Berchtold (1996, 1998). The MTDg model is based on the representation,

P(x0|x−1
−D) =

D

∑
d=1

λdQ(d)(x0|x−d),

where a different stochastic matrix Q(d) = (Q(d)( j|i)) is used for each lag d = 1,2, . . . ,D.
In our experiments below we use the MTD and MTDg implementation in the R package

march (Maitre et al., 2022). For each data set we run the MTD and the MTDg algorithms for
a range of possible depths D, and choose the value of D that minimises the corresponding
BIC or AIC score. We refer to the resulting models as the best-BIC and best-AIC models.
Recently, based on the sparsity-inducing prior of Heiner et al. (2019), a Bayesian approach
was also developed for model selection and estimation with MTD models (Heiner and Kottas,
2022b), while stationary MTD models have also been studied in Zheng et al. (2022).

Alternative approaches. Closing, we note that there exist a number of alternative approaches
to modelling discrete time series apart from those described above and in the Introduction.
An important collection of tools is provided by Hidden Markov Models (HMMs), which are
a general and very broadly used model class, with a wide range of applications and a variety
of associated methodological procedures for learning and inference (Bishop, 2006; Murphy,
2012; Zucchini and MacDonald, 2017). Another interesting class of models is that of
reversible variable-memory chains (Bacallado, 2011; Bacallado et al., 2009, 2013, 2016).

A more classical approach to discrete time series modelling is via discrete analogs of
linear models, often using multinomial logit or probit regression (Yee, 2010). Such a linear-
predictor approach is described in Zeger and Liang (1986), and a different parsimonious
class of models with an emphasis on binary time series is given in Fahrmeir and Kaufmann
(1987). A treatment of partial likelihood inference on generalised discrete linear models
is presented in Fokianos and Kedem (2003), and an extension of the traditional ARMA
methodology to integer autoregressive models for count time series is developed in Fokianos
(2012). For a detailed overview of some of the current and most recent activity in the field of
discrete-valued time series, see also Davis et al. (2016).
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Model comparison. A natural and logically consistent way to compare different models
from T (D) is to compare their posterior probabilities π(T |x), but this is not possible for
models produced by different methods. In such cases, we follow the common practice of
comparing their corresponding Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) scores (Akaike, 1973; Schwarz, 1978). BIC is asymptotically consistent
when dealing with a fixed number of finite-dimensional parametric models (Hannan and
Quinn, 1979; Wei, 1992) whereas AIC is typically asymptotically efficient and minimax
optimal in infinite-dimensional, nonparametric settings (Barron et al., 1999; Shibata, 1980);
see also Dziak et al. (2019). This dichotomy suggests that, for our purposes, BIC is the more
relevant criterion, as confirmed by our findings in Section 2.4.1 and Appendix C.1.

2.4.1 Simulated data

Here we compare the performance of the BCT, VLMC, and MTD approaches described
above on a relatively short synthetic time series. Analogous comparisons on simulated data
from two more chains – one from the VLMC paper (Bühlmann, 2000) and one from the
MTD paper (Berchtold and Raftery, 2002) – are carried out in Appendix C.1.

A ternary 5th order Markov chain. We revisit the 5th order variable-memory chain {Xn}
on the alphabet A = {0,1,2} of m = 3 letters, with model given by the tree T shown in
Figure 2.1 of Section 2.1. The associated parameters at its leaves are given by,

θ1 = (0.4,0.4,0.2), θ2 = (0.2,0.4,0.4), θ00 = (0.4,0.2,0.4), θ01 = (0.3,0.6,0.1),

θ022 = (0.5,0.3,0.2), θ0201 = (0.8,0.05,0.15), θ0202 = (0.1,0.2,0.7),

θ0210 = (0.35,0.55,0.1), θ0211 = (0.05,0.25,0.7), θ0212 = (0.1,0.3,0.6),

θ02000 = (0.3,0.45,0.25), θ02001 = (0.1,0.1,0.8), θ02002 = (0.7,0.2,0.1).

With a time series x consisting of n= 10,000 simulated observations, the MAP tree model T ∗
1

obtained by the BCT algorithm with D = 10 and β = 1−2−m+1 = 3/4 is the true underlying
tree model. Its posterior probability is π(T ∗

1 |x) ≈ 0.3946 while its prior probability is
π(T ∗

1 )≈ 5.8×10−6. Although it may seem quite unremarkable that the “correct” model is
identified based on a series of 10,000 samples, it is worth noting that with D = 10 there are
more than 105900 different models in T (D). With n = 1,000 samples, D = 10, and β = 3/4,
the top-5 a posteriori most likely models produced by the k-BCT algorithm are shown below
in Figure 2.2. The MAP model is a depth-4 subtree of the true underlying model, with prior
π(T ∗

1 )≈ 2.9×10−4 and posterior π(T ∗
1 |x)≈ 0.2702. The true model appears as the fourth

most likely tree, T ∗
4 , with posterior π(T ∗

4 |x)≈ 0.0213. The sum of the posterior probabilities
of the top-5 models is approximately 0.4737.
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Figure 2.2: The first, second, third, and fifth MAP trees models T ∗
1 ,T

∗
2 ,T

∗
3 ,T

∗
5 produced by the k-BCT

algorithm with n = 1,000 samples; the fourth tree T ∗
4 is the true tree of Figure 2.1. The posterior odds

are π(T ∗
1 |x)/π(T ∗

i |x) = 2.369,5.358,12.69,15.24, respectively, for i = 2,3,4,5.

The default-VLMC model is the first tree shown in Figure 2.3; only about half of its
nodes appear in the true underlying model. It has a worse BIC score and a better AIC score
than our MAP model. The best-BIC-VLMC produces the small tree of depth 3 shown second
in Figure 2.3, which is a subtree of the true model; it has a good BIC score and a poor
AIC score. In sharp contrast, the best-AIC-VLMC produces a clearly overfitted model of
depth 6, shown third in Figure 2.3, which has a very a poor BIC score, but a good AIC
score. Finally, the best-BIC-MTD and the best-BIC-MTDg both give D = 0, whereas the the
best-AIC-MTD gives D = 3 and the best-AIC-MTDg gives D = 2. Their scores (both BIC
and AIC) are generally quite worse than those of the BCT and VLMC models.
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Figure 2.3: The models produced by the default-VLMC, the best-BIC-VLMC and the best-AIC-
VLMC methods, with n = 1,000 samples.

Overall, the BCT and the best-BIC-VLMC algorithms achieve the best performance in
terms of scores, and they learn part of the true underlying tree. VLMC has a marginally
better BIC score whereas BCT has a slightly better AIC score (by approximately 1% in both
cases). More importantly, our MAP model T ∗

1 has an additional full branch at depth 4 that
reveals more of the true underlying structure, and k-BCT also identifies the true model as T ∗

4 .
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Discussion. In the results on simulated data above and in the two examples in Appendix C.1,
the BCT and k-BCT algorithms consistently give the most accurate model fit, with the best-
BIC version of VLMC often giving similar results. The BCT framework has the advantage
of identifying not just a single model, but the top-k a posteriori most likely models, together
with their exact prior and posterior probabilities. And, importantly, in terms of complexity,
the BCT algorithm is more efficient than either VLMC or MTD, typically by at least two
orders of magnitude, since it does not require any tuning.

VLMC. The default and best-AIC versions of VLMC generally gave similar or identical
models, usually much larger than the true underlying model, in rather typical examples
of overfitting. The best-BIC-VLMC was found to be much more accurate in revealing
significant parts of the true model, as expected in view of the earlier AIC-vs-BIC discussion.
The resulting models were smaller, which is consistent with the observation that optimizing
the BIC score led to larger values for the cut-off parameter K and more frequent pruning.
For the best-AIC and best-BIC versions, we executed VLMC approximately 500 times with
different values of K ∈ [1,10]. Although a smaller range (2.8 ≤ K ≤ 6) was used by Mächler
and Bühlmann (2004), we found it often necessary to look further; e.g., for the financial
data in Appendix C.1 the best value was found to be close to 10, and for the genetic data
in Section 2.4.2 it was larger than 20. In most cases, using fewer runs resulted in different
models giving poor fits.

BCT. The MAP models produced by the BCT algorithm were usually similar to those
produced by the best-BIC-VLMC, they had good AIC and BIC scores, and they generally
learned the most accurate approximations of the underlying model among all methods
considered. The additional models obtained by k-BCT offered further indications of the
type of structure present in the data, and they were accompanied by posterior probabilities,
indicating the level of “posterior confidence” we may have in these models. Also, BCT and
k-BCT only require a single run with the default value of the hyperparameter β .

MTD. None of the MTD methods performed as well as the BCT or VLMC algorithms,
partly because they gave (by design) less flexible models. As their only output in terms of
the model is the Markov order D and the number of nonzero lag parameters λd , which can
only take a few discrete values, the best-BIC and best-AIC results were often same. MTDg
in most cases had worse scores than MTD, but even the MTD’s overall performance was not
competitive with that of BCT and VLMC. Finally, MTD had very high complexity, since
the implicit maximum likelihood computation is over a non-convex space defined by a large
number of non-linear constraints (Raftery and Tavaré, 1994). For this reason, it appears
infeasible in practice to use values for D significantly larger that D = 10.
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2.4.2 Real data

In view of the above discussion, for the comparisons in the real-world data examples we
only consider the best-BIC versions of VLMC, MTD and MTDg. One more example with a
financial time series is given in Appendix C.1.

SARS-CoV-2 genome. The SARS-CoV-2 virus – standing for Severe Acute Respiratory
Syndrome Coronavirus 2 – is the virus responsible for the Covid-19 global pandemic.
Here we examine its genome, available in the GenBank database (Clark et al., 2016) as the
sequence MN908947.3 identified in Wu et al. (2020). It consists of n= 29,903 base pairs, and
we translate the four-letter DNA alphabet to {0,1,2,3} via the map (A,C,G,T) 7→ (0,1,2,3).

The top 3 models obtained by the k-BCT algorithm with β = 1−2−m+1 = 7/8, D = 10,
and k = 3 are shown as the first three trees in Figure 2.4. The MAP model has posterior
probability π(T ∗

1 |x)≈ 0.963 and prior π(T ∗
1 )≈ 4.3×10−5. The sum of the posterior proba-

bilities of these three models is ≈ 0.9994. The VLMC model is the depth-2 subtree of T ∗
1

shown last in Figure 2.4. The optimisation of the cut-off parameter K required to find the
best-BIC model, resulted in the choice K = 22.1. Both MTD and MTDg give D = 1 as the
optimal depth, corresponding to a simple first order Markov chain.
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Figure 2.4: First three trees: The top-3 MAP tree models T ∗
1 ,T

∗
2 ,T

∗
3 obtained by the k-BCT algorithm

on the SARS-CoV-2 genome. The posterior odds π(T ∗
1 |x)/π(T ∗

2 |x) and π(T ∗
1 |x)/π(T ∗

3 |x) are 35.75
and 101.4, respectively. Last tree: The best-BIC-VLMC model; its AIC and BIC scores are both
within 0.1% of the corresponding scores of the MAP tree model T ∗

1 .

The AIC and BIC scores of all models generated by the three approaches are within 0.3%
of each other. It is interesting that our MAP model has such high posterior probability, and
that k-BCT gives models of depth 3 with very high confidence. Although it is not possible to
otherwise verify the significance of the bigger depth of the BCT models compared to those
of the other methods, it may be that they find evidence of the fact that DNA naturally gets
encoded into triplets of bases to form codons that specify particular amino acids.
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Pewee birdsong. The twilight song of the wood pewee bird can be described as a sequence
consisting of an arrangement of musical phrases taken from an alphabet of three specific,
distinct phrases. The data here consist of a single contiguous song by a wood pewee, of length
n = 1327 phrases, first recorded and studeid extensively by Craig (1943). It was analysed by
Berchtold (2001); Raftery and Tavaré (1994) using MTD models, by Kharin and Piatlitski
(2011) using a different MTD-type representation, and by Sarkar and Dunson (2016) using
CTF models; it is also contained in the R package march. It is well known that the birdsong
contains significant variability but it is also fairly structured, with specific repeating patterns.
The most common of these, described by Saunders (1944) as “the commonest and most
pleasing sentence,” is the string s∗ = 0201, which dominates the data set, appearing 266
times and occupying 1064 positions or a little over 80% of the data.

The MAP tree T ∗
1 obtained by BCT with m = 3, β = 1− 2−m+1 = 3/4, and D = 10,

is shown in Figure 2.5. Its prior probability is π(T ∗
1 ) ≈ 4.1× 10−5, and its posterior is

π(T ∗
1 |x) ≈ 0.1244. Clearly the importance of s∗ = 0201 is captured in the MAP tree T ∗

1 ,
which includes the entire prefix 020 necessary to predict the appearance of s∗ = 0201.

The VLMC produces an interesting model, also shown in Figure 2.5, which is quite
similar to T ∗

1 . Although it does not include the 020 context, it does include the context 02,
which contains most of the predictive power regarding s∗ = 0201: While s∗ appears 266
times in the data, the context s = 201 appears 267 times, therefore, we can “statistically”
almost identify s∗ with s. Compared to the VLMC model, the MAP tree T ∗

1 has a marginally
better AIC score and a slightly worse BIC score, but it is clear that the two methods learn
much of the same structure from the data. The MTD gives D = 6 as the optimal depth, while
MTDg gives D = 3. The resulting MTDg model has better AIC and BIC scores than the
MTD model, but they are still much worse than those of our MAP model. This confirms the
findings of both Raftery and Tavaré (1994) and Berchtold (2001), where it was noted that
the MTD family of models is not appropriate for this data set, in large part due to the high
significance of individual patterns like s∗.
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Figure 2.5: The MAP tree model (left) and VLMC model (right) for the pewee birdsong data.
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The four a posteriori most likely tree models after T ∗
1 , as identified using by k-BCT

algorithm with k = 5, are shown in Figure 2.6. They are all quite similar to the MAP tree,
each one differing from T ∗

1 in only a single branch.
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Figure 2.6: The four a posteriori most likely models T ∗
i , i = 2,3,4,5, after T ∗

1 , obtained by
the k-BCT algorithm from the pewee birdsong data. The corresponding posterior odds are
π(T ∗

1 |x)/π(T ∗
2 |x)≈ 5.727 and π(T ∗

1 |x)/π(T ∗
i |x)≈ 7.111, for i = 3,4,5.

The sum of the posterior probabilities of the top-5 models here is 20%. Therefore, in
order to get a better sense of the posterior distribution on model space, we employed the
RW sampler to produce N = 106 samples from π(T |x). The acceptance rate was 57.8%,
a total of 274,721 unique trees were visited, and the sum of their posterior probabilities
was 61.2%. The MCMC frequency of T ∗

1 in Figure 2.7 indicates that the sampler converged
quite quickly. The 100 most visited models all have depths between 4 and 7, and their total
posterior probability is 38.3%. Together with the results of k-BCT and VLMC, these suggest
that there is at least fourth-order structure present in the data.

Figure 2.7: MCMC frequency of T ∗
1 . The five graphs correspond to five independent repetitions of

the experiment with N = 3×105 iterations; the horizontal line is the limiting frequency, π(T ∗
1 |x).
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Neural spike trains. Next we consider a long binary time series describing the spike
train recorded from a single neuron in the V4 region of a monkey’s brain; it consists of
n = 3,919,361 bits. The recording was made during the experiment described in Gregoriou
et al. (2009, 2012), while the monkey was performing an attention task. The recorded signal
was discretised into one-millisecond bins (with xi = 1 if there was a spike in bin i and xi = 0
otherwise), corresponding to a trial lasting a little over 65 minutes. As we have not been able
to find implementations of VLMC or MTD that can operate on data sets of this length, in this
section we only present the results obtained by the BCT and k-BCT algorithms.

With D = 100, and β = 1−2−m+1 = 1/2, the MAP tree model T ∗
1 is shown in Figure 2.8.

It has depth 98 and, with the exception of two additional branches at depths 9 and 90, it is
very similar to a renewal model, qualitatively similar to the first chain in Appendix C.1. Its
prior probability is π(T ∗

1 )≈ 3.1×10−61 and its posterior π(T ∗
1 |x)≈ 2.1×10−8. Although

this probability is small, we note that there are more than 791029
possible models of depth no

more than 100, cf. (2.8), and that this posterior is still larger than the corresponding prior
probability by more than 50 orders of magnitude. Therefore, the observations still offer
significant support for this model.
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Figure 2.8: The top k = 5 models obtained by k-BCT on the spike train data. The posterior odds
π(T ∗

1 |x)/π(T ∗
i |x) for i = 2,3,4,5, are 1.2, 1.43, 1.52 and 1.53, respectively.

All the next four a posteriori most likely models shown in Figure 2.8 are also very similar
to simple renewal models – and in fact the fourth model T ∗

4 is exactly the renewal tree of
depth 98. These observations offer a partial justification to the biological intuition behind
the elementary Poisson/renewal models commonly used in neuroscience (Dayan and Abbott,
2001; Rieke et al., 1999), and confirm relevant earlier findings (Gao et al., 2006, 2008).
In other words, we have learned from the data that the statistically most significant factor
in determining whether a neuron will fire, given its past history, is the time when it most
recently fired before.
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Although the sum of the posterior probabilities of the top five models is less than 10−7,
in this case it would not make sense to employ an MCMC sampler to explore the posterior
further. The reason is that, given the very small values of the posterior probabilities of the
top-5 models, even with 106 MCMC samples visiting 106 distinct models, we would still
only visit around 1% of the support of the posterior, at best. On the other hand, increasing
the value of k can give a better idea of the shape of the posterior near its mode T ∗

1 . With
k = 50, k-BCT produced 50 trees, all of depth 98, and all of them being small variations
of the renewal model T ∗

4 : All the resulting models T ∗
i had between one and five additional

branches at various depths. The sum of their posterior probabilities is 4.1×10−7.
As a final test of the scalability of the BCT algorithm on a large data set, we obtained

the MAP tree with maximum depth D = 1500. Interestingly, it is the same as the MAP tree
for D = 100, and with only a slightly smaller posterior probability π(T ∗

1 |x)≈ 1.6×10−8.

2.5 Estimation tasks

In this section we present two examples that illustrate the utility of the MCMC samplers
of Section 2.3.4 for posterior exploration, and the application of the BCT methodology to
Markov order estimation and parameter estimation.

Example 2.1 (Daily changes in S&P 500). We consider the daily changes in Standard &
Poor’s index, from January 2, 1928 until October 7, 2016 (available at https://finance.
yahoo.com/quote/^GSPC/), quantised to m = 7 values: If the change between two succes-
sive trading days, day (i−1) and day i, is smaller than −3%, xi is set equal to 0; for changes
in the intervals (−3%,−2%], (−2%,−1%], (−1%,+1%], (1%,2%], and (2%,3%], xi is set
equal to 1,2,3,4 and 5, respectively; and for changes greater than 3%, xi = 6.

Based on the resulting n = 22,900 points xi, the top k = 5 a posteriori most likely
models obtained by the k-BCT algorithm with maximum tree depth D = 260 (corresponding
to approximately one calendar year’s trading days), are described in Figure 2.9.

Interpretation. The shape of the MAP model T ∗
1 contains significant information. Since

its maximal depth is 5, in order to determine the distribution of the next sample we never
have to look more than five days back – corresponding to a week of trading days. The smaller
the changes in the most recent S&P values, the further back we need to look in order to
predict tomorrow’s value. For example, if the difference between yesterday and today is
larger than ±2%, we need look no further than yesterday; if it is between 1% and 2%, we
need to look at the day before yesterday as well; and if it is smaller than ±1%, we need to
look even further back, but no more than a week.

https://finance.yahoo.com/quote/^GSPC/
https://finance.yahoo.com/quote/^GSPC/
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Figure 2.9: The tree shown without the two dotted branches is the MAP model T ∗
1 obtained from

n = 22,900 observations, with D = 260. Its posterior probability is π(T ∗
1 |x)≈ 0.0174 and its prior

π(T ∗
1 )≈ 5.7×10−11. The whole tree shown is the fifth a posteriori most likely model T ∗

5 , and T ∗
2 ,

T ∗
3 and T ∗

4 were found to be small variations around T ∗
1 and T ∗

5 , all with depth 5. The corresponding
posterior odds π(T ∗

1 |x)/π(T ∗
i |x), for i = 2,3,4,5, are 1.094, 1.367, 1.496 and 2.467, respectively.

The sum of the posterior probabilities of the top-5 MAP models is less than 6.5%.
But with n = 22,900 data points, m = 7 and D = 260, the complexity of k-BCT becomes
prohibitive for large values of k. In order to explore π(T |x) further, we ran the RW sampler
with T (0) = T ∗

1 for N = 106 MCMC iterations.
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Figure 2.10: Left: MCMC empirical frequencies of the 25 most frequently visited models, after
N = 106 iterations. The corresponding true posterior probabilities are marked with a red ‘x’. Right:
Markov order estimation. The five histograms show the empirical frequencies of the depths of the
1,000 most visited models, in five independent repetitions of the same experiment.
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Markov order estimation. The acceptance rate in the MCMC sample was 44.9%, and
a total of 356,531 different models were visited. The MCMC frequencies of the 25 most
visited models shown in Figure 2.10 indicate that the sampler has converged after N = 106

iterations. The MCMC output can also be used for Markov order estimation, by providing an
approximation to the posterior distribution on model depth. The empirical distributions of the
model depths obtained in five repetitions of the same experiment are shown in Figure 2.10.

Example 2.2 (A bimodal posterior). Consider a 3rd order chain {Xn} on the alphabet
A = {0,1,2,3,4,5} with the property that each Xn depends on the past (Xn−1,Xn−2,Xn−3)

only via Xn−3. Specifically, suppose that, for i, j,a,b ∈ A,

Pr(Xn = j|Xn−1 = a,Xn−2 = b,Xn−3 = i) = Qi j,

where the transition matrix Q = (Qi j) is given by,

0.5 0.2 0.1 0 0.05 0.15
0.4 0 0.4 0.2 0 0
0.3 0.1 0.23 0.12 0.05 0.2

0.05 0.1 0.05 0.05 0.03 0.72
0 0 1 0 0 0

0.1 0.2 0.3 0.2 0.05 0.15


The model of {Xn} viewed as a variable-memory chain is clearly the complete tree of depth 3,
but the dependence of each Xn on its past is only meaningful if it can extend at least three
time steps back: The first and second most recent symbols are independent of Xn.

Therefore, it is not surprising that the MAP model identified by the k-BCT algorithm
based on n = 1850 samples is simply the root, T ∗

1 = Λ = {λ}, with T ∗
2 a complex tree of

depth 3 (with 54 leaves at depth 3) being a close second; their posterior probabilities are
π(T ∗

1 |x) ≈ 0.3512 and π(T ∗
1 |x) ≈ 0.2373, respectively. The next three a posteriori most

likely models T ∗
3 ,T

∗
4 ,T

∗
5 were found to be small variations of T ∗

2 , also of depth 3.
Running the RW sampler with T (0) = T ∗

1 , we found that it never visited any of the
other top-5 models after 106 iterations, and similarly starting at T ∗

2 it never visited T ∗
1 .

Although T ∗
2 can theoretically be reached from T ∗

1 in just 12 MCMC steps, most models
between them have extremely small posterior probabilities; e.g., the complete tree of depth
one, Tc(1), which must necessarily be visited in order to move between T ∗

1 and T ∗
2 , has

posterior π(Tc(1)|x)≈ 3.2×10−19.
In contrast, the jump sampler with jump parameter p = 1/2, made frequent jumps

between T ∗
1 and {T ∗

2 ,T
∗

3 ,T
∗

4 ,T
∗

5 }. Starting with T (0) = T ∗
1 , after N = 105 MCMC iterations
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it appears to have explored the bulk of the posterior distribution, having visited all of the
significant parts of its support. The empirical frequencies of the top-5 models were very
close to their actual posterior probabilities (Figure 2.11), the total number of unique models
visited was 39, and the sum of their posterior probabilities was 99.8%.

Figure 2.11: Results of the jump sampler. The top plot shows the empirical frequency of T ∗
1 as a

function of the number of MCMC iterations. The five graphs plotted correspond to five independent
repetitions of the experiment with 50,000 iterations; the horizontal line is the limiting frequency,
π(T ∗

1 |x). The bottom plot shows corresponding results for T ∗
5 .

Markov order estimation. In terms of Markov order estimation, although the MAP
tree T ∗

1 has depth 0, the mode of the posterior distribution of the tree-depth is 3: The N = 105

MCMC samples obtained above consist entirely of models having depths either 0 or 3, with
corresponding MCMC frequencies of approximately 35.13% and 64.87%, respectively.

Estimation of general functionals. More generally, for any statistic F(θ ,T ), we can obtain
MCMC samples {(θ (t),T (t))} using the joint sampler of Section 2.3.4, and use the values
{F(θ (t),T (t))} to provide an approximation to the posterior π(F |x). Standard Bayesian
methods (Bernardo and Smith, 1994; Geisser, 1993; Gelman et al., 2013) can then be applied
to provide point estimates, credible sets, and other relevant information.

Parameter estimation. For example, suppose we wish to estimate the parameter θs( j) =
Pr(X0 = j|X−1

−D = s), for the specific context s = 020 and j = 5. The maximum likelihood
estimate (MLE) is θ̂ MLE

s ( j) = as( j)/Ms, and a commonly used Bayesian counterpart to the
MLE, θ̂ MAP

s ( j), is the mode of the full conditional density π(θs( j)|x,T ) in (2.16) of θs( j)
given the data x and the MAP model T = T ∗

1 .
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Another Bayesian alternative to the MLE is the posterior mean, which can be approxi-
mated using the MCMC samples {(θ (t),T (t))}, as,

θ̂
MCMC
s ( j) :=

1
N

N

∑
t=1

θ
(t)
s ( j),

and an estimator with smaller variance can also be obtained via Rao-Blackwellization (Black-
well, 1947; Gelfand and Smith, 1990), using (2.16):

θ̂
RB
s ( j) :=

1
N

N

∑
t=1

E
(
θs( j)

∣∣x,T (t)).
In this example, we obtain the values:

θ̂
MLE
s ( j) θ̂ MAP

s ( j) θ̂ MCMC
s ( j) θ̂ RB

s ( j) true θs( j)
0.1290 0.1871 0.1512 0.1516 0.15

The estimates θ̂ MCMC
s ( j) and θ̂ RB

s ( j) are based on N = 105 MCMC samples obtained by the
jump version of the joint sampler, with jump parameter p = 1/2. From these samples we
also get an estimate of the entire posterior distribution of θ020(5), shown in the histogram
of Figure 2.12. Finally, in Figure 2.12 we also show the results of five independent MCMC
experiments, indicating that the ergodic averages in the estimators θ̂ MCMC

s ( j) and θ̂ RB
s ( j)

converge quickly, and that the variance of θ̂ RB
s ( j) appears to be smaller, as expected.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

posterior
mean

0 100 200 300 400 500 600 700 800 900 1000
0.12

0.14

0.16

0.18

0.2

0 100 200 300 400 500 600 700 800 900 1000

MCMC iterations

0.12

0.14

0.16

0.18

0.2

Figure 2.12: Left: Histogram of the N = 105 MCMC samples θ
(t)
s ( j), with D = 3, β = 0.95, s = 020

and j = 5. Right: Corresponding MCMC estimates. The top plot shows the ergodic averages
θ̂ MCMC

s ( j) as a function of the number of MCMC iterations. The five graphs plotted correspond to
five independent repetitions of the experiment with 1,000 MCMC iterations each. The bottom plot
shows corresponding results for θ̂ RB

s ( j).
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2.6 Prediction

Given a training set xt
1 = (x1,x2, . . . ,xt) of length t from a discrete time series x, with values

in the alphabet A = {0,1, . . . ,m−1}, we wish to sequentially predict the next n values in
the test set xt+n

t+1 = (xt+1,xt+2, . . . ,xt+n). At each step i = 1,2, . . . ,n in the test set, given
the past samples xt+i−1

1 , the prediction of the next sample xt+i is expressed as a conditional
distribution P̂i(z|xt+i−1

1 ), z ∈ A, and the performance of the resulting predictor is evaluated
by the normalised, cumulative log-loss,

L=−1
n

n

∑
i=1

log P̂i(xt+i|xt+i−1
1 ).

In the remainder of this section we first describe the natural predictor induced by the BCT
framework, together with the alternative prediction methods that will be used below. Then,
extensive experimental results are presented, illustrating the efficacy of the BCT predictor in
a number of simulated and real-world data sets.

BCT predictor. The ability to compute the prior predictive likelihood sequentially, as
described in Section 2.3.5, makes it easy to perform online prediction in a very efficient
manner within the BCT framework, something which is very important in practice. The
canonical Bayesian rule for predicting the next observation xn+1 given the past xn

1 is given by
the posterior predictive distribution (Gelman et al., 2013),

P∗
D(xn+1|xn

1) = ∑
T∈T (D)

π(T |xn
1)
∫

θ

P(xn+1|xn
1,T,θ)π(θ |T,xn

1)dθ . (2.17)

An important advantage of the Bayesian predictor is that it incorporates model uncertainty
and avoids the problem of model selection by replacing it with model averaging. Although
it is common that the posterior predictive distribution can only be estimated (e.g., by using
MCMC sampling or approximate model averaging), here its value can be computed exactly
and sequentially by CTW, via,

P∗
D(xn+1|xn

1) =
P∗

D(x
n+1
1 )

P∗
D(x

n
1)

. (2.18)

Apart from following the well-justified canonical Bayesian methodology, as the following
discussion indicates, the BCT predictor can be shown to essentially achieve the optimal
minimax regret with respect to the log-loss. Theorem 2.4 gives a nonasymptotic lower bound,
for the special case of binary chains and β = 1/2; it was established by Willems et al. (1993b,
1995) in the setting of data compression.
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Theorem 2.4. For any binary, variable-memory chain model T ∈ T (D) and associated
parameters θ = {θs ; s ∈ T}, for any data sequence xn

1 of arbitrary length n, and any initial
context x0

−D+1, the prior predictive likelihood for β = 1/2 satisfies,

logP∗
D(x

n
1|x0

−D+1)≥ logP(xn
1|x0

−D+1,θ ,T )−
|T |
2

logn+C, (2.19)

with an explicit constant C =C(T ), independent of n and θ .

The lower bound (2.19) is asymptotically tight up to and including the logn term, both
in expectation and for individual sequences: Corresponding upper bounds follow from the
fundamental “converse” theorem by Rissanen (1984, 1986b), and from the general results
by Weinberger et al. (1994). These results clearly indicate that the BCT predictor indeed
essentially achieves the optimal minimax regret (Takeuchi and Barron, 2014).

VLMC predictor. For prediction using variable-length Markov chains we use the prediction
function in the R package VLMC. This selects a VLMC model based on the training data,
and then predicts future samples by the maximum likelihood parameters associated with
this model. We only show results for the best-BIC-VLMC model, as it was found to
be the most effective choice in practice; see also the relevant comments in Section 2.4.1.
When the data are generated by a stationary and ergodic variable-memory chain, the results
of Bühlmann and Wyner (1999) imply that the VLMC predictor is asymptotically consistent,
but for consistency it is the size of the training data that needs to grow to infinity. Further
methodology in connection with VLMC prediction is developed in Bühlmann (2000).

MTD predictor. The MTD approach to prediction is again based on first selecting a model
and then performing prediction using an approximation to the maximum likelihood parame-
ters associated with that model. Among the four MTD versions discussed in Section 2.4, we
only report results obtained by the best-BIC-MTDg, since the performance of the other three
methods was either identical or inferior in practice.

SMC predictor. As described in the Introduction, SMCs are a generalisation of the BCT
models in T (D): Each SMC model consists of a partition of the set of all contexts of depth D
into different states, such that all contexts in the same state induce the same conditional
distribution on the next symbol of the underlying chain. In Jääskinen et al. (2014), a class
of priors for SMCs are defined, and algorithms for selecting approximate MAP versions of
models and parameters are developed in the subsequent work by Xiong et al. (2016). In our
experiments, prediction is performed based on the resulting model and parameters obtained
using the code publicly available at https://www.helsinki.fi/bsg/filer/SMCD.zip.

https://www.helsinki.fi/bsg/filer/SMCD.zip
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CTF predictor. The CTF models of Sarkar and Dunson (2016), described in the Introduction,
use conditional tensor factorisations to represent the full transition probability tensor of a
higher-order Markov chain. In our experiments we use the CTF software publicly available
at https://github.com/david-dunson/bnphomc. Prediction is again performed in two
steps. First a model is selected via the results of an MCMC sampler on model space, and
appropriate parameters are chosen by an approximation to their posterior mean via Gibbs
sampling. The induced predictive distributions are then obtained from the selected model
and parameters.

Throughout our experiments, we take the maximal depth to be D = 10 for BCT, MTD,
SMC and CTF. Following standard practice (Begleiter et al., 2004) in most cases we split
the data 50-50 into a training set and a test set. One difficulty that occasionally arises with
the VLMC and MTD predictors is that they use maximum likelihood parameter estimates
for their models, which in some cases means that they assign zero conditional probability
to certain symbols, and which in turn results in poor performance and an infinite log-loss.
Finally we note that different versions of the CTW algorithm have been used for prediction
in earlier work, including Begleiter et al. (2004); Dimitrakakis (2010); Ron et al. (1996).

2.6.1 Simulated data

The experiments here are based on 1,000 samples simulated from the 5th order chain with
alphabet size m = 3 in Section 2.4.1. Figure 2.13 shows the log-loss achieved by all five
predictors as a function of the number of predicted samples in the test set.

The results in the first plot are based on t = 100 training samples and n= 900 test samples.
The BCT predictor is seen to perform consistently better than the other four methods. The
difference from the second best method, CTF, increases as more data get predicted, reaching
a significant ≈ 3.7% by the end. This is in part due to the fact that the BCT predictor
continues to get updated past the training stage, whereas the models employed by the other
four methods based on only 100 training samples are too simple to be effective. SMC, VLMC
and MTD all produce the empty model corresponding to i.i.d. data, with VLMC and MTD
also having the same parameters, inducing the exact same predictors (hence shown as a single
graph). CTF uses a first order Markov model, leading to slightly better performance.

The second plot shows the log-loss obtained with t = 500 training samples and n = 500
test samples. The results are similar, however, the difference between BCT and the other
methods is now smaller. Since the training set is larger, the other four methods have a better
chance to capture more of the structure present in the data. The VLMC model is a simple
tree of depth two, and the CTF model also corresponds to a second order chain. MTD again

https://github.com/david-dunson/bnphomc
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produces an i.i.d. model, and SMC identifies a second order model with five states, which is
the closest to BCT with a log-loss difference of 2.5%.

With t = 900 training and n = 100 test samples, BCT again appears to have the best
performance, although there are larger fluctuations due to the smaller test data size. The
results of SMC, VLMC and CTF are almost identical, and significantly better than MTD.
SMC uses a second order model with 4 states, the CTF model also has order 2, MTD selects
the i.i.d. model, and VLMC, which is closest to BCT by the end (by a 2.2% difference),
produces a tree model of depth 3 with 5 leaves.

100 200 300 400 500 600 700 800 900

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

lo
g-

lo
ss

traning = 100, prediction = 900

BCT
VLMC, MTD
SMC
CTF

50 100 150 200 250 300 350 400 450 500

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

lo
g-

lo
ss

training = 500, prediction = 500

BCT
VLMC
MTD
SMC
CTF

10 20 30 40 50 60 70 80 90 100

prediction step

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

lo
g-

lo
ss

training = 900, prediction = 100

BCT
VLMC
MTD
SMC
CTF

50 100 150 200 250 300 350 400 450 500

prediction step

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

av
er

ag
e 

lo
g-

lo
ss

100 realizations, training = 500, prediction = 500

BCT
VLMC
SMC
CTF

Figure 2.13: Prediction results on simulated data. First three plots: Log-loss achieved by each of
the five methods, as a function of the size of the test data. Bottom right: Log-loss achieved by BCT,
VLMC, SMC and CTF on n = 500 test samples with t = 500 training samples, averaged over 100
independent repetitions of the experiment. One-standard-deviation error bars are also plotted for BCT
and SMC near the end of the test data. The vertical (log-loss) axis has the same range in all plots.
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Finally, we examine the log-loss of these predictors averaged over 100 independent
realisations simulated from this chain, each time with a 50-50 split between training and
test data. The last plot in Figure 2.13 shows the results obtained by all methods except
MTD, which was based on an i.i.d. model every time. The average performance of BCT is
better than that of the other methods; after the first 10 samples or so, the BCT log-loss stays
consistently approximately 1.6% lower than that of the second best method, SMC.

2.6.2 Real data

SARS-CoV-2 gene. Here we examine the spike (S) gene, in positions 21,563–25,384 of
the SARS-CoV-2 genome (Wu et al., 2020) described in Section 2.4.2. The importance of
this gene is that it codes for the surface glycoprotein whose function was identified in Lan
et al. (2020); Yan et al. (2020) as critical, in that it binds onto the Angiotensin Converting
Enzyme 2 (ACE2) receptor on human epithelial cells, giving the virus access to the cell and
thus facilitating the Covid-19 disease. The data, consisting of a 3,822 base-pair-long gene
sequence, was again split 50-50 into a training set and test set.
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Figure 2.14: Prediction results on real data. Left: SARS-CoV-2 gene (S), with t = 1911 training
samples and n = 1911 test samples. Right: Pewee birdsong data, with t = 1194 training samples and
n = 133 test samples, corresponding to a 90%-training/10%-testing split.

Figure 2.14 shows the prediction results obtained by all methods, with BCT consistently
achieving the smallest log-loss. The MAP tree model T ∗

1 has posterior π(T ∗
1 |x)≈ 49% and

depth 2, while the first order chain appears as T ∗
2 with π(T ∗

2 |x)≈ 48%, meaning that these
two models essentially have the same weight in the Bayesian predictor; cf. (2.17). It is
possibly this model averaging which explains, in part, the superior performance of BCT here.
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The second best method, CTF, has nearly identical performance with both MTD and
SMC, all of them selecting a first order Markov model. The VLMC produces a tree of depth 1
grouping {A,G,T} into a single state, which performs worse than all the other methods.

Pewee birdsong. The data, discussed in Section 2.4.2, consists of 1327 samples in a ternary
alphabet. When half of it was used for training and the other half for testing, VLMC and
MTD both had an infinite log-loss after the 420th symbol in the test sequence; this was
mentioned earlier as a possible drawback of methods that use maximum likelihood estimates
for the parameters. Among the methods that give a finite log-loss, BCT was found to have
the best performance. SMC produced a second order model with five states, and by the end
of the test data its log-loss was larger than that of the BCT by 13.2%. CTF used a fourth
order model for prediction, resulting in a log-loss larger than that of BCT by 1.2%.

In order to illustrate the relative performance of all five methods, in Figure 2.14 we report
the prediction results on the last 10% of the samples, after the first 90% have been used for
training. The BCT has the smallest log-loss overall, approximately 4.8% lower than that of
the second best method, CTF, at the end of the experiment. The CTF and MTD predictors
both use a fourth order model, SMC finds a second order model with 5 states, and VLMC
uses a simple tree model of depth 4.

2.6.3 Summary

The BCT predictor was found to have consistently better performance than the other four
methods considered, achieving a log-loss that was between 1.2% and 4.8% better than that of
the second-best method in each case. This is due, in part, to the fact that the BCT predictor is
based on averaging over all models and parameters with respect to their posterior distribution,
and that it allows for efficient sequential updates beyond the training stage.

The method that performed the closest to BCT in most cases was CTF, which usually
identified the same Markov order as the other methods. The VLMC and MTD predictors
were found to be consistently and significantly less effective than BCT, and as noted earlier
they sometimes assigned zero probability to the occurrence of certain symbols in the data,
resulting in an infinite log-loss. Another difficulty with CTF, VLMC and MTD is that they
required much more computational effort in the training stage.

The SMC predictor was found in most cases to have performance similar to VLMC. As
the context-tree models in T (D) are a subset of all SMCs, the fact that BCT performs better
than SMC highlights the power of the full Bayesian BCT framework and the importance of
being able to compute the exact posterior predictive distribution. In contrast, SMC uses a
single (and often poor) estimate of its MAP model, leading to much less satisfactory results.





Chapter 3

Posterior Representations for Bayesian
Context Trees

In this chapter we derive explicit representations of the BCT prior and posterior on model
space, in terms of simple branching processes. These representations offer a very natural
intuition about the underlying modelling that takes place within the BCT framework, from a
Bayesian point of view: The BCT prior πD(T ;β ) acts in some sense as a conjugate prior for
the class T (D) of variable-memory chains.

Apart from this appealing interpretation, the branching process representations are also
of high practical importance as they are employed to:

(i) Develop a Monte Carlo (MC) sampler that allows to obtain i.i.d. samples from the joint
posterior on models and parameters.

(ii) Establish theoretical results that provide some further justifications for the use of the
BCT framework.

3.1 Branching process representations

In this section we establish the branching process representations for both the BCT prior
π(T ) = πD(T ;β ) of (2.4) and the resulting posterior on model space, π(T |x). We also
discuss how the posterior representation leads to efficient samplers that can be used for model
selection and estimation.
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3.1.1 The prior branching process

Given D ≥ 0 and β ∈ (0,1), let T = {λ} consist of only the root node λ and consider the
following procedure:

• If D = 0, stop.

• If D > 0, then, with probability β , mark the root as a leaf and stop, or, with probability
(1−β ), add all m children of λ at depth 1 to T . If D = 1, stop.

• If D > 1, examine each of the m new nodes, and either mark a node as a leaf with
probability β , or add all m of its children to T with probability (1−β ), independently
from node to node.

• Continue recursively, at each step examining all non-leaf nodes at depths strictly
smaller than D, until no more eligible nodes remain to be examined.

• Output the resulting tree T ∈ T (D).

The above construction is a simple Galton-Watson process (Athreya and Ney, 2004; Harris,
1963) with offspring distribution (β ,(1− β )) on {0,m}, stopped at generation D. The
following proposition states that the distribution of a tree T generated by this process is
exactly the prior πD(T ;β ). Note that this also implies that the expression for πD(T ;β ) indeed
defines a probability distribution on T (D), giving an alternative proof of Lemma 2.1.

Proposition 3.1. For any D ≥ 0 and any β ∈ (0,1), the probability that the above branching
process produces any particular tree T ∈ T (D) is given by πD(T ;β ) as in (2.4).

Proof. When D = 0, T (D) consists of a single tree, T = {λ}, which has probability 1 under
both πD and the branching process construction. Assume D ≥ 1. Note that every tree
T ∈ T (D) can be viewed as a collection of a number, k, say, of m-branches, since every node
in T has either zero or m children. The proposition is proven by induction on k. The result is
trivial for k = 0, since the only tree with no m-branches is T = {λ} and its probability under
both πD and the branching process construction is equal to β .

For the inductive step, suppose that the claim of the proposition is true for all the trees
with k m-branches, and let T ′ ∈ T (D) consist of (k+1) m-branches. Then T ′ can be obtained
from some T ∈ T (D) that has k m-branches, by adding a single m-branch to one of its
leaves, s, say. Two cases are considered.
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(i) If s is at depth D−2 or smaller, then the probability πb(T ′) of T ′ under the branching
process construction is,

πb(T ′) =
πb(T )

β
(1−β )β m =

πD(T ;β )

β
(1−β )β m =

α |T |−1β |T |−LD(T )

β
α

m−1
β

m,

where the second equality follows from the inductive hypothesis and the third from the
definition of πD(T ;β ). Therefore, since |T ′|= |T |+m−1 and no leaves are added at depth
D, so that LD(T ′) = LD(T ),

πb(T ′) = α
[|T |+m−1]−1

β
|T |+m−1−LD(T ) = α

|T ′|−1
β
|T ′|−LD(T ′) = πD(T ′;β ),

as required.

(ii) If s is at depth D−1, we similarly find that,

πb(T ′) =
πb(T )

β
(1−β ) =

πD(T ;β )

β
(1−β ) =

α |T |−1β |T |−LD(T )

β
α

m−1,

and since |T ′|= |T |+m−1, but now, LD(T ′) = LD(T )+m,

πb(T ′) = α
[|T |+m−1]−1

β
[|T |+m−1]−[LD(T )+m] = α

|T ′|−1
β
|T ′|−LD(T ′) = πD(T ′;β ),

completing the proof. □

Apart from being aesthetically appealing, this representation also offers a simple and
practical way of sampling trees from T (D) according to πD(T ;β ). Moreover, using well-
known properties of the Galton-Watson process we can perform some direct computations
that offer better insight into the nature and specific properties of the BCT prior.

Interpretation and choice of β . The branching process description of πD(T,β ) further
clarifies the role of the hyperparameter β : It is exactly the probability that, when a node is
added to the tree T , it is marked as a leaf and its children are not included in T .

In terms of choosing the value of the hyperparameter β appropriately, recall that, for
a Galton-Watson process, the expected number of children of each node, in this case
ρ = m(1−β ), governs the probability of extinction Pe: If ρ ≤ 1 we have Pe = 1, whereas if
ρ > 1, Pe is strictly less than one. Therefore, in the binary case m = 2, the original choice
β = 1/2 used in the CTW algorithm gives an expected number of children equal to the critical
value ρ = 1. This suggests that another reasonable choice for general alphabets (apart from
our default β = 1−2−m+1) could be β = 1−1/m, which keeps ρ = 1, so that the resulting
prior would have similar qualitative characteristics with the well-studied binary case.
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Now suppose T is a random model generated by the prior and let Ld(T ) denote the
number of nodes at depth d = 0,1, . . . ,D. Then, standard Galton-Watson theory (Athreya
and Ney, 2004; Harris, 1963) provides the useful expressions,

E [Ld(T )] = ρ
d, Var [Ld(T )] =

{
σ2d, if ρ = 1,

σ2ρd−1 1−ρd

1−ρ
, if ρ ̸= 1,

where σ2 = m2β (1−β ).

3.1.2 The posterior branching process

Given a time series x = xn
−D+1, a maximum depth D, and β ∈ (0,1), for any context s with

length strictly smaller than D we define the branching probabilities Pb,s as,

Pb,s :=
βPe,s

Pw,s
, (3.1)

where the estimated and weighted probabilities, Pe,s and Pw,s, are defined in (2.7)-(2.9), and
with the convention that Pb,s = β for all contexts s that do not appear in x.

Starting with T = {λ}, the following construction produces a sample model T ∈ T (D)

from the model posterior π(T |x):

• If D = 0, stop.

• If D > 0, then, with probability Pb,λ , mark the root as a leaf and stop, or, with
probability (1−Pb,λ ), add all m children of λ at depth 1 to T . If D = 1, stop.

• If D > 1, examine each of the m new nodes and either mark a node s as a leaf
with probability Pb,s, or add all m of its children to T with probability (1−Pb,s),
independently from node to node.

• Continue recursively, at each step examining all non-leaf nodes at depths strictly
smaller than D, until no more eligible nodes remain.

• Output the resulting tree T ∈ T (D).

Proposition 3.2. For any D ≥ 0 and any β ∈ (0,1), the probability that the above branching
process produces any particular tree T ∈ T (D) is given by π(T |x).

Proof. The proof follows along the same lines as that of Proposition 3.1; it is again by
induction on the number of m-branches. For the base case k = 0 we also need the result
of Theorem 2.1 for the prior predictive likelihood, P(x) = Pw,λ . The complete proof of the
proposition is given in Appendix B.2. □
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Conjugate prior. It is perhaps somewhat remarkable that the posterior π(T |x) on the vast
model space T (D) admits such a simple explicit description. Indeed, the posterior branching
process is of exactly the same form as that of the prior, which can then naturally be viewed
as a conjugate prior on T (D).

Model posterior probabilities. Proposition 3.2 allows us to write an exact expression for
the posterior of any model T ∈ T (D) in terms of the branching probabilities Pb,s,

π(T |x) = ∏
s∈To

(
1−Pb,s

)
∏
s∈T

Pb,s, (3.2)

where To denotes the set of all internal nodes of T , and with the convention that Pb,s = 1 for
all leaves of T at depth d = D. This expression will be the starting point in the proofs of the
asymptotic results of Section 3.2 for π(T |x).

3.1.3 Sampling from the posterior

In terms of inference, the main utility of Proposition 3.2 is that it offers a practical way of
obtaining exact i.i.d. samples {T (i)} from the model posterior π(T |x).

And since the full conditional density of the parameters π(θ |T,x) is explicitly identified
in (2.16) as a product of Dirichlet densities,

π(θ |T,x) = ∏
s∈T

Dir(1/2+as(0),1/2+as(1), . . . ,1/2+as(m−1)) ,

for each T (i) we can draw a conditionally independent sample θ (i) ∼ π(θ |T (i),x), producing
a sequence of exact i.i.d. samples {(T (i),θ (i))} from the joint posterior π(T,θ |x).

This facilitates numerous applications. For example, effective parameter estimation can
be performed by simply keeping the samples {θ (i)}, which come from the marginal posterior
distribution π(θ |x). Similarly, Markov order estimation can be performed by collecting the
sequence of maximum depths of the models {T (i)}. And in model selection tasks, the model
posterior can be extensively explored, offering better insight and deeper understanding of the
underlying structure and dependencies present in the data.

Although a family of MCMC samplers was introduced and successfully used for the same
tasks in Section 2.5, MCMC sampling has well-known limitations and drawbacks, including
potentially slow mixing, high correlation between samples, and the need for convergence
diagnostics (Cowles and Carlin, 1996; Gelman and Rubin, 1992; Robert and Casella, 2004).
Partly for these reasons, being able to obtain i.i.d. samples from the posterior is generally
much more desirable, as illustrated in Section 3.3.
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Estimation of general functionals. Consider the general Bayesian estimation problem,
where the goal is to estimate an arbitrary functional F = F(T,θ) of the underlying variable-
memory chain, based on data x. Using the above sampler, the entire posterior distribution
of the statistic F can be explored, by considering the i.i.d. samples F(i) = F(T (i),θ (i)),
distributed according to the desired posterior π(F |x).

In connection with classical estimation techniques, and in order to evaluate estimation
performance more easily in practice, several reasonable point estimates can also be obtained.
The most common choices are the empirical average approximation to the posterior mean,

F̂MC =
1
N

N

∑
i=1

F(i) =
1
N

N

∑
i=1

F(T (i),θ (i)), (3.3)

or the posterior mode, i.e., the maximum a posteriori probability (MAP) estimate, F̂MAP. In
cases where the conditional mean F̄(T ) = E

(
F(T,θ)|x,T

)
can be computed for any model T

(as e.g. in the case of parameter estimation), a lower-variance Rao-Blackwellised estimate
for the posterior mean can also be obtained as,

F̂RB =
1
N

N

∑
i=1

F̄(T (i)).

Importantly, as this posterior sampler provides access to the entire posterior distribution
π(F |x) of the statistic of interest F , standard Bayesian methodology can be applied to quantify
the resulting uncertainty of any estimator F̂ , for example by obtaining credible intervals in
terms of the posterior π(F |x). An interesting special case of the above methodology is the
estimation of the entropy rate of the underlying process, F(T,θ) = H(T,θ), which will be
studied in detail in Chapter 4.

3.2 Theoretical results

In this section, using the branching process representation in Proposition 3.2, we show how
to derive precise results on the asymptotic behaviour of the BCT posterior π(T |x) on model
space, and provide an explicit expression for the posterior predictive distribution.

Let {Xn} be a variable-memory chain with model T ∈ T (D). The specific model T that
describes the chain is typically not unique, for the same reason, e.g., that every i.i.d. process
can also trivially be described as a first-order Markov chain: Adding m children to any leaf
of T which is not at maximal depth, and giving each of them the same parameters as their
parent, leaves the distribution of the chain unchanged.
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The natural main goal in model selection is to identify the “minimal” model, i.e., the
smallest model that can fully describe the distribution of the chain. A model T ∈ T (D) is
called minimal if every m-tuple of leaves {s j ; j = 0,1, . . . ,m−1} in T contains at least two
with non-identical parameters, i.e., there are j ̸= j′ such that θs j ̸= θs j′ . It is easy to see that
every Dth order Markov chain {Xn} has a unique minimal model T ∗ ∈ T (D).

A variable-memory chain {Xn} with model T ∈ T (D) and with associated parameters
θ = {θs;s ∈ T} is ergodic, if the corresponding first-order chain {Zn := Xn

n−D+1;n ≥ 1}
taking values in AD is irreducible and aperiodic. In order to avoid uninteresting technicalities,
in most of our results we will assume that the data are generated by a positive-ergodic
chain {Xn}, namely that all its parameters θs( j) are nonzero, so that its unique stationary
distribution π gives strictly positive probability to all finite contexts s.

3.2.1 Posterior consistency and concentration

Our first theorem is a strong consistency result, which states that, if the data x = xn
−D+1 are

generated by an ergodic chain with minimal model T ∗ ∈ T (D), then the model posterior
asymptotically almost surely (a.s.) concentrates on T ∗. Theorem 3.1 both strengthens and
generalises a weaker result on the asymptotic behaviour of the MAP model established in
(Willems et al., 1993c, Theorem 8).

Theorem 3.1. Let Xn
−D+1 = (X−D+1, . . . ,X0,X1, . . . ,Xn) be a time series generated by a

positive-ergodic, variable-memory chain {Xn} with minimal model T ∗ ∈ T (D). For any
value of β ∈ (0,1), the posterior distribution over models concentrates on T ∗, i.e.,

π(T ∗|Xn
−D+1)→ 1, a.s., as n →∞.

Proof. Recalling the posterior representation in (3.2), it suffices to show that, as n →∞,
Pb,s → 0 a.s. for all internal nodes of T ∗, and Pb,s → 1 a.s. for all leaves of T ∗. These two
claims are established in Lemmas 3.2 and 3.3 below. □

In Lemma 3.1, we first recall simple bounds on the estimated probabilities Pe,s; see
Krichevsky and Trofimov (1981); Xie and Barron (2000) and (Catoni, 2004, Ch. 1). Then, in
Lemmas 3.2 and 3.3 we establish the asymptotic behaviour of Pb,s, considering separately
the cases of internal nodes and leaves of T ∗; Lemma 3.2 is a generalisation of (Jiao et al.,
2013, Lemma 12).
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Lemma 3.1. For every node s with count vector as = (as(0),as(1), . . . ,as(m − 1)) and
Ms = as(0)+ · · ·+as(m−1), the estimated probabilities Pe,s = Pe(as) of (2.7) satisfy:

logPe,s ≥
m−1

∑
j=0

as( j) log
as( j)
Ms

− m−1
2

logMs − logm; (3.4)

logPe,s ≤
m−1

∑
j=0

as( j) log
as( j)
Ms

− m−1
2

log
Ms

2π
− log

πm/2

Γ(m/2)
. (3.5)

Lemma 3.2. Under the assumptions of Theorem 3.1, for every internal node s of T ∗, the
branching probability Pb,s → 0, a.s., as n →∞.

Proof. As the complete proof is quite involved, only the main and more interesting part of
the argument is given here; the remaining details are given in Appendix B.2. We begin by
observing that,

Pb,s =
βPe,s

Pw,s
=

βPe,s

βPe,s +(1−β )∏ j Pw,s j
=

1
1+(1−β )/β ∏ j Pw,s j/Pe,s

(3.6)

≤ 1
1+ c0 ∏ j Pe,s j/Pe,s

, (3.7)

for some constant c0, where in the last step we used that either Pw,s j ≥ βPe,s j or Pw,s j = Pe,s j.
Therefore, it suffices to show that Pe,s

/
∏ j Pe,s j → 0, a.s., as n →∞.

Let s be a fixed finite context, and let X and J denote the random variables corresponding
to the symbols that follow and precede s, respectively, under the stationary distribution
of {Xn}. Using Lemma 3.1 and the ergodic theorem for Markov chains (Chung, 1967), it is
shown in Appendix B.2 that,

logPe,s −∑
j

logPe,s j =−nI(X ;J|s)π(s)+o(n), a.s., (3.8)

where I(X ;J|s) is the conditional mutual information between X and J given s (Cover and
Thomas, 1999). This mutual information is always nonnegative, and it is zero if and only if
X and J are conditionally independent given s.

For any internal node s that is a parent of leaves of T ∗, the minimality of T ∗ implies that
X and J are not conditionally independent given s, as there exist j ̸= j′ such that θs j ̸= θs j′ , so
that θs j depends on j. Therefore, I(X ;J|s)> 0 and π(s)> 0 by assumption, so (3.8) implies
that logPe,s −∑ j logPe,s j →−∞, a.s., as required.

For the general case of internal nodes that may not be parents of leaves, a simple iterative
argument is given in Appendix B.2 establishing the same result in that case as well, and
completing the proof of the lemma. □
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Lemma 3.3. Under the assumptions of Theorem 3.1, for every leaf s of T ∗, the branching
probability Pb,s → 1, a.s., as n →∞.

Proof. As with the previous lemma, we only give an outline of the main interesting steps in
the proof here; complete details are provided in Appendix B.2.

By definition, for any leaf s of T ∗ (and also for any ‘external’ node s, that is, any context s
not in T ∗), we have I(X ;J|s) = 0 because of conditional independence. Therefore, we need
to consider the higher-order terms in the asymptotic expansion of (3.8). Using Lemma 3.1,
the ergodic theorem, and the law of the iterated logarithm (LIL) for Markov chains (Chung,
1967), it is shown in Appendix B.2 that here,

∑
j

logPe,s j − logPe,s ≤−(m−1)2

2
logn+O(log logn), a.s. (3.9)

This implies that ∑ j logPe,s j − logPe,s →−∞, so that ∏ j Pe,s j/Pe,s → 0, a.s.

The last step of the proof, namely that for any leaf s of T ∗, ∏ j Pe,s j/Pe,s → 0 also implies
that ∏ j Pw,s j/Pe,s → 0, a.s., so that, by (3.6), Pb,s → 1, a.s., is given in Appendix B.2. □

Our next result is a refinement of Theorem 3.1, which characterises the rate at which the
posterior probability of T ∗ converges to 1.

Theorem 3.2. Let Xn
−D+1 be a time series generated by a positive-ergodic variable-memory

chain {Xn} with minimal model T ∗ ∈ T (D). For any value of the prior hyperparameter
β ∈ (0,1) and any ε > 0, we have, as n →∞:

π(T ∗|Xn
−D+1) = 1−O

(
n−

(m−1)2
2 +ε

)
, a.s.

Proof. The proof of Theorem 3.2 is given in Appendix B.2. It follows from considering the
rate at which Pb,s converges to either 0 or 1, depending on whether the node s is an internal
node or a leaf of T ∗. □

In fact, as discussed in Appendix B.2, the proof of Theorem 3.2 also reveals that a
stronger statement can be made for the convergence rate in the case of full Dth order Markov
chains, as in the corollary below.

Corollary 3.1. If {Xn} is a genuinely Dth order chain in that its minimal model T ∗ is the
complete tree of depth D, then its posterior probability π(T ∗|Xn

−D+1) almost surely converges
to 1 at an exponential rate.
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3.2.2 Out-of-class modelling

In this section we consider the behaviour of the posterior distribution π(T |x) on models
T ∈ T (D) when the time series x is not generated by a chain from the model class T (D),
but from a general stationary and ergodic process {Xn} with possibly infinite memory. We
first give an explicit description of the “limiting” model T∞ ∈ T (D) on which the posterior
π(T |x) concentrates when the observations are generated by a general process outside T (D),
and then we give conditions under which T∞ is structurally “as close as possible” to the true
underlying model.

Description of T∞. Recall that, for any context s, we write X and J for the random variables
corresponding to the symbols that follow and precede s, respectively. The limiting tree
T∞ ∈ T (D) corresponding to a general stationary process {Xn} with values in A can be
constructed via the following procedure:

• Take T∞ to be the empty tree.

• Starting with the nodes at depth d = D−1, for each such s, if I(X ;J|s)> 0, then add s
to T∞ along with all its children and all its ancestors; that is, add the complete path
from the root λ to the children of s.

• After all nodes s at depth d = D−1 have been examined, examine all possible nodes s
at depth d = D−2 that are not already included in T∞, and repeat the same process.

• Continue recursively towards the root, until all nodes at all depths 0 ≤ d ≤ D−1 have
been examined.

• For any node already in T∞ at depth d ≤ D−1, such that only some but not all m of its
children are included in T∞, add the missing children to T∞ so that it becomes proper.

• Output T∞.

In order to state our results we need to impose two additional conditions on the under-
lying data-generating process. Suppose {Xn} is stationary. Without loss of generality (by
Kolmogorov’s extension theorem) we may consider the two-sided version of the process,
{Xn ; n ∈ Z}. Its α-mixing coefficients (Ibragimov, 1962; Philipp and Stout, 1975) are
defined as,

αn = sup
A∈A, B∈B

|P(A∩B)−P(A)P(B)|, (3.10)

where A and B denote the σ -algebras, σ(. . . ,X−1,X0) and σ(Xn,Xn+1, . . .), respectively.
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We will need a mixing condition and a positivity condition for our results:

∞

∑
n=1

α
δ/(2+δ )
n <∞ for some δ > 0, and P(XD

0 = xD
0 )> 0 for all xD

0 ∈ AD+1. (3.11)

Theorem 3.3. Let Xn
−D+1 be a time series generated by a stationary ergodic process {Xn}

satisfying the assumptions (3.11), and let T∞ ∈ T (D) be given by the above construction.
Then, for any value of β ∈ (0,1) we have:

π(T∞|Xn
−D+1)→ 1, a.s., as n →∞.

Proof. The proof of Theorem 3.3 follows along exactly the same lines as the earlier proof
of Theorem 3.1. Instead of the ergodic theorem for Markov chains (Chung, 1967) we now
use Birkhoff’s ergodic theorem (Breiman, 1992), and instead of the LIL for Markov chains
(Chung, 1967) we apply the general LIL for functions of blocks of an ergodic process, which
follows, as usual, from the almost-sure invariance principle (Philipp and Stout, 1975; Rio,
1995; Zhao and Woodroofe, 2008). The mixing condition in (3.11) was chosen as one of the
simplest ones that guarantee this general version of the LIL.

Regarding the overall structure of the proof, all the earlier asymptotic expansions of
the branching probabilities still remain valid, including (3.8) and (3.9). The only possible
difference might be at the boundary conditions that are required as a starting point for
the iterative argument in the proof of Lemma 3.2, since the actual “leaves” of the true
underlying model of {Xn} are not necessarily at depth d ≤ D here. But, as before, all
branching probabilities Pb,s tend either to 0 or to 1, depending on whether the mutual
information condition that appears in the description of T∞ holds or not. Specifically, starting
from nodes s at depth d = D− 1, if I(X ;J|s) = 0 then we are in the same situation as
in Lemma 3.3, so that Pb,s → 1, and all children of s are pruned. On the other hand, if
I(X ;J|s)> 0, then Pb,s → 0, and by the same iterative argument, Pb,u → 0 for all ancestors u
of node s as well. □

Analogous comments apply to the proof of Theorem 3.4, which is again a refinement
characterising the rate at which the posterior probability of T∞ converges to 1.

Theorem 3.4. Let Xn
−D+1 be a time series generated by a stationary ergodic process {Xn}

satisfying the assumptions (3.11), and let T∞ be its limiting model in T (D). Then, for any
β ∈ (0,1) and any ε > 0, as n →∞ we have:

π(T∞|Xn
−D+1) = 1−O

(
n−

(m−1)2
2 +ε

)
, a.s.
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In general, it is natural to expect that T∞ should be “as close as possible” in some sense to
the true underlying model T ∗, and this is indeed what is most often observed in applications:
i.e., T∞ being the same as T ∗ truncated at depth D.

But this is not always the case. For instance, recall the 3rd order chain {Xn} studied in
Example 2.2, also described as having a “bimodal posterior”. There, T ∗ is the complete
m-ary tree of depth 3 (with m = 6), but Xn depends on (Xn−1,Xn−2,Xn−3) only via Xn−3.
For that reason, the limiting model T∞ in T (D) with D = 1 or D = 2 is not T ∗ truncated at
depth D, but rather the empty tree {λ} consisting of only the root node λ .

Fortunately, we can read a simple necessary and sufficient condition for the “expected”
behaviour to occur from the definition of T∞ itself. Let {Xn} be a stationary and ergodic
process on the finite alphabet A. From the description of Csiszár and Talata (2006), it is easy
to see that there is a unique minimal context-tree model T ∗ for {Xn} of possibly infinite depth.
Let T ∗

|D be T ∗ truncated at depth D, and write ND−1(T ∗) for the set of all internal nodes
of T ∗ at depth d = D−1 whose children exist in T ∗ (at depth D) but are not leaves of T ∗.

Corollary 3.2. The limiting tree model is T∞ = T ∗
|D if and only if I(X ;J|s) > 0 for all the

nodes s ∈ND−1(T ∗).

Proof. The result follows directly from the definition of T∞ together with the observation
that the condition I(X ;J|s)> 0 is already satisfied for all nodes s of T ∗ at depth d = D−1
whose children are leaves of T ∗. □

3.2.3 The posterior predictive distribution

The branching process representation of the posterior can also be used to facilitate practically
useful computations. In Section 2.6, the CTW algorithm was employed to compute the
posterior predictive distribution P∗

D(xn+1|xn
1). In Proposition 3.3, we also give an explicit

expression for P∗
D(xn+1|xn

1) in terms of the branching probabilities Pb,s.

Proposition 3.3. The posterior predictive distribution P∗
D(xn+1|xn

1) of (2.17) satisfies,

P∗
D(xn+1|xn

1) =
D

∑
i=0

(
as(i) (xn+1)+1/2

Ms(i) +m/2

)
γi, (3.12)

where, for 0 ≤ i ≤ D, the string s(i) is the context of length i preceding xn+1, and γi is the
posterior probability that node s(i) is a leaf, given by,

γi=


Pb,λ , i = 0,

∏
i−1
k=0

(
1−Pb,s(k)

)
Pb,s(i), 1 ≤ i ≤ D−1,

∏
D−1
k=0

(
1−Pb,s(k)

)
, i = D.

(3.13)
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Proof. Writing x = xn
1, the posterior predictive distribution can be expressed as,

P∗
D(xn+1|x) = ∑

T∈T (D)

P(xn+1|T,x)π(T |x). (3.14)

For any tree T ∈ T (D), exactly one of the contexts s(i), 0 ≤ i ≤ D, is a leaf of the tree. For
every 0 ≤ i ≤ D, define the subset Ti(D)⊂ T (D) to be the collection of trees T ∈ T (D) such
that the context of xn+1 that is a leaf of T is s(i); these Ti(D) are disjoint and their union
is T (D). The key observation here is that P(xn+1|T,x) is the same for all trees T ∈ Ti(D),
since,

P∗
D(xn+1|x) =

∫
θ

P(xn+1|T,θ ,x)π(θ |T,x) dθ

=
∫

θ
s(i)

P(xn+1|T,θs(i),x)π(θs(i)|T,x) dθs(i)

=
∫

θ
s(i)

θs(i) (xn+1)π(θs(i)|T,x) dθs(i) =
as(i) (xn+1)+1/2

Ms(i) +m/2
, (3.15)

where we used the full conditional density of the parameters in (2.16). So, from (3.14),

P∗
D(xn+1|x) =

D

∑
i=0

∑
T∈Ti(D)

P(xn+1|T,x)π(T |x) =
D

∑
i=0

as(i) (xn+1)+1/2
Ms(i) +m/2 ∑

T∈Ti(D)

π(T |x),

which completes the proof upon noticing that the last sum ∑T∈Ti(D)π(T |x) is exactly the
posterior probability that node s(i) is a leaf, namely, γi as in (3.13). □

3.3 Experimental results

Being able to obtain exact i.i.d. samples from the posterior is generally more desirable and
typically leads to more efficient estimation than using approximate MCMC samples. In this
section we offer empirical evidence justifying this statement in the present setting through a
simple simulation example.

In particular, we will compare the performance of the i.i.d. sampler of Section 3.1.3 with
the MCMC samplers of Section 2.3.4. The simulated data set that we consider consists of
n = 1,000 samples generated from the ternary 5th order chain of Section 2.4.1. A simple
and effective convergence diagnostic here (which can also be viewed as an example of an
estimation problem) is the examination of the frequency with which the MAP model, T ∗

1 ,
appears in the i.i.d. or the MCMC sample trajectory. Of course, the MAP model T ∗

1 and its
exact posterior probability π(T ∗

1 |x) are obtained using the BCT algorithm.
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As shown in Figure 3.1, the estimates based on both the i.i.d. sampler of Section 3.1.3 and
the RW sampler of Section 2.3.4 appear to converge, with the corresponding i.i.d. estimates
converging significantly faster. In 50 independent repetitions of the same experiment (with
N = 1,000 simulated samples in each run), the estimated variance of the MCMC estimates
was found to be much larger than that for the i.i.d. estimates, by a factor of around 60.
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Figure 3.1: Frequency of T ∗
1 . Blue: MCMC estimates. Red: i.i.d. estimates. In each case, the

five graphs correspond to five independent repetitions of the experiment with N = 1,000 simulated
samples. The horizontal line is the limiting frequency, π(T ∗

1 |x).

Figure 3.2 shows the trace plots (Roy, 2020) obtained from N = 10,000 simulated
samples from the MCMC and i.i.d. samplers, which can be used to monitor the log-posterior
in each case. It is immediately evident that the i.i.d. sampler is more efficient in exploring
the effective support of the posterior.
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Figure 3.2: Trace plots showing the log-posterior, logπ(T (i)|x), at each iteration. Top: MCMC
samples. Bottom: i.i.d. samples.

As expected, the i.i.d. sampler has superior performance compared to the MCMC sampler,
both in terms of estimation and in terms of mixing. Also, although the two types of samplers
have comparable complexity in terms of computation time and memory requirements, the
structure of the i.i.d. sampler is much simpler, giving a much easier implementation. In view
of these observations, in the following chapter we only employ the i.i.d. sampler for the
purposes of entropy estimation.



Chapter 4

Truly Bayesian Entropy Estimation

The entropy rate H̄ of a stochastic process {Xn} on a finite alphabet is defined as,

H̄ = lim
n→∞

1
n

H(Xn
1 ), (4.1)

whenever the limit exists, where H(Xn
1 ) denotes the usual Shannon entropy of the discrete

random vector Xn
1 = (X1, . . . ,Xn).

In this chapter we consider the challenging task of estimating the entropy rate from
empirical data. This is an important and timely problem that has received a lot of attention in
the recent literature, perhaps most notably in connection with neuroscience (Archer et al.,
2013; Paninski, 2003; Strong et al., 1998; Timme and Lapish, 2018), where the entropy
rate plays a crucial role in efforts to describe and quantify the amount of information
communicated between neurons. Other important areas of applications include natural
language modelling (Willems et al., 2016), animal communication (Kershenbaum, 2014),
cryptography (Simion, 2020), genomics (Schmitt and Herzel, 1997), image processing (Hero
and Michel, 1999), and web navigation (Levene and Loizou, 2003); see also the recent
literature reviews by Verdú (2019) and Feutrill and Roughan (2021).

Building on the BCT framework, here we develop a fully-Bayesian approach for entropy
estimation. Since the entropy rate is a functional of the model and the parameters, the
branching process sampler of Section 3.1.3 makes it possible to effectively sample from
the induced posterior on the entropy rate. This can be used to estimate the entire posterior
distribution π(H̄|x), hence providing much richer information than simple point estimates.
The practical utility of the BCT entropy estimator is illustrated on both simulated and real-
world data, where it is found to outperform state-of-the-art alternatives. We also establish
theoretical results for the entropy-rate posterior π(H̄|x), including proofs of consistency and
asymptotic normality, which further justify our methodology.
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4.1 Background

Throughout the years, a very wide variety of approaches have been developed for the task of
estimating the entropy rate. A recent extensive review of the relevant literature can be found
in Verdú (2019) and Feutrill and Roughan (2021). In this section, we briefly describe the
most successful earlier approaches among them.

Plug-in estimator. Motivated by the definition of the entropy rate, the simplest and one of
the most commonly used estimators is the per-sample entropy of the empirical distribution of
k-blocks. Letting p̂k(yk

1), yk
1 ∈ Ak, denote the empirical distribution of k-blocks induced by

the data on Ak, the plug-in or maximum-likelihood estimator is simply,

Ĥk =
1
k

H(p̂k).

The main advantage of this estimator is its simplicity. However, this approach is well-
known to perform poorly in practice, mainly because of the undersampling problem, i.e., the
difficulty in obtaining accurate probability estimates for large block-lengths (Nemenman et al.,
2004; Paninski, 2004; Verdú, 2019). Well-known drawbacks include its high variance due to
undersampling, and the difficulty in choosing appropriate block-lengths k effectively. Another
limitation is its always negative bias, with a number of different approaches developed to
correct for it; see Paninski (2003); Verdú (2019) for more details.

Universal compression. In view of the Shannon-McMillan-Breiman theorem (Cover and
Thomas, 1999), it is easy to see that, for a string xn

1 = (x1, . . . ,xn), any consistent probability
estimate p̂n(xn

1) leads to an estimate for the entropy rate as,

Ĥ =−1
n

log p̂n(xn
1).

In this setting, the adaptive probability assignments of universal compressors like the CTW
algorithm and prediction by partial matching (PPM) (Cleary and Witten, 1984) are natural
choices for the probability estimates to be employed.

Naive CTW estimator. This uses as a probability estimate the prior predictive likelihood
P∗

D(x
n
1) computed by the CTW algorithm, to define,

ĤCTW =−1
n

logP∗
D(x

n
1).

This estimator was found to achieve good performance in practice with binary data (Gao
et al., 2008; Verdú, 2019). Its consistency and asymptotic normality follow easily from
standard results, and its (always positive) bias is of O((logn)/n).
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PPM estimator. Using a different adaptive probability assignment, Q(xn
1), this method

forms the entropy estimate ĤPPM =−(1/n) logQ(xn
1), where prediction by partial matching

is used to fit the model that leads to Q(xn
1). In our experiments we use the interpolated

smoothing variant of PPM introduced by Bunton (1996).

Lempel-Ziv estimators. A different family of estimators is based on string-matching and
the fundamental results of Lempel-Ziv (LZ) (Wyner and Ziv, 1989; Ziv and Lempel, 1977) for
the relation of match-lengths with the entropy rate; the most effective such estimators are de-
scribed by Kontoyiannis et al. (1998) and Gao et al. (2008). Among the numerous estimators
that have been derived from the LZ family of compression algorithms, the increasing-window
estimator of Gao et al. (2008), has been identified as the most effective one, and it will be
used in our comparisons: For every position i in the observed data, let ℓi denote the length of
the longest segment xi+ℓi−1

i starting at i which also appears somewhere in the window xi−1
0

preceding i. Writing Li = 1+ ℓi for each i, the relevant estimator is,

ĤLZ =
1
n

n

∑
i=2

log i
Li

.

4.2 The BCT entropy estimator

Our starting point here is the fact that for any ergodic variable-memory chain with model
T ∈ T (D) and parameters θ , the entropy rate can be expressed as an explicit function,
H̄ = H(T,θ). This observation follows from the standard expression of the entropy rate for
an ergodic, first-order Markov chain {Xn}, namely (Cover and Thomas, 1999),

H̄ =− ∑
i, j∈S

π(i)Pi j logPi j, (4.2)

where S is the state space of {Xn}, and (Pi j) and (π(i)) denote its transition matrix and its
stationary distribution, respectively. An analogous formula can be written for the entropy
rate of an ergodic variable-memory chain T ∈ T (D), by viewing it as a full Dth order chain
and considering blocks of length (D+1), as usual; cf. Cover and Thomas (1999).

The resulting expression allowing us to compute the entropy rate as a function of (T,θ)
opens the door to performing fully-Bayesian entropy estimation. In particular, given a time
series x, using the sampling procedure of Section 3.1.3 to produce i.i.d. samples (T (i),θ (i))

from π(T,θ |x), we can simply obtain i.i.d. samples H(i) = H(T (i),θ (i)) from the posterior
π(H̄|x) of the entropy rate. The calculation of each H(i) = H(T (i),θ (i)) is straightforward
and only requires the computation of the stationary distribution π of the induced first-order
chain that corresponds to taking blocks of size [depth(T (i))+1].
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The only potential difficulty is if either the depth of T (i) or the alphabet size m are so
large that the computation of π becomes computationally expensive. In such cases, H(i)

can be computed approximately by including an additional Monte Carlo step: Generate a
sufficiently long random sample Y M

−D+1 from the chain (T (i),θ (i)), and calculate,

H(i) ≈− 1
M

logP(Y M
1 |Y 0

−D+1,T
(i),θ (i)). (4.3)

The ergodic theorem and the central limit theorem for Markov chains (Chung, 1967; Meyn
and Tweedie, 2012) then guarantee the accuracy of (4.3).

The fact that we can easily obtain i.i.d. samples from the entropy-rate posterior is very
important, because it means that we can effectively estimate the entire posterior distribution
π(H̄|x), providing much richer information than point estimates. This is an important
advantage of the Bayesian methodology followed here.

4.3 Theoretical results

In this section we give theoretical results for the asymptotic behaviour of the BCT entropy
posterior π(H̄|x), providing some justifications for its use in estimation.

Our first theoretical result shows that the posterior of the entropy rate asymptotically
concentrates on the true underlying value. Theorem 4.2 shows that it is asymptotically normal.
In order to avoid inessential technicalities, we assume throughout that the data-generating
process {Xn} is a positive ergodic variable-memory chain with memory no greater than D,
i.e., that all the parameters θs( j) are strictly positive.

Theorem 4.1. Let Xn
−D+1 be generated by a positive-ergodic, variable-memory chain {Xn}

with minimal model T ∗ ∈ T (D), parameters θ ∗, and entropy rate H∗ = H(T ∗,θ ∗); let β be
arbitrary. The posterior distribution of the entropy rate π(H̄|Xn

−D+1) concentrates around
the true value H∗, i.e.,

π(·|Xn
−D+1)

D−→ δH∗, a.s., as n →∞, (4.4)

where D−→ denotes weak convergence of probability measures, and δH∗ is the unit mass at H∗.

Proof. This is an immediate consequence of the concentration of the BCT joint posterior
π(T,θ |Xn

−D+1) around the true values (T ∗,θ ∗), which was recently proven as Theorem 3.7
in Kontoyiannis (2023). This result for the joint posterior actually follows easily from the
concentration of the model posterior π(T |Xn

−D+1) established in Theorem 3.1. □
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Theorem 4.2. Under the assumptions of Theorem 4.1, let H(n) be distributed according to
the posterior distribution π(H̄|Xn

−D+1), and let θ̄
(n)
T ∗ denote the mean of the posterior of the

parameters π(θ |T ∗,Xn
−D+1). Then, as n →∞,

√
n
(
H(n)− H̃(n)) D−→ Z ∼N (0,σ2

H), a.s., (4.5)

where H̃(n) = H(T ∗, θ̄
(n)
T ∗ )→ H∗, a.s. as n →∞.

Proof. First, denoting x = Xn
−D+1 for simplicity, for the entropy rate posterior density π(H̄|x)

we can write,

π(H̄|x) = ∑
T∈T (D)

π(H̄|T,x)π(T |x), (4.6)

where for every given T , the conditional density π(H̄|T,x) arises from the conditional density
of the parameters π(θ |T,x) through the transformation of variables H̄ = H(T,θ).

Denoting the posterior density πH̄|x(h) from (4.6) as fH̄,n(h), in order to prove the theorem
it suffices to show that,

1√
n

fH̄,n

(
h√
n
+ H̃(n)

)
→ φσH (h), as n →∞, (4.7)

uniformly on compact sets in R, where φσ (z) denotes the density of a zero mean Gaussian
with variance σ2.

From the central limit theorem (CLT) on the parameters, proven as Theorem 3.8 in Kon-
toyiannis (2023), we have that, for θ

(n)
T ∗ distributed according to the posterior π(θ |T ∗,x), as

n →∞,
√

n
(
θ
(n)
T ∗ − θ̄

(n)
T ∗
) D−→ Z ∼N (0,J), a.s., (4.8)

where the covariance matrix J is given in Kontoyiannis (2023). Similarly, we can get for
every T that,

√
n
(
θ
(n)
T − θ̄

(n)
T
) D−→ Z ∼N (0,JT ), a.s., (4.9)

where θ
(n)
T is distributed according to the posterior π(θ |T,x) with mean θ̄

(n)
T .

Now, given T , H̄ is just a function of the parameters θ , so applying the delta method (Van der
Vaart, 2000) we get that,

√
n
(
H(n)

T − H̃(n)
T
) D−→ Z ∼N (0,σ2

T ), a.s., (4.10)

where H̃(n)
T = H(T, θ̄ (n)

T ), and H(n)
T is distributed according to π(H̄|T,x).
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We note that in order to use the delta method, implicitly we are using the differentiability
of H, which reduces to the differentiability of the stationary distribution π as a function of θ ;
this condition is satisfied for a positive-ergodic chain, see, e.g. Funderlic and Meyer (1986);
Golub and Meyer (1986); Meyer (1975); Schweitzer (1968) and the references therein for
more details on that.

Considering the conditional density fH̄|T,n of the random variables in (4.10), we get that,
uniformly on compact sets,

1√
n

fH̄|T,n

(
h√
n
+ H̃(n)

T

)
→ φσT

(h), as n →∞. (4.11)

Finally, from Theorem 3.1, the model posterior concentrates on T ∗, i.e., π(T ∗|x)→ 1 and
π(T |x)→ 0 for T ̸= T ∗, a.s. as n →∞. Combining this with (4.11) and (4.6) gives (4.7)
with σH = σT ∗ and H̃(n) = H̃(n)

T ∗ , completing the proof. □

Remarks:

1. The delta method also gives an expression for the asymptotic variance, namely,
σ2

H = ∇θ HTJ∇θ H. This involves the covariance matrix J (Kontoyiannis, 2023) and
the partial derivatives ∂H/∂θ , which in turn involve the partial derivatives of the
stationary distribution with respect to θ (Golub and Meyer, 1986; Schweitzer, 1968).

2. Theorem 4.2 shows that the posterior π(H̄,x) is asymptotically normal around H̃(n).
A CLT also holds for the convergence of H̃(n) to the true value H∗, so it is easy to see
that H(n) = H∗+Op(1/

√
n).

Finally, we give some theoretical results for the naive CTW entropy estimator ĤCTW

described in Section 4.1. Although this was used in Gao et al. (2008) only for binary data,
here we prove its consistency and asymptotic normality for finite alphabets.

Theorem 4.3. Under the assumptions of Theorem 4.1, the naive CTW entropy estimator is
consistent, i.e.,

ĤCTW =−1
n

logP∗
D(x

n
1)→ H∗, a.s., as n →∞, (4.12)

where P∗
D(x

n
1) is the prior predictive likelihood in (1.1).

Theorem 4.4. Under the assumptions of Theorem 4.1, the naive CTW entropy estimator is
asymptotically normal:

√
n
(
ĤCTW −H∗)→ Z ∼N (0,σ2

CTW), a.s., as n →∞. (4.13)
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Proof. Denoting the likelihood of the data P(xn
1|T ∗,θ ∗), both theorems follow immediately

from the observation that,

logP∗
D(x

n
1) = logP(xn

1|T ∗,θ ∗)+O(logn), a.s., (4.14)

which follows directly from the explicit upper and lower bounds on P∗
D(x

n
1) given as Theo-

rem 3.1 in Kontoyiannis (2023) and “Barron’s lemma” in Kontoyiannis (1997). The ergodic
theorem and the CLT for Markov chains Chung (1967); Meyn and Tweedie (2012) then
directly give Theorems 4.3 and 4.4, respectively. Note that positive ergodicity is not strictly
needed for these results, we just need the ergodic theorem and CLT to hold respectively;
see Chung (1967); Meyn and Tweedie (2012) for general conditions. □

4.4 Experimental results

In this section, the BCT entropy estimator (with D = 10) is compared with state-of-the-art
approaches as identified by Verdú (2019) and summarised in Section 4.1. The BCT estimator
is found to give the most reliable estimates on a variety of simulated and real-world data.
Throughout this section, all entropies are expressed in nats.

A ternary 5th order chain. We consider n = 1,000 observations generated from the 5th
order, ternary chain of Section 2.4.1. The entropy rate of this chain is H̄ = 1.02. In Figure 4.1
we show estimates of the prior distribution π(H̄), and of the posterior π(H̄|x) based on
n = 100 and n = 1,000 observations. With n = 1,000, the posterior is close to a Gaussian
with mean µ = 1.005 and standard deviation σ = 0.017. For each histogram N = 105 i.i.d.
samples were used, and in each case (and in all subsequent examples), the vertical axis of the
histograms shows the frequency of the bins in the Monte Carlo sample.
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Figure 4.1: Prior π(H̄) and posterior π(H̄|x) of the entropy rate H̄ with n = 100 and n = 1,000
observations x.
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Figure 4.2 shows the performance of the BCT estimator compared with the other estima-
tors described above, as a function of the length n of the available observations x. For BCT
we plot the posterior mean. For the plug-in we plot estimates with block-lengths k = 5,6,7.
It is easily observed that the BCT estimator outperforms all the alternatives, and converges
faster and closer to the true value of H̄.
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Figure 4.2: Entropy rate estimates for the ternary chain, as the number of observations increases.

A third order binary chain. We consider n = 1,000 observations generated from a third
order binary chain from Berchtold and Raftery (2002). The underlying model is the complete
binary tree of depth 3 pruned at node s = 11; the tree model T and parameters θ are given
in Appendix C.1. The entropy rate of this chain is H̄ = 0.4815. Figure 4.3 shows the
performance of all estimators, where BCT (using the posterior mean) is found to have the
best performance. The histogram of the BCT posterior after n = 1,000 observations, is close
to a Gaussian with mean µ = 0.4806 and standard deviation σ = 0.0405.
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Figure 4.3: Entropy rate estimates for the binary chain, as the number of observations increases.
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A bimodal posterior. We re-examine the “bimodal posterior” example (Example 2.2)
from Section 2.5 for the purposes of entropy estimation; the true value of the entropy rate
is H̄ = 1.355. Recalling our findings in Section 2.5, the model posterior was found to be
bimodal, with one mode corresponding to the empty tree (describing i.i.d. observations) and
the other consisting of tree models with depth 3.

As shown in Figure 4.4a, the posterior of the entropy rate is also bimodal here, with two
approximately-Gaussian modes corresponding to the two model posterior modes. The domi-
nant mode is the one corresponding to models of depth 3; it has mean µ1 = 1.406, standard
deviation σ1 = 0.031, and relative weight w1 = 0.91. The second mode corresponding to the
empty tree has mean µ2 = 1.632, standard deviation σ2 = 0.020, and a much smaller weight
w2 = 1−w1 = 0.09. In this case, because of the bimodality of the posterior, the mode of
π(H̄|x) gives a more reasonable point estimate than the posterior mean.
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Figure 4.4: Histograms of the posterior distribution π(H̄|x) of the entropy rate, constructed from
N = 105 i.i.d. samples.

Neural spike train. We consider n = 1,000 binary observations from the spike train
of Section 2.4.2. recorded from a single neuron in region V4 of a monkey’s brain. The
entropy-rate posterior is shown in Figure 4.4b: Its mean is µ = 0.0234, its standard deviation
is σ = 0.0108, and is slightly skewed to the right.

This dataset is the first part of a long spike train of length n = 3,919,361 bits from
Section 2.4.2. Although there is no “true” value of the entropy rate here, for the purposes
of comparison we use the estimate obtained by the naive CTW estimator (identified as the
most effective method by Verdú (2019)) when all n = 3,919,361 samples are used, giving
H̄ = 0.0241. The resulting estimates for all methods (with the posterior mean used for BCT)
are summarised in Table 4.1, verifying again that BCT outperforms all the other methods.
For the plug-in estimator, we show a number of different block-lengths k.
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Table 4.1: Entropy rate estimates for the neural spike train.

“True” BCT CTW PPM LZ k = 2 k = 5 k = 10 k = 15

Ĥ 0.0241 0.0234 0.0249 0.0360 0.0559 0.0204 0.0204 0.0198 0.0187

Financial data. Here, we consider n = 2,000 observations from the financial dataset in
Appendix C.1. This consists of tick-by-tick price changes of the Facebook stock price,
quantised to three values: xi = 0 if the price goes down, xi = 1 if it stays the same, and xi = 2
if it goes up. The BCT entropy-rate posterior is shown in Figure 4.5a: It has mean µ = 0.921,
and standard deviation σ = 0.028.

0.75 0.8 0.85 0.9 0.95 1 1.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 = 0.921
 = 0.028

(a) financial dataset

0.15 0.2 0.25 0.3 0.35
0

0.01

0.02

0.03

0.04

0.05

0.06

 = 0.258
 = 0.024

(b) pewee birdsong

Figure 4.5: Histograms of the posterior distribution π(H̄|x) of the entropy rate, constructed from
N = 105 i.i.d. samples.

Once again, as the “true” value of the entropy rate we take the estimate produced by the
naive CTW estimator on a longer sequence with n = 104 observations, giving H̄ = 0.916.
The results of all five estimators are summarised in Table 4.2, where the BCT estimator is
again found to outperform the alternatives (again using the posterior mean).

Table 4.2: Entropy rate estimates for the financial dataset.

“True” BCT CTW PPM LZ k = 5 k = 6 k = 7 k = 10

Ĥ 0.916 0.921 0.939 1.049 0.846 0.930 0.907 0.870 0.713

Pewee birdsong. The last dataset is the twilight song of the wood pewee bird from
Section 2.4.2, which consists of n = 1327 observations from an alphabet of size m = 3. The
BCT posterior is shown in Figure 4.5b: It is approximately Gaussian with mean µ = 0.258
and standard deviation σ = 0.024.
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The fact that the standard deviation is small suggests “confidence” in the resulting
estimates, which is important because here (as in most real applications) there is no knowledge
of a “true” underlying value. Table 4.3 shows all the resulting estimates; the posterior mean
is shown for the BCT estimator.

Table 4.3: Entropy rate estimates for the birdsong dataset.

BCT CTW PPM LZ k = 2 k = 5 k = 10 k = 15

Ĥ 0.258 0.278 0.318 0.275 0.776 0.467 0.336 0.272

Summary. The main conclusion from the results on the six datasets examined in this section
is that the BCT entropy estimator gives the most accurate and reliable results among the
five estimators considered, outperforming the state-of-the-art approaches. In addition to the
fact that the BCT point estimates typically outperform those produced by other methods,
the BCT estimator is accompanied by the entire posterior distribution π(H̄|x) of the entropy
rate, induced by the observations x. As usual, this distribution can be used to quantify the
uncertainty in estimating H̄, and it contains significantly more information than simple point
estimates and their associated confidence intervals.

In closing, it is noted that there exist interesting directions for further research, extend-
ing the methodology developed in this chapter. In particular, building on the proposed
methodology for entropy estimation, fully-Bayesian approaches could be developed for
estimating the mutual information and directed information rates between processes. As
measures of the mutual dependence and the flow of information between stochastic processes,
these quantities arise in a number of important applications, as for example in testing for
causality (Kontoyiannis and Skoularidou, 2016; Massey, 1990).





Chapter 5

Bayesian Change-Point Detection
for Discrete Data

The challenging tasks of segmentation and change-point detection arise in numerous ap-
plications with time series data, in various different settings; see, e.g., the recent reviews
by Aminikhanghahi and Cook (2017); Truong et al. (2020); Van den Burg and Williams
(2020). In the case of discrete-valued data, important application areas include for example
genetics, biomedicine, neuroscience, finance and the social sciences (Chandola et al., 2012).
The perhaps most critical application in this setting is the segmentation of genetic data, for
which the most commonly used tools are based on Hidden Markov Models. Since their
introduction for modelling heterogeneous DNA sequences by Churchill (1989, 1992), HMMs
have become quite popular for segmentation tasks in a wide range of disciplines (Kehagias,
2004). More recently, Bayesian HMM approaches have also been proposed and used in
practice (Boys and Henderson, 2004; Totterdell et al., 2017).

Motivated in part by the demonstrated efficacy of our methods in a number of statistical
tasks, in this chapter we build on the BCT framework and develop a Bayesian modelling
framework for piecewise homogeneous variable-memory chains. An appropriate prior is
placed on the number and the locations of the change-points, and each segment is described
by a BCT model as before. A collection of MCMC samplers are developed for inference in
this setting, allowing to sample directly from the desired posterior distribution of the number
and the location of the change-points, and hence to perform effective Bayesian change-
point detection. The performance of our methods is illustrated in a number of simulated
experiments and real-world applications.
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5.1 Piecewise homogeneous BCT models

In this section, we describe the proposed Bayesian modelling framework and the associated
inference methodology for discrete-valued time series with change-points.

Each segment is modelled by a homogeneous variable-memory chain as in Chapter 2, and
two different cases are considered: When the number of change-points is known a priori, and
when it is unknown and needs to be inferred as well. Let ℓ denote the number of change-points,
and let 1 = p0 < p1 < p2 < · · · < pl < pℓ+1 = n denote their locations, where we include
the end-points p0 = 1 and pℓ+1 = n for convenience, and write, p = (p0, p1, . . . , pℓ+1).

5.1.1 Known number of change-points

Model description. Suppose the maximum memory length D is fixed. Given a time
series xn

−D+1, the number of change-points ℓ, and their locations p = (p0, p1, . . . , pℓ+1), the
observations xn

1 are partitioned into (ℓ+1) segments,

x(1;p) = xp1−1
1 ,

x( j;p) = xp j−1
p j−1 , for j = 2,3, . . . , ℓ,

x(ℓ+1;p) = xn
pℓ.

Each segment x( j;p), 1 ≤ j ≤ ℓ+1, is assumed to be distributed as a variable-memory chain
with model T ( j) ∈ T (D), parameter vector θ ( j), and initial context given by the D symbols
preceding xp j−1 (i.e., the last D symbols of the previous segment). The resulting likelihood is,

P(x|p,{θ
( j)},{T ( j)}) =

ℓ+1

∏
j=1

P(xp j−1
p j−1 |x

p j−1−1
p j−1−D,θ

( j),T ( j)),

where each term in the product is given by the standard BCT likelihood as in (2.6).

Prior structure. Given the number ℓ of change-points, following Green (1995) and Fearn-
head (2006), we place a prior on their locations p specified by the even-order statistics
of (2ℓ+1) uniform draws from {2,3, . . . ,n−1} without replacement,

π(p|ℓ) = K−1
ℓ

ℓ

∏
j=0

(p j+1 − p j −1), (5.1)

where Kℓ =
( n−2

2ℓ+1

)
. This prior penalises short segments to avoid overfitting: The probability

of p is proportional to the product of the lengths of the segments x( j;p). For example, the
prior gives zero probability to adjacent change-points, i.e., to segments of zero length.

Finally, given ℓ and p, an independent BCT prior π(T ( j))π(θ ( j)|T ( j)) is placed on the
model and parameters of each segment j, as in (2.4) and (2.5).
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Posterior distribution. The posterior distribution of the change-point locations p is,

π(p|x)∝ P(x|p)π(p|ℓ),

with π(p|ℓ) as in (5.1). To compute the term P(x|p), all models T ( j) and parameters θ ( j)

in P(x,{θ ( j)},{T ( j)}|p) need to be integrated out. Since independent priors are placed on
different segments, P(x|p) reduces to the product of the prior predictive likelihoods,

P(x|p) =
ℓ+1

∏
j=1

P∗
D(x( j;p)), (5.2)

where we suppress the dependence on the initial context for each segment to simplify notation.

Importantly, each term in the product (5.2) can be computed efficiently using the CTW
algorithm as usual (Theorem 2.1). This means that the models and parameters in each
segment can be marginalised out, making it possible to efficiently compute the unnormalised
posterior π(p|x) for any p. This is critical for effective inference on p, as it means that there
is no need to estimate or sample the variables {T ( j)} and {θ ( j)} in order to sample directly
from π(p|x), as described next.

MCMC sampler. The MCMC sampler for π(p|x) is a Metropolis-Hastings (MH) algorithm.
Apart from the standard inputs of the time series x = xn

−D+1, the alphabet size m ≥ 2, the
maximum memory length D ≥ 0 and the prior hyperparameter β , this algorithm also requires
the number of change-points ℓ ≥ 1 and an initial MCMC state p(0)to be specified. The
proposal distribution is described below.

Given the current state p(t) = p, a new state p′ is proposed as follows: One of the change-
points pi is chosen at random from p (excluding the edges p0 = 1 and pℓ+1 = n), and it is
replaced either by a uniformly chosen position p′i from the (n− ℓ−2) remaining available
positions, with probability 1/2, or by one of its two neighbours, again with probability 1/2.
[Note that the neighbours of a change-point are always available, as the prior places zero
probability to adjacent change-points.]

The proposed p′ is either accepted and p(t+1) = p′, or rejected and p(t+1) = p, with
acceptance probability given by α(p,p′) = min{1,r(p,p′)}, where,

r(p,p′) =
P(x|p′)

P(x|p)
×

ℓ

∏
j=0

(p′j+1 − p′j −1)

(p j+1 − p j −1)
.

Importantly, the fact that the terms P(x|p) and P(x|p′) can be computed exactly and efficiently
using the CTW algorithm is what enables this sampler to work effectively.
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5.1.2 Unknown number of change-points

In most applications the number of change-points ℓ is not known a priori, and needs to be
treated as an additional parameter to be inferred. As before, given the number and location
of the change-points, each segment is modelled by a variable-memory chain.

Prior structure. Given the maximum possible number of change-points ℓmax ≥ 1, we place
a uniform prior for ℓ on {0,1, . . . , ℓmax}, and, given ℓ, the rest of the priors on p, {T ( j)} and
{θ ( j)} remain the same as in Section 5.1.1. The uniform prior is a common choice for ℓ in
such problems, as the Bayesian approach implicitly penalises the more complex models by
averaging over a larger number of parameters, resulting in what is sometimes referred to as
“automatic Occam’s Razor” (MacKay, 2003; Rasmussen and Ghahramani, 2000).

Posterior distribution. The joint posterior distribution on the number and the locations of
the change-points is,

π(p, ℓ|x)∝ P(x|p, ℓ)π(p|ℓ)π(ℓ), (5.3)

where π(p|ℓ) is given in (5.1), π(ℓ) = 1/(1+ ℓmax), and the term P(x|p, ℓ) is identical to the
term P(x|p) in (5.2).

MCMC sampler. The MCMC sampler for π(p, ℓ|x) is again a Metropolis-Hastings algorithm.
Given the current state (ℓ(t),p(t)) = (ℓ,p), propose a new state (ℓ′,p′) as follows:

(i) If ℓ= 0, set ℓ′ = 1, choose p′1 uniformly among the n−2 available positions, and form
p′ = (1, p′1,n).

(ii) If 1 ≤ ℓ < ℓmax, then select one of the following three options with probability 1/3 each:

(a) Set ℓ′ = ℓ−1 and form p′ by deleting a uniformly chosen change-point from p(t);

(b) Set ℓ′ = ℓ+1, choose a new change-point uniformly from the (n−ℓ−2) available
positions, and let p′ be the same as p(t) with the new point added;

(c) Set ℓ′ = ℓ and propose p′ as in the sampler of Section 5.1.1.

(iii) If ℓ= ℓmax, then select one of the following two options with probability 1/2 each:

(a) Set ℓ′ = ℓ−1 and form p′ by deleting a uniformly chosen change-point from p(t).

(b) Set ℓ′ = ℓ and propose p′ as in the sampler of Section 5.1.1.

Finally, decide to accept the proposed (ℓ′,p′) and set (ℓ(t+1),p(t+1))= (ℓ′,p′) with acceptance
probability α((ℓ,p),(ℓ′,p′)) = min{1,r((ℓ,p),(ℓ′,p′))}, where in view of (5.3) the ratio
r((ℓ,p),(ℓ′,p′)) can again be computed easily via the CTW algorithm. The exact form of
r((ℓ,p),(ℓ′,p′)) follows from standard MH methodology and is given in Appendix B.4.



5.1 Piecewise homogeneous BCT models 79

5.1.3 Further connections and comments

Unlike many of the relevant existing methods, which mainly only obtain point estimates and
may rely in part on ad hoc considerations, the present methodology comes from a principled
Bayesian approach that provides access to the entire posterior distribution of the parameters
of interest, i.e., the number and the locations of the change-points. As usual, this offers a
natural quantitative measure of uncertainty in the resulting estimates, and provides much
richer information than simple point estimates.

The most closely related prior work is that of Gwadera et al. (2008), where VLMC models
are used in conjunction with the BIC criterion or with a variant of the Minimum Description
Length (MDL) principle to estimate variable-memory models and perform segmentation by
solving an associated Bellman equation (Bellman, 1966).

There has also been a long line of works on change-point detection in the information-
theoretic literature. There, piecewise homogeneous models were first considered by Merhav
(1993) and Merhav and Feder (1995), who determined the optimal cumulative log-loss (or
‘redundancy’, in the language of data compression). Starting with Willems (1996), a series
of papers examined sequential change-point detection, typically (but not exclusively) for
independent and piecewise identically distributed models. These works (Shamir, 2003;
Shamir and Costello, 2000, 2001; Shamir and Merhav, 1999) are primarily concerned with
deriving theoretical bounds on the best achievable performance by on-line methods, and
also propose sequential algorithms for change-point detection, mostly for piecewise i.i.d.
(independent and identically distributed) data.

In a related but different direction, Jacob and Bansal (2008) and subsequently Juvvadi
and Bansal (2013); Verma and Bansal (2019); Yamanishi and Fukushima (2018), frame the
change-point detection problem as a series of hypothesis tests, performed using statistics
based on data compression or entropy estimation algorithms. And an approach combining
HMMs with information-theoretic ideas is adopted in Koolen and de Rooij (2013), where
prediction is performed on piecewise stationary data.

Finally, in the context of generalisations of the original CTW framework, change-point
models have also been examined by Veness et al. (2012) and Veness et al. (2013), and more
recently by Shimada et al. (2021), who consider optimal and practical ‘Bayes codes’ for data
compression in connection with these models.
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5.2 Experimental results
In this section, we illustrate the performance of the proposed BCT-based methods for
segmentation and change-point detection in a number of simulated experiments and real-
world applications from genetics and meteorology.

5.2.1 Known number of change-points

The Simian virus 40 (SV40) is one of the most intensely studied animal viruses. Its genome is
a circular double-stranded DNA molecule of 5,243 base-pairs (Reddy et al., 1978), available
as sequence NC_001669.1 at the GenBank database (Clark et al., 2016).

The expression of SV40 genes is regulated by two major transcripts (early and late),
suggesting the presence of a single major change-point in the entire genome (Churchill, 1992;
Rotondo et al., 2019; Totterdell et al., 2017). One transcript is responsible for producing
structural virus proteins while the other one is responsible for producing two T-antigens (a
large and a small one). Hence, we take the start of the gene producing the large T-antigen to
be the “true” change-point of the data set, corresponding to position p∗1 = 2691.

Figure 5.1: Posterior distribution π(p1|x) of the change-point location for the SV40 genome. Left:
MCMC histogram of π(p1|x) near its mode, constructed from N = 300,000 MCMC samples, with
the first 30,000 discarded as burn-in. Right: Entire exact posterior, π(p1|x).

The MCMC sampler of Section 5.1.1 was run with ℓ= 1 and D = 10. The left plot in
Figure 5.1 shows the resulting histogram of the change-point p1, between locations 2800
and 2880; there were essentially no MCMC samples outside that interval. Viewing this
as an approximation to the posterior π(p1|x), the approximate MAP location p̂1 = 2827 is
obtained, which is indeed close to p∗1 = 2691.

This result is particularly encouraging, especially since our method is a general method
that is agnostic with respect to the nature of the observations – unlike some earlier approaches,
it does not utilise any biological information about the structure of the data. Moreover, the
value p̂1 is slightly closer to p∗1 than estimates produced by some of the standard change-point
detection methods; e.g., the HMM-based technique in Churchill (1992) gives p̂1 ≈ 2859, and
the Bayesian HMM approach of Totterdell et al. (2017) gives p̂1 ≈ 2854.
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Since this data set is relatively short and contains a single change-point, it is actually
possible to compute the entire posterior distribution of the location p1 exactly:

π(p1|x) =
P(x|p1)π(p1|ℓ= 1)

∑
n−1
p=2 P(x|p)π(p|ℓ= 1)

,

where π(p1|ℓ= 1) is given by (5.1), and the terms P(x|p1) and P(x|p) in the numerator and
denominator can be computed using the CTW algorithm.

The resulting exact posterior distribution is shown in the right plot in Figure 5.1 and in
more detail in Figure 5.2. Even though the shape of the posterior around the mode is quite
irregular, the MCMC estimate is almost identical to the true distribution. This indicates
that the MCMC sampler converges quite fast and explores all of the support of π(p1|x)
effectively: The uniform jumps identify the approximate position of the change-point, and
the random-walk moves explore the high-probability region around it.

Figure 5.2: Exact distribution vs. MCMC estimate of π(p1|x) for the SV40 genome.

Note that the posterior distribution does not just provide a point estimate for p1, but
it identifies an interval in which it likely lies with high probability, illustrating a common
advantage of the Bayesian approach. Also, we should point out that the fact that the posterior
here can be computed without resorting to MCMC does not simply indicate that MCMC
sampling is sometimes unnecessary. It actually highlights the power of the marginalisation
provided by the CTW algorithm in that, for relatively short data sets with few change-points,
it is possible to get access to the entire exact posterior distribution of interest.

5.2.2 Unknown number of change-points

Simulated data. We first examine a synthetic dataset that consists of n = 4,300 observations
generated from four variable-memory chains with values in A = {0,1,2}. Their models
(shown in Figure 5.3) and associated parameters (given in Appendix C.2) are chosen to be
quite similar, so that the resulting segmentation problem is nontrivial. The locations of the
three change-points are at positions p∗1 = 2500, p∗2 = 3500, p∗3 = 4000.
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Figure 5.3: The four tree models used for generating the synthetic data set. The last model is the
empty tree consisting of only the root node λ , corresponding to independent data.

The MCMC sampler of Section 5.1.2 was run with ℓmax = 10 and D = 10. The result-
ing histogram approximation to the posterior of the number of change-points (left plot in
Figure 5.4) shows that the algorithm identifies the correct value ℓ= 3 with overwhelming
confidence. Similarly, the posterior of the change-point locations (right plot in Figure 5.4)
consists of three narrow peaks centered at the true locations. The actual MAP estimates for
the change-point locations are p̂1 = 2497, p̂2 = 3500, and p̂3 = 3999. Zoomed-in versions,
showing the posterior of the location of each of the three change-points separately are shown
in Figure C.9 in Appendix C.2.

Figure 5.4: Simulated data. Left: MCMC histogram of the posterior of the number of change-
points. Right: MCMC histogram of the posterior of the change-point locations. In both cases,
N = 105 MCMC samples were used, with the first 10,000 discarded as burn-in.

Bacteriophage lambda genome. Here we study the 48,502 base-pair-long genome of
the bacteriophage lambda virus (Sanger et al., 1982), which is available as sequence
NC_001416.1 at the GenBank database. This dataset is often used as a benchmark for
comparing different segmentation algorithms (Boys and Henderson, 2004; Braun and Müller,
1998; Braun et al., 2000; Churchill, 1989, 1992; Gwadera et al., 2008; Li, 2001). Due to the
high complexity of this genome (which consists of 73 different genes), previous approaches
often give slightly different results on both the number and locations of change-points,
although all of them have been found to be biologically reasonable.

In particular, Gwadera et al. (2008) identify a total of 4 change-points, while Li (2001) and
Boys and Henderson (2004) identify 5 change-points, Churchill (1992) and Braun and Müller
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(1998) identify 6 change-points, and Braun et al. (2000) identify 8 change-points. These
differences make it difficult to compare the performance of different methods quantitatively,
but judging the biological relevance of the identified segments is still crucial. In order to do
so, we will refer to the findings in the standard work of Liu et al. (2013).

The MCMC sampler of Section 5.1.2 was run with D = 10 and ℓmax = 10. The resulting
MCMC histogram approximation of the posterior over the number of change-points, shown
in Figure 5.5, suggests that, with very high probability, there are either ℓ = 4 or ℓ = 5
change-points, with ℓ= 4 being over seven times more likely than ℓ= 5.

Figure 5.5: Bacteriophage lambda genome. Left: MCMC histogram of the posterior of the number
of change-points. Right: MCMC histogram of the posterior of the change-point locations. In both
cases, N = 700,000 samples were used, with the first 70,000 discarded as burn-in.

The posterior of the change-point locations, shown in Figure 5.5, clearly identifies
four significant locations, as well as two more with significantly smaller weights (around
positions 100 and 24,000). Zoomed-in versions, showing the posterior of each of the four
main locations are given in Figure C.10 in Appendix C.2. The resulting MAP estimates for
the change-point locations are shown in Table 5.1, where they are also compared with the
biologically “true” change-points (Liu et al., 2013) and the estimates provided by one of the
most successful previous approaches (Braun et al., 2000).

Table 5.1: Estimates of change-point locations in the bacteriophage lambda genome.

Gene True BCT Braun et al. (2000)

ea47 22,686 22,607 22,544
ea59 26,973 27,832 27,829
cro 38,315 38,340 38,029
bor 46,752 46,731 46,528

According to Liu et al. (2013), the segments we identify correspond to a biologically
meaningful and important partition in terms of gene expression. The first segment (1-22,607)
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starts at the beginning of the genome and ends very close to the start of gene “ea47” (position
22,686), which signifies the end of the “late operon” and the beginning of the leftward
“early operon”, both of which play an important role in transcription. The second segment
(22,608-27,832) essentially consists of the region “b2”, an important region containing the
three well-recognised “early” genes: “ea47”, “ea31” and “ea59”. The third segment (27,833-
38,340) ends very close to the end of gene “cro” (position 38,315), which is the start of the
rightward “early operon” that is also essential in transcription. Lastly, the fourth segment
(38,341-46,731) ends very close to the end of gene “bor” (position 46,752), one of the major
genes being translated.

Compared with previous findings, our results are similar enough to be plausible, while
the places where they differ are precisely in the identification of biologically meaningful
features, potentially improving performance. Specifically, our estimates are very close to
those obtained by Gwadera et al. (2008), where an approach based on variable-memory
chains is also used: Four change-points are identified by Gwadera et al. (2008), and their
estimated locations lie inside the credible regions of our corresponding posteriors.

Comparing with the Bayesian HMM approach of Boys and Henderson (2004), the present
method gives similar change-point locations, while also addressing some of its identified
limitations: Firstly, Gupta and Liu (2004) argue that the assumption that all segments share the
same memory length, which is adopted in the Bayesian HMM approach, may be problematic.
Our methodology requires no such assumptions and, indeed, the MAP tree models obtained
by the BCT algorithm in each segment have maximum depths d = 5,1,2,3 and 0, respectively,
indicating that the memory length is not constant throughout the genome. Also, it was seen
that the Bayesian HMM framework may be sensitive to the assumed prior distribution on the
state transition parameters. In contrast, the proposed framework avoids such problems as it
uses a simple default value for the only prior hyperparameter, β .

El Niño occurrences. El Niño (Trenberth, 1997) is one of the most influential natural climate
patterns on earth. It impacts ocean temperatures, the strength of ocean currents, and the local
weather in South America. As a result, it has direct societal consequences on areas including
the economy (Cashin et al., 2017) and public health (Kovats et al., 2003). Moreover, studying
the frequency change of El Niño events can shed light on anthropogenic warming (Cai et al.,
2014; Timmermann et al., 1999; Wang et al., 2019).

The data set considered here is a binary time series that consists of n = 495 annual
observations between 1525 to 2020 (Quinn et al., 1987), with 0 representing the absence of
an El Niño event and 1 indicating its presence; data for recent years are also available online
through the US Climate Prediction Center, at: https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php.

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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The MCMC sampler of Section 5.1.2 was run with D = 5 and ℓmax = 5. The resulting
MCMC estimate of the posterior on the number of change-points, shown in Figure 5.6,
suggests that the most likely value is ℓ= 2, with ℓ= 1 being a close second. The posterior
of the change-point locations also shows two clear peaks; zoomed-in versions showing the
location of each change-point separately are given in Figure C.11 in Appendix C.2.

Figure 5.6: El Niño occurrences. Left: MCMC histogram of the posterior of the number of change-
points. Right: MCMC histogram of the posterior of the change-point locations. In both cases,
N = 20,000 MCMC samples were used, with the first 2,000 discarded as burn-in.

The MAP estimates of the two locations are at p̂1 = 278 and p̂2 = 467, corresponding
to historically meaningful events during the years 1802 and 1991, respectively: The first
change-point can be attributed to advancements in recording meteorological events, as prior
to 1800 only the strong and extreme events were recorded (Quinn et al., 1987). The second
change-point in the early 1990s likely indicates a response to greenhouse warming, which is
expected to increase both the frequency and the intensity of El Niño events (Cai et al., 2014;
Timmermann et al., 1999). Indeed, examining the first-order marginal π = (π(0),π(1)) of
the stationary distribution associated with the MAP tree model in each segment, we find that
the frequency π(1) of the recorded El Niño events increases between consecutive segments,
from π(1) = 0.14, to π(1) = 0.35, and finally to π(1) = 0.54.

Summary. Although change-point detection is a challenging task, the proposed methodology
offers a general Bayesian approach that was found to perform well in various different
settings, without requiring any preliminary information on the nature of the data. The efficacy
of our methods was illustrated on simulated experiments, where the change-points were
identified with high accuracy, and in real-world applications, where the resulting partitions
were found to be meaningful; e.g., in genomic data, segments were found to coincide with
important genes. Finally, by providing access to the entire posterior distribution of the
change-points, the proposed Bayesian approach also offers a natural measure of uncertainty
in the results, providing much more information than simple point estimates.





Chapter 6

The Bayesian Context Trees State Space
Model

Up to this point, we have only considered discrete-valued time series, taking values in a finite
alphabet. Here, we consider the more general setting of real-valued time series {Xn} taking
values in R, hence broadening the scope of application of our methods by a lot.

As described in the Introduction, the goal of this chapter will be to develop a very general
Bayesian modelling framework for building mixture models, that can be used with any
existing model class as a base model, to produce flexible and interpretable mixture models.
We do so by associating arbitrary real-valued time series models (like the AR model) at the
leaves of context trees: A different time series model is associated to each leaf of the tree,
hence constructing a mixture model. In this setting, the leaves of the tree play the role of
discrete observable states, which admit natural and meaningful interpretations, and each one
of them is associated to a different component model.

For this reason, we refer to the resulting model class of general mixture models as
the Bayesian Context Trees State Space Model (BCT-SSM). Importantly, by appropriately
extending the Bayesian modelling framework and the inference algorithms developed in
Chapter 2 for the case of discrete-valued time series, we show that it is still possible to
perform effective Bayesian inference in this much more general setting.

To illustrate the utility of the general framework, we study in detail the cases where AR
and ARCH models are used as the base model placed at the leaves of the context trees. In both
cases, the resulting mixture models are found to be flexible nonlinear models of high practical
interest. In particular, the latter is found to give a systematic way of modelling the well-known
asymmetric response in volatility due to positive and negative shocks, which is an important
feature of financial time series. The proposed methods are found to outperform several
state-of-the-art approaches in simulated experiments and real-world applications.
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6.1 The general BCT-SSM model class

Discrete contexts. A key element of our development is the use of an observable state
for each sample xn, based on discretised versions of some of the samples (. . . ,xn−2,xn−1)

preceding it. We refer to the string consisting of these discretised previous samples as the
discrete context; it plays the role of a discrete-valued feature vector that can be used to
identify additional useful structure in the data.

In order to extract these contexts, we consider simple piecewise constant quantisers
from R to a finite alphabet A = {0,1, . . . ,m−1}, of the form,

Q(x)=


0, x < c1,

i, ci ≤ x ≤ ci+1, 1 ≤ i ≤ m−2,
m−1, x > cm−1,

(6.1)

where, throughout this section, the thresholds {c1, . . . ,cm−1} and the resulting quantiser Q
are considered fixed. A systematic Bayesian methodology to infer the thresholds from data
is described in Section 6.2.3.

We note that this general framework can be used in conjunction with an arbitrary way
of extracting discrete features, based on an arbitrary mapping to a discrete alphabet, not
necessarily of the form in (6.1). However, the quantisation needs to be meaningful in order
to lead to useful results. Quantisers as in (6.1) offer a generally reasonable choice although,
depending on the application at hand, there are other useful approaches, e.g., quantising
percentage differences between successive samples.

6.1.1 Model description

Given a quantiser Q with m levels as above, a maximum context length D ≥ 0, and a proper
m-ary context tree T , the context (or ‘state’) of each sample xn is obtained as follows. Let
t = (Q(xn−1), . . . ,Q(xn−D)) be the discretised string of length D preceding xn; the context s
of xn is the unique leaf of T that is a suffix of t. For example, for the context tree of Figure 6.1,
if Q(xn−1) = 0 and Q(xn−2) = 1 then s = 01, whereas if Q(xn−1) = Q(xn−2) = 1 then s = 1.
The leaves of the tree define the set of discrete states in our hierarchical model. So, for the
example BCT-SSM of Figure 6.1, the set of states is S = {1,01,00}.

Equivalently, this process can be viewed as defining a partition of R2 into three regions
indexed by the contexts S in T. As before, the fact that a tree T is proper means that for any
string t = (Q(xn−1), . . . ,Q(xn−D)) there is always a unique context s that is a leaf of T . In
our new setting, this means that proper trees define proper partitions, so that the resulting
state-space regions are disjoint and their union is the whole space RD.
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Figure 6.1: Example of a binary context tree T used for defining the set of discrete states.

To complete the specification of the BCT-SSM, we need to associate a different time
series model Ms to each leaf s of the context tree T , giving a different conditional density
for xn: At time n, given the context s determined by the past D samples (xn−1, . . . ,xn−D), the
distribution of xn is given by the model Ms assigned to s. Although general non-parametric
models could also be used, for the rest of this chapter we consider parametric models with
parameters θs at each leaf s. Altogether, the BCT-SSM consists of an m-ary quantiser Q,
a proper m-ary tree T that defines the set of discrete states, and a collection of parameter
vectors θs for the parametric models at the leaves of T .

Likelihood. Identifying T with the collection of its leaves S as before, the likelihood induced
by the BCT-SSM can be written as,

p(x|T,θ) := p(xn
1|T,θ ,x0

−D+1) =
n

∏
i=1

p(xi|T,θ ,xi−1
−D+1) = ∏

s∈T
∏
i∈Bs

p(xi|T,θs,xi−1
−D+1), (6.2)

where Bs is the set of indices i ∈ {1,2, . . . ,n} such that the context of xi is s.

6.1.2 Bayesian modelling and inference

For the top level of the BCT-SSM, we consider collections of states represented by context
trees T in the class T (D) of all proper m-ary trees with depth no greater than D.

Prior structure. For the trees T ∈ T (D) with maximum depth D ≥ 0 at the top level of the
hierarchical model, we use the BCT prior of (2.4),

π(T ) = πD(T ;β ) = α
|T |−1

β
|T |−LD(T ).

This prior penalises larger trees by an exponential amount, which is a reasonable choice here,
as it would be naturally desirable to penalise BCT-SSM models with large numbers of states
and parameters, in order to to avoid overfitting. Given a tree model T ∈ T (D), we place an
independent prior on each θs, so that π(θ |T ) = ∏s∈T π(θs).
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As described in the Introduction, the main obstacle in performing Bayesian inference is
typically the computation of the normalising constant p(x) of the posterior, which similarly
with the discrete case in (1.1) can be written as,

p(x) = ∑
T∈T (D)

π(T )p(x|T ) = ∑
T∈T (D)

π(T )
∫

θ

p(x|T,θ)π(θ |T ) dθ , (6.3)

where as a convention we now use lower-case p(x) and p(x|T,θ) since we now have real-
valued observations x and these quantities correspond to densities.

The power of the proposed Bayesian structure comes, in part, from the fact that, it is still
possible to perform exact Bayesian inference efficiently, in this much more general setting.
To that end, we introduce the Continuous Context Tree Weighting (CCTW) algorithm, and
the Continuous Bayesian Context Tree (CBCT) algorithm, generalising the corresponding
algorithms for discrete-valued time series from Chapter 2. It is shown that CCTW computes
the normalising constant p(x) exactly (Theorem 6.1), and CBCT identifies the MAP tree
model (Theorem 6.2). In the Appendix we also discuss how the k-BCT algorithm is similarly
modified to obtain the top-k a posteriori most likely trees, but the details are omitted here as
this extension is completely analogous to the other two.

The main difference from the discrete case in Chapter 2, both in the algorithmic descrip-
tions and in the proofs of the theorems (given in Appendix B.3), is that we introduce a new
generalised form of estimated probabilities that is needed in place of their simple discrete
versions in (2.7). These are given by,

Pe(s,x) =
∫

∏
i∈Bs

p(xi|T,θs,xi−1
−D+1) π(θs) dθs. (6.4)

In the following, let x = xn
−D+1 be a real-valued time series, and let qi = Q(xi) denote the

corresponding quantised samples.

CCTW: The Continuous Context Tree Weighting algorithm.
1. Build the tree TMAX, whose leaves are all the discrete contexts qi−1

i−D, i = 1,2, . . . ,n.
Compute Pe(s,x) as given in (6.4) for each node s of TMAX.

2. Starting at the leaves and proceeding recursively towards the root compute:

Pw,s=

{
Pe(s,x), if s is a leaf,
βPe(s,x)+(1−β )∏

m−1
j=0 Pw,s j, otherwise,

where s j is the concatenation of context s and symbol j.

3. Output the weighted probability Pw,λ at the root λ .
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CBCT: The Continuous Bayesian Context Tree algorithm.

1. Build the tree TMAX and compute Pe(s,x) for each node s of TMAX, as in CCTW.

2. Starting at the leaves and proceeding recursively towards the root compute:

Pm,s=


Pe(s,x), if s is a leaf at depth D,
β , if s is a leaf at depth < D,
max

{
βPe(s,x),(1−β )∏

m−1
j=0 Pm,s j

}
, otherwise.

3. Starting at the root and proceeding recursively with its descendants, for each node s: If
the maximum above is achieved by the first term, prune all its descendants from TMAX.

4. Output the resulting tree T ∗
1 and the maximal probability at the root Pm,λ .

Theorem 6.1. The weighted probability Pw,λ at the root λ computed by the CCTW algorithm
is exactly the normalising constant p(x) in (6.3).

Proof. The proof is given in Appendix B.3; it follows along the same lines as that of
Theorem 2.1 for the discrete-valued case. □

Theorem 6.2. For all β ≥ 1/2, the tree T ∗
1 produced by the CBCT algorithm is the MAP tree

model, satisfying,
π(T ∗

1 |x) = max
T∈T (D)

π(T |x).

Proof. The proof is given in Appendix B.3; it follows along the same lines as that of
Theorem 2.2 for the discrete-valued case. □

Sampling from the posterior. Apart from the above algorithms – which together with
k-BCT can be used to compute the evidence p(x) and the top-k MAP tree models – it is also
possible to obtain i.i.d. samples from the model posterior π(T |x). This can be achieved by
appropriately modifying the branching process representation of the model posterior π(T |x)
given in Section 3.1.2. Again, the difference in the branching process description is that we
need to use the new version of the estimated probabilities Pe(s,x) of (6.4) in the definition of
the branching probabilities Pb,s in (3.1).

Proposition 6.1. The probability that the above branching procedure produces any particular
tree T ∈ T (D) is given by π(T |x).

Proof. The proof is given in Appendix B.3; it follows along the same lines as that of
Proposition 3.2 for the discrete-valued case. □
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The methodology developed in this section is based on the introduction of the estimated
probabilities of (6.4). In the next section, we illustrate the general principle via an interesting
example where the estimated probabilities can be computed explicitly and the resulting
mixture model is a flexible nonlinear model of practical interest. In specific, AR models Ms

are associated to each context s, and we refer to the resulting model as the Bayesian Context
Trees Autoregressive (BCT-AR) model, which is just a particular instance of the general
BCT-SSM. It is noted that even in cases where the integrals in (6.4) are not tractable, the fact
that they are in the form of standard marginal likelihoods makes it possible to compute them
approximately by using standard methods, as e.g., Chib (1995); Chib and Jeliazkov (2001);
Friel and Pettitt (2008); Kass and Raftery (1995); Wood (2011). The above algorithms can
then be used with these approximations as a way of performing approximate inference for
the BCT-SSM; this is further investigated in Section 6.3.

6.1.3 Further connections and comments

Context-trees for real-valued data. Since their introduction in the information-theoretic
literature by Rissanen (1983a,b, 1986a), context trees have been employed very widely in
connection with problems on discrete data, mostly in the context of data compression (Wein-
berger et al., 1994; Willems et al., 1995). In the previous chapters of this thesis, BCTs have
been found to be very effective in the analysis of discrete-valued time series, in a range
of important statistical tasks. The central conceptual novelty of this chapter is in showing
that discrete context trees can in fact also be utilised in a very effective way for modelling
real-valued time series, by representing meaningful context-based discrete states that are
used to build flexible and interpretable mixture models of practical interest. In fact, this is
remarkable and somewhat surprising, as at first glance one might think that context trees
seem to be naturally suited only for discrete-valued data.

We introduce a new construction for building context-dependent mixtures of models
in any existing model class, combining a discrete context tree with an arbitrary existing
family of continuous models. An important step in the development of the BCT-SSM class
is the introduction of a quantiser that extracts discrete contexts, along with a principled
Bayesian procedure for actually selecting an appropriate quantiser in practice. Finally we are
able to prove that, perhaps somewhat surprisingly, small modifications of the discrete BCT
algorithms of Chapter 2 can be used for exact inference in the much more general BCT-SSM
setting. In doing so, by introducing the Continuous CTW (CCTW) algorithm, we also give
an answer to a long-standing discussion regarding whether it would be possible to extend the
CTW algorithm to be useful in settings with real-valued observations.
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Classification and regression trees. A possible alternative line of work would be to adapt
classification and regression trees (CART) (Breiman et al., 1984) to the setting of time series.
However, CARTs have been developed for regression and classification, where there is a set
of independent input-output observations. So, in contrast with BCTs, these methods do not
exploit the special sequential nature of time series data, where each observation is modelled
as a function of the previous ones.

Starting with the algorithm of Breiman et al. (1984), CARTs either rely on greedy
algorithms to a grow a tree with some stopping criteria – sometimes with additional penalties
for pruning – or adopt a Bayesian CART approach and place a prior on trees (Chipman
et al., 1998); see respectively Loh (2014) and Linero (2017) for reviews of these methods.
The associated difficulties with selecting the tree are significant, mainly because greedily-
constructed trees tend to overfit the data, while the proposed Bayesian approaches require
the use of sophisticated MCMC to sample from the tree-posterior, something which is
computationally expensive and not guaranteed to be effective in practice. These reasons
partly explain why some previous approaches exploiting CARTs for time series (Audrino and
Bühlmann, 2001; Dellaportas and Vrontos, 2007; Meek and Chickering, 2002) have not been
used very widely, with the much simpler and more restricted class of threshold models (Tong,
2011; Zakoian, 1994) being overwhelmingly used in relevant applications where this kind of
regime-switching is appropriate; see the following sections for more details on these.

So, instead of following the CART methodology here we employ the special sequential
nature of time-series data and adopt the BCT point of view. In this way we are able to
perform exact Bayesian inference for selecting the tree model. And actually, we are able to
prove that our algorithms can identify exactly not only the MAP tree model, but also the
top-k a posteriori most likely trees. Moreover, we are able to sample directly from the tree
posterior, obtaining i.i.d. samples from it. These advantages make our approach much more
promising than it would be to extend CART methods for time series.

Discrete patterns. Finally, we note that a number of earlier approaches employ discrete
patterns in the analysis of real-valued time series (Alvarez et al., 2010; Alvisi et al., 2007;
Berndt and Clifford, 1994; Fu et al., 2007; Hu et al., 2014; Liu et al., 2011; Ouyang et al.,
2010; Sabeti et al., 2020). These works illustrate the fact that useful and meaningful infor-
mation can indeed be extracted from discrete contexts. However, in most cases the methods
are either application- or task-specific, and typically resort to ad hoc considerations for
performing inference. In contrast, in this work discrete contexts are used in a natural manner,
by defining a hierarchical Bayesian modelling structure upon which principled Bayesian
inference is performed.
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6.2 The BCT-AR model

Here we consider the BCT-SSM model class where an AR model of order p is associated to
each leaf s of a context tree T , as,

xn = φs,1xn−1 + · · ·+φs,pxn−p + en = φ s
T x̃n−1 + en, en ∼N (0,σ2

s ) , (6.5)

where φ s = (φs,1, . . . ,φs,p)
T and x̃n−1 = (xn−1, . . . ,xn−p)

T.

6.2.1 Bayesian modelling and inference

The parameters of the model are the AR coefficients and the noise variance, so that here
θs = (φ s,σ

2
s ). We use an inverse-gamma prior for the noise variance, and a Gaussian prior for

the AR coefficients, so that the joint prior on the parameters is π(θs) = π(φ s|σ2
s )π(σ

2
s ), with,

π(σ2
s ) = Inv-Gamma(τ,λ ), π(φ s|σ2

s ) =N (µo,σ
2
s Σo), (6.6)

where (τ,λ ,µo,Σo) are the prior hyperparameters. This prior specification allows the exact
computation of the estimated probabilities of (6.4), and also gives closed-form posteriors for
the AR coefficients and the noise variance. These are given in Lemmas 6.1 and 6.2 below.

Lemma 6.1. For the BCT-AR model, the estimated probabilities Pe(s,x) as in (6.4) are
given by,

Pe(s,x) =C−1
s

Γ(τ + |Bs|/2) λ τ

Γ(τ) (λ +Ds/2)τ+|Bs|/2 , (6.7)

where |Bs| is the cardinality of the set Bs in (6.2), i.e., the number of observations with
context s, and,

Cs =

√
(2π)|Bs|det(I +ΣoS3), (6.8)

Ds = s1 +µ
T
o Σ

−1
o µo − (s2 +Σ

−1
o µo)

T(S3 +Σ
−1
o )−1(s2 +Σ

−1
o µo), (6.9)

with the sums s1,s2,S3 defined as:

s1 = ∑
i∈Bs

x2
i , s2 = ∑

i∈Bs

xi x̃i−1 , S3 = ∑
i∈Bs

x̃i−1x̃T
i−1. (6.10)

Proof. The complete proof is given in Appendix B.3; it is mostly based on explicit computa-
tions together with the factorisation of the likelihood p(x|T,θ) using the sets Bs in (6.2). □



6.2 The BCT-AR model 95

Lemma 6.2. Given a tree model T , at each leaf s, the posterior distributions of the AR
coefficients and the noise variance are given by,

π(σ2
s |T,x) = Inv-Gamma(τ + |Bs|/2,λ +Ds/2) , π(φ s|T,x) = tν(ms,Ps), (6.11)

where tν denotes a multivariate t-distribution with ν degrees of freedom. Here, ν = 2τ + |Bs|,
and,

ms = (S3 +Σ
−1
o )−1(s2 +Σ

−1
o µo), P−1

s =
2τ + |Bs|
2λ +Ds

(S3 +Σ
−1
o ). (6.12)

Proof. The proof follows along the same lines as that of Lemma 6.1; it is also given in
Appendix B.3. □

Corollary 6.1. The MAP estimators of φ s and σ2
s are given, respectively, by,

φ̂ s
MAP

= ms , σ̂2
s

MAP
= (2λ +Ds)/(2τ + |Bs|+2). (6.13)

6.2.2 Computational complexity and sequential updates

Here we briefly discuss the computational complexity of our inference algorithms in this
setting. Similarly with Section 2.3.5, for each symbol xi in a time series xn

1, exactly (D+1)
nodes of TMAX need to be updated, corresponding to its contexts of length 0,1, . . . ,D. For
each one of these nodes, only the quantities {|Bs|,s1,s2,S3} need to be updated, which can
be done efficiently by just adding an extra term to each sum. Using Lemma 6.1, the estimated
probabilities Pe(s,x) can then be computed for all nodes of TMAX, whose size is bounded as
a function of n. Since the recursive step only performs operations on TMAX, the complexity
of all algorithms as a function of n is only O(n): linear in the length of the time series. This
clearly shows that the present methods are computationally very efficient and scale well with
large numbers of observations.

Actually, it is easy to see that the exact complexity as a function of n is O
(
nDp2). This

is remarkable, because it is just D times larger than O
(
np2), i.e., the complexity of fitting a

single AR model using least squares. So, we can perform exact Bayesian inference in this
much richer model class at essentially no additional computational cost compared to just
fitting a single AR model to the data.

The above discussion also shows that, importantly, all our algorithms can still be updated
sequentially. For example, when observing a new sample xn+1 after executing CCTW for xn

1,
only D+1 nodes need to be updated, and Pe(s,x) and Pw,s have to be re-computed only at
these nodes. This takes O(D) operations, i.e., O(1) as a function of n. In particular, this
implies that sequential prediction can be performed very efficiently.
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Empirical running times for all forecasting experiments are reported in Appendix D.3,
showing that our methods are much more efficient than essentially all the alternatives
examined. The difference is in fact very large, especially when comparing with state-of-the-
art machine learning (ML) models that require heavy training and do not allow for efficient
sequential updates, giving empirical running times that are typically larger by several orders
of magnitude than ours; see also Makridakis et al. (2018b) for a relevant review comparing
the computational requirements of ML versus statistical techniques.

6.2.3 Choosing the hyperparameters, quantiser and AR order

As Lemma 6.2 indicates, the posterior distributions of φ s and σ2
s are not very sensitive

to the prior hyperparameters. In all the experimental results below we make the simple
choice µo = 0 and Σo = I in the AR coefficients’ prior. In view of (6.11), τ and λ should be
chosen to be relatively small in order to minimise their effect on the posterior, while keeping
the mode of the inverse-gamma prior, λ/(τ + 1), reasonable; setting λ = τ = 1 seems a
reasonable default value when no additional prior information are given. For the context tree
prior, we use the default value β = 1−2−m+1, and a maximum depth D = 10. It is noted
that throughout our experiments there is no hyperparameter tuning from data, we just use the
default values as described here.

Finally, we introduce a principled Bayesian way for selecting the quantiser thresholds {ci}
of (6.1) and the AR order p. Viewing them as extra parameters on an additional layer above
everything else, we place uniform priors on {ci} and p, and perform standard Bayesian
model selection (MacKay, 1992, 2003) to obtain their MAP values. The resulting posterior
p({ci}, p|x) is proportional to the evidence p(x|{ci}, p), which can be computed exactly
using the CCTW algorithm (Theorem 6.1).

So, in order to select appropriate values, we specify a suitable range of possible {ci}
and p, and select the ones with the higher evidence. For the AR order we take 1 ≤ p ≤ pmax

for an appropriate pmax (e.g., pmax = 5 in our experiments), and for the {ci} we perform a
grid search in a reasonable range (e.g., between the 10th and 90th percentiles of the data). In
our forecasting experiments, we select the AR order and the quantiser thresholds using the
above procedure at the end of the training set.

6.2.4 Comparison with other AR mixtures

In this section, we briefly compare the BCT-AR model class with other popular mixtures of
AR models that have been used widely throughout the years. In particular, we show that the
BCT-AR model is a generalisation of some of these model classes.
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Threshold AR models. Threshold autoregressive (TAR) models were introduced by Tong
and Lim (1980), and have been used extensively in the analysis of nonlinear time series; see,
e.g., the reviews by Hansen (2011); Tong (2011) and the texts by Cryer and Chan (2008);
Tong (1990); Tsay (2005). Although numerous different versions of TAR models have been
employed (see, e.g., the discussion in Tong (2011)), the most commonly used one is the
self-exciting threshold AR (SETAR) model, which considers partitions of the state space
based on the quantised value of xn−d , for some delay parameter d > 0. Clearly, the BCT-AR
model class is much richer and more general.

Mixture AR models. The mixture autoregressive (MAR) models of Wong and Li (2000)
consist of a simple linear mixture of K Gaussian AR components.

The class of MAR models was first introduced by Wong and Li (2000) as a generalisation
of the Gaussian MTD (GMTD) model of Le et al. (1996), which is itself an extension of
MTD models for real-valued observations. Another nonlinear extension of the GMTD model,
using GPs, was recently developed in Heiner and Kottas (2022a). Extensions of MAR models
include the conditional heteroscedastic (MAR-ARCH) model (Wong and Li, 2001b), the use
of exogenous variables (Wong and Li, 2001a), and the use of the Student-t distribution to
model heavy tails (Wong et al., 2009), but these models seem less relevant for the type of
applications considered here, as their benefits are limited to examples of datasets possessing
these specific characteristics (conditional heteroscedasticity, heavy tails, etc).

When the BCT-AR posterior essentially concentrates on K models, T1, . . . ,TK , (which
was commonly observed in practice), the posterior predictive distribution can be written as,

p(xn+1|x) =
K

∑
k=1

π(Tk|x) p(xn+1|Tk,x) ,

so that BCT-AR can be viewed as a generalised MAR model, with components corre-
sponding to the AR models at the leaves of each Tk, and Bayesian weights automatically
selected as π(Tk|x). So, the BCT-AR model can be viewed as a generalisation of both MAR
and SETAR.

Markov Switching AR models. The Markov switching autoregressive model (MSA) (Hamil-
ton, 1989) is a simple Hidden Markov Model where the hidden state process is modelled as
a discrete-valued first-order Markov chain (usually binary or ternary), and a different AR
model is associated to each state. The main difficulty in using the MSA is in estimating the
model, since the discrete states are no longer directly observable (Tsay, 2005); usually, the
Expectation-Maximisation (EM) algorithm is employed for this task. This was verified in
practice in our experiments, where the MSA gave much larger running times compared to all
classical methods that do not involve neural networks (Appendix D.3).
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6.2.5 Experimental results

In this section, we evaluate the performance of the BCT-AR model on simulated and real data
from standard applications of nonlinear time series in economics and finance, with possibly
limited training data. We compare with the most successful previous approaches for these
types of applications, considering both classical and modern ML methods. Useful resources
include the R package forecast (Hyndman and Khandakar, 2008) and the Python library
‘GluonTS’ (Alexandrov et al., 2020), containing implementations of state-of-the-art classical
and ML methods, respectively. Here, we briefly discuss the methods used, and refer to the
packages’ documentation and Appendix D.1 for more details on the methods themselves and
the training procedures carried out.

Among classical statistical approaches, we compare with ARIMA and Exponential
smoothing state space (ETS) models (Hyndman et al., 2008), which are implemented as
auto.arima and ets in forecast, and with SETAR, MAR and MSA models, using respec-
tively the R packages TSA (Chan and Ripley, 2020), mixAR (Boshnakov and Ravagli, 2021)
and MSwM (Sanchez-Espigares and Lopez-Moreno, 2021). Among ML-based techniques,
we compare with the Neural Network AR (NNAR) model (implemented in forecast),
and with the most-successful RNN-based approaches, DeepAR (Salinas et al., 2020) and
N-BEATS (Oreshkin et al., 2019), which are both implemented in GluonTS.

Simulated data. We first perform a simulated experiment illustrating that our methods are
consistent and effective with data generated by BCT-SSM models. The context-tree model
used here is the tree of Figure 6.1, the threshold of the binary quantiser is c = 0, and the AR
order is p = 2. The exact BCT-AR model is given by:

xn=


0.7 xn−1 −0.3 xn−2 + en, en ∼N (0,0.15), if s = 1: xn−1 > 0,
−0.3 xn−1 −0.2 xn−2 + en, en ∼N (0,0.10), if s = 01: xn−1 ≤ 0, xn−2 > 0,
0.5 xn−1 + en, en ∼N (0,0.05), if s = 00: xn−1 ≤ 0, xn−2 ≤ 0.

We first examine the posterior over trees, π(T |x). On a time series consisting of only
n = 100 observations, the MAP tree identified by the CBCT algorithm is the empty tree
corresponding to a single AR model, with posterior probability 99.9%. This means that
the data do not provide sufficient evidence to support a more complex state space partition.
With n = 300 observations, the MAP tree is now the true underlying model, with posterior
probability 57%. And with n = 500 observations, the posterior of the true model is 99.9%.
Therefore, the posterior indeed concentrates on the true model, indicating that the BCT-AR
inferential framework can be very effective even with limited training data.
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The complete BCT-AR model fitted from n= 1,000 observations, with its MAP estimated
parameters, clearly indicates that all parameter estimates have essentially converged:

xn=


0.66 xn−1 −0.19 xn−2 + en, en ∼N (0,0.16), if xn−1 > 0,
−0.39 xn−1 −0.27 xn−2 + en, en ∼N (0,0.12), if xn−1 ≤ 0, xn−2 > 0,
0.45 xn−1 −0.03 xn−2 + en, en ∼N (0,0.058), if xn−1 ≤ 0, xn−2 ≤ 0.

Finally, although maximising the evidence is a well-justified Bayesian practice (MacKay,
1992, 2003), in Appendix D.2 we also report values of the evidence p(x|c, p), which is
maximised at the true values of c = 0 and p = 2, verifying that our inferential procedure for
choosing the quantiser and the AR order is also effective.

Forecasting. Here, we evaluate the performance of our methods in out-of-sample 1-step
ahead forecasts, and compare with state-of-the-art approaches in three simulated and three
real datasets. The complete descriptions of all datasets can be found in Appendix D.2. The
first simulated dataset consists of n = 600 observations generated from the BCT-AR model
used above, the second (sim_2) consists of n = 500 observations generated by a BCT-AR
model with a ternary tree of depth 2 (shown in Appendix D.2), and the third dataset (sim_3)
consists of n = 200 observations generated from a SETAR model of order p = 5 (also shown
in Appendix D.2). In each case, the training set consists of the first 50% of the observations;
also, we update all models at every time-step in the test set. For the BCT-AR model, the MAP
tree with its MAP parameters is used at every time-step, which can be updated efficiently as
described in Section 6.2.2.

Table 6.1: Mean squared error (MSE) of forecasts in simulated and real experiments.

BCT-AR ARIMA ETS NNAR DeepAR N-BEATS MSA SETAR MAR

sim_1 0.131 0.150 0.178 0.143 0.148 0.232 0.142 0.141 0.151
sim_2 0.035 0.050 0.054 0.048 0.061 0.112 0.049 0.050 0.064
sim_3 0.891 1.556 1.614 1.287 1.573 2.081 1.495 0.951 1.543

unemp 0.034 0.040 0.042 0.036 0.036 0.054 0.034 0.038 0.037
gnp 0.324 0.364 0.378 0.393 0.473 0.490 0.353 0.394 0.384
ibm 78.02 82.90 77.52 78.90 75.71 77.90 81.68 81.07 77.02

From Table 6.1, it is observed that our methods outperform the alternatives in all simulated
experiments, in every case achieving a mean squared error (MSE) that is lower by 7−37%
compared to the second-best method. As discussed in Section 6.2.2, the BCT-SSM methods
also outperform the alternatives in terms of empirical running times, reported in Appendix D.3.
Next, we evaluate the performance of the proposed methods in real-world applications from
economics and finance.
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US unemployment rate. An important application of SETAR models is in modelling the
US unemployment rate (Hansen, 2011; Koop and Potter, 1999; Montgomery et al., 1998;
Rothman, 1998; Tsay, 2005). As described by Montgomery et al. (1998) and Tsay (2005),
the unemployment rate moves countercyclically with business cycles, and rises quickly but
decays slowly, indicating nonlinear behaviour.

Here, we study the quarterly US unemployment rate in the time period from 1948 to 2019
(dataset unemp, 288 observations). Following Montgomery et al. (1998), we consider the
difference series ∆xn = xn − xn−1, and also include a constant term in the AR model. For the
quantiser alphabet size, m = 2 is a natural choice here, as will become apparent below. The
threshold selected using the procedure of Section 6.2.3 is c = 0.15, and the resulting MAP
tree is the tree of Figure 6.1, with depth d = 2, leaves S = {1,01,00}, and posterior 91.5%.
The complete BCT-AR model with its MAP parameters is given below, where en ∼N (0,1),

∆xn=


0.09+0.72 ∆xn−1 −0.30 ∆xn−2 +0.42 en, if ∆xn−1 > 0.15,
0.04+0.29 ∆xn−1 −0.32 ∆xn−2 +0.32 en, if ∆xn−1 ≤ 0.15, ∆xn−2 > 0.15,
−0.02+0.34 ∆xn−1 +0.19 ∆xn−2 +0.20 en, if ∆xn−1 ≤ 0.15, ∆xn−2 ≤ 0.15.

Interpretation. The BCT-AR model finds significant structure in the data, providing a very
natural interpretation. It identifies 3 meaningful states: First, jumps in the unemployment rate
higher than 0.15 signify economic contractions (context 1). If there is not a jump at the most
recent time-point, the model looks further back to determine the state. Context 00 signifies a
stable economy, as there are no jumps in the unemployment rate for two consecutive quarters.
Finally, context 01 identifies an intermediate state: “stabilising just after a contraction”. An
important feature identified by the BCT-AR model is that the volatility is different in each
case. It is higher in contractions (σ = 0.42), smaller in stable economy regions (σ = 0.20),
and somewhere in-between for context 01 (σ = 0.32). This is an important finding, verifying
that there is much higher uncertainty in economic contractions.

Forecasting. In addition to its appealing interpretation, the BCT-AR model together with
the MSA model outperform all benchmarks in forecasting in this example, achieving the
lowest MSE, as it can be observed from the results of Table 6.1. In terms of running times,
BCT-AR vastly outperforms the MSA model (Appendix D.3).

US Gross National Product. Another important example of nonlinear time series in
economics is the US Gross National Product (GNP) (Hansen, 2011; Potter, 1995). We study
the quarterly US GNP in the time period from 1947 to 2019 (dataset gnp, 291 observations).
Following Potter (1995), here we consider the difference in the logarithm of the series,
yn = logxn − logxn−1. As above, m = 2 is a natural choice for the quantiser, helping to
differentiate economic expansions from contractions, which govern the underlying dynamics.
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The MAP BCT-AR tree is shown in Figure 6.2: It has depth d = 3, and four leaves,
S = {0,10,110,111}, while its posterior is 42.6%. The complete set of MAP parameters at
its leaves are given in Appendix D.2.

0

1

Figure 6.2: MAP tree model in the US GNP example.

Interpretation. Compared with the previous example, here the MAP BCT-AR model finds
even richer structure in the data and identifies four meaningful states. First, as before, there
is a single state corresponding to an economic contraction – which now corresponds to s = 0
instead of s = 1, as the GNP obviously increases in expansions and decreases in contractions.
And again, the model does not look further back whenever a contraction is detected – this is a
renewal state. In this example, the model shows that the effect of a contraction is still present
even after three quarters (s = 110), and that the exact ‘distance’ from a contraction is also
important, with the dynamics changing depending on how much time has elapsed. Finally,
the state s = 111 corresponds to a flourishing, expanding economy, without a contraction
in the recent past. An important feature captured by the model is again that the volatility
is different in each case and, enhancing our previous findings, it is found to monotonically
decrease with the distance from the last contraction. It starts with the maximum value of
σ = 1.23 for s = 0, and strictly decreases to σ = 0.75 for s = 111; see Appendix D.2.

Forecasting. Because of the additional structure it identifies here, the BCT-AR model is
found to outperform all benchmarks in forecasting (Table 6.1). It gives a significantly lower
MSE than the second-best method (9% diference), and is computationally very efficient.

IBM stock price. Finally, we examine the daily IBM common stock closing price from
May 17, 1961 to November 2, 1962 (dataset ibm, 369 observations), taken from Box et al.
(2015). This is a well-studied dataset, with Box et al. (2015) fitting an ARIMA model, Tong
(1990) fitting a SETAR model and Wong and Li (2000) fitting a MAR model to the data.
Following previous approaches, we consider the first-difference series, ∆xn = xn − xn−1.
For the alphabet size of the quantiser we choose m = 3, with contexts {0,1,2} naturally
corresponding to the states {down, steady, up} for the stock price.
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Using the procedure of Section 6.2.3 to select the thresholds, the resulting quantiser
regions are: s = 0 if ∆xn−1 <−7, s = 2 if ∆xn−1 > 7, and s = 1 otherwise. The MAP tree
is shown in Figure 6.3: It has depth d = 2, and its leaves are S = {0,2,10,11,12}, hence
identifying five states. Its posterior is 99.3%, suggesting that there is very strong evidence
in the data supporting this exact structure, even with only 369 observations. The complete
BCT-AR model with its MAP parameters is given in Appendix D.2.

1
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Figure 6.3: MAP tree model in the IBM stock price example.

Interpretation. The BCT-AR model reveals important information about apparent struc-
ture in the data, which has not been identified before. Firstly, it admits a very simple and
natural interpretation: In order to determine the AR model generating the next value, we
need to look back until there is a significant enough price change (corresponding to contexts
0, 2, 10, 12), or until we reach the maximum depth of 2 (context 11).

Another important feature captured by this model is the commonly observed asymmetric
response in volatility due to positive and negative shocks, sometimes called the leverage
effect (Box et al., 2015; Tsay, 2005). As desired, the MAP model shows that negative shocks
increase the volatility much more. Specifically, s = 0 has the highest volatility (σ = 12.3),
with s = 10 being a close second (σ = 10.8), showing that the effect of a past shock is still
present. In all other cases the volatility is much smaller (between σ = 5.17 and σ = 6.86).
Finally, we observe that when stabilising after a shock (contexts 10, 12), the latest value xn−1

is not as important as xn−2, whereas xn−1 is dominant in all other cases.

Forecasting. From Table 6.1, it is observed that DeepAR outperforms all methods here,
with the BCT-AR model giving a marginally higher MSE but much smaller empirical running
times; see Appendix D.3.

Summary. In this section, we associated AR models to the leaves of the context trees as
an example of the general BCT-SSM. The resulting BCT-AR model was found to be useful
in practice, admitting interesting interpretations and outperforming several state-of-the-art
methods in forecasting the future values of time series. Next, we associate conditional
heteroscedastic models at the leaves of the context trees, and give another interesting example
of the general BCT-SSM that is also of high practical importance.
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6.3 The BCT-ARCH model

An important aspect of financial time series analysis is in modelling the dynamic evolution of
volatility over time. To capture the well-known volatility clustering present in financial data,
in his seminal work, Engle (1982) introduced the autoregressive conditional heteroscedastic-
ity (ARCH) models, which together with their numerous extensions have been very successful
in modelling the volatility of financial time series. Perhaps the most important limitation of
ARCH models is their inability to model the well-known asymmetric response in volatility
due to positive and negative shocks, sometimes called the leverage effect (Box et al., 2015;
Tsay, 2005). A number of approaches have been developed to incorporate this feature in
ARCH models, notably including the works of Glosten et al. (1993); Gray (1996); Nelson
(1991); Zakoian (1994); see Section 6.3.4 for more details on these.

As a second example of the general BCT-SSM, we now associate ARCH models at the
leaves of the context trees, and refer to the resulting mixture model as the Bayesian Context
Trees-ARCH (BCT-ARCH) model. The BCT-ARCH model is of high practical importance
because, together with its associated methods for Bayesian inference, it gives a systematic
and powerful way of modelling the volatility asymmetries in financial data. It is found to
outperform previous approaches in real examples, and to reveal important structure that has
not been identified before.

6.3.1 Bayesian modelling and inference

To build the BCT-ARCH model, we associate an ARCH model of order p to each leaf s of
the context tree T , so that,

xn ∼N
(
0,σ2

n
)
, σ

2
n = αs,0 +αs,1x2

n−1 + · · ·+αs,px2
n−p = α

T
s zn−1, (6.14)

where θs = αs = (αs,0,αs,1, . . . ,αs,p)
T and zn−1 = (1,x2

n−1, . . . ,x
2
n−p)

T.

Prior specification. The parameters of the model here are the ARCH coefficients, θs = αs.
In contrast with the case of simple AR models, Bayesian inference for the ARCH coefficients
is a harder task that cannot be performed in closed form, with a a number of MCMC
approaches introduced in the literature for that; see Virbickaite et al. (2015) for a review.
In this work we follow Vrontos et al. (2000) and use the following non-informative priors:
π(αs,0) = 1/αs,0, π(αs,1) = π(αs,2) = · · ·= π(αs,p) =U(0,1). It is noted that there are no
hyperparameters to be tuned for this prior.
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6.3.2 Approximating the estimated probabilities

As explained in Section 6.1.2, our inference algorithms rely on the estimated probabilities
Pe(s,x) given in (6.4). However, in this example one would not hope to compute these in
closed form, as exact Bayesian inference is not possible even in the case of a single ARCH
model. So, we are in the setting where we need to compute these quantities approximately
and use the resulting approximations in our CCTW and CBCT algorithms, the remaining
methodology remaining identical with before.

As noted in Section 6.1.2, the fact that Pe(s,x) are in the form of marginal likelihoods
allows us to use standard methods to approximate them; see Kass and Raftery (1995) for
a general discussion on that. One approach would be to obtain MCMC samples from the
parameter posterior and employ these to estimate Pe(s,x) using the work of Chib (1995);
Chib and Jeliazkov (2001). Instead, we use a variant of the Laplace method for approxi-
mating marginal likelihoods described in Kass and Raftery (1995), which was found to be
effective in the case of a multivariate GARCH model in Vrontos et al. (2003a); see Kass and
Raftery (1995) and Vrontos et al. (2003a) for justifications and theoretical guarantees of this
approximation. The main difference needed to adapt this method to our setting is that we
need to consider the likelihood at every context s, as below.

Approximating Pe(s,x). The resulting approximation is given by:

P̂e(s,x) = (2π)p+1/2 |Îs|1/2 exp
{

Ls(θ̂s)
}

π(θ̂s), (6.15)

where Ls(θs) is the log-likelihood of data with context s,

Ls(θs) = ∑
i∈Bs

log p(xi|xi−1
−D+1,θs), (6.16)

θ̂s is its maximiser, which can be computed iteratively using the Fisher scoring algorithm,

θ̂
(k)

s = θ̂
(k−1)

s + Î−1
s

∂Ls

∂θs

∣∣∣∣
θs= θ̂

(k−1)
s

, (6.17)

and Îs the corresponding expected information matrix computed at θ̂
(k−1)

s . These quantities
for the BCT-ARCH model are given in Lemma 6.3.
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Lemma 6.3. For the BCT-ARCH model, the terms Ls(θs),∂Ls/∂θs, and Îs are given by,

Ls(θs) =−|Bs|
2

log(2π)− 1
2 ∑

i∈Bs

(
logσ

2
i +

x2
i

σ2
i

)
, (6.18)

∂Ls

∂θs
=

1
2 ∑

i∈Bs

1
σ2

i

(
x2

i

σ2
i
−1
)

zi−1, (6.19)

Îs =

{
−E
(

∂ 2Ls

∂θ 2
s

)}
=

1
2 ∑

i∈Bs

(
1

σ4
i

)
zi−1zT

i−1, (6.20)

where Bs is as in (6.2), and σ2
i = θ T

s zi−1.

Proof. The proof of Lemma 6.3 is given in Appendix B.3; if follows mostly from explicit
computations. □

6.3.3 Computational complexity

For a single iteration of the scoring algorithm, the situation is very similar with the BCT-AR
case. For every symbol xi in a time series xn

1, exactly D+1 nodes need to be updated. And
for each one of these nodes, only the quantities in (6.18)–(6.20) need to be updated, which
can be done efficiently by just adding one term to each sum. The only difference is that this
forward pass of the data now needs to be repeated for every iteration of the scoring algorithm,
every time followed by the Fisher updates of (6.17) for the nodes of TMAX. Finally, the
recursive step remains identical with before, only performing operations on TMAX.

Denoting the number of iterations of the scoring algorithm as M, the above discussion
shows that the complexity of CCTW and CBCT as a function of n is O(nMDp2). Remarkably,
this is again just D times higher than O(nMp2), i.e., from the complexity of fitting a single
ARCH model to the data, showing that again, we can perform inference in this much richer
model class at essentially no additional computational cost.

6.3.4 Alternative methods

Before presenting experimental results, we give a brief summary of commonly used al-
ternative methods for modelling volatility and the leverage effect; we will be comparing
with these methods in the experimental section. Useful resources include the R packages
rugarch (Ghalanos, 2022), MSGARCH (Ardia et al., 2019), and stochvol (Kastner, 2016).
Here we briefly describe the models used, and refer to the packages’ documentation and
Appendix D.1 for more details on the methods and the training procedures carried out.
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GARCH and EGARCH models. The most widely used extension of ARCH models are
the Generalised ARCH (GARCH) models of Bollerslev (1986). The GARCH(p,q) model is
given by,

σ
2
n = α0 +

p

∑
i=1

αix2
n−i +

q

∑
i=1

βiσ
2
n−i, (6.21)

with the simple GARCH(1,1) model being the most commonly used in practice. An im-
portant extension of the GARCH model is the Exponential GARCH (EGARCH) model
of Nelson (1991), where the parametrisation in now in terms of the logarithm of σ2

n .

GJR models. A common alternative of the GARCH model to explicitly capture the volatility
asymmetries is the threshold model of Glosten, Jagannathan, and Runkle (GJR), which was
introduced in Glosten et al. (1993) as,

σ
2
n = α0 +

p

∑
i=1

(αi + γiIn−i)x2
n−i +

q

∑
i=1

βiσ
2
n−i, (6.22)

where In−i is the indicator function for xn−i being negative, hence enforcing negative returns
to have higher volatility (i.e., all coefficients are positive). A similar threshold GARCH
model parametrised in terms of the standard deviation instead of the variance of the process
is given by Zakoian (1994).

MSGARCH models. The Markov switching GARCH (MSGARCH) model (Gray, 1996;
Haas et al., 2004) is a Hidden Markov Model that is the exact analogue of the MSA model
in this setting, with GARCH models in place of the AR models associated to each discrete
state. Similarly with the MSA, performing inference in this setting is much more challenging
compared to the previous approaches.

SV models. An alternative to the ARCH family – which models the evolution of volatility
deterministically – is the family of stochastic volatility (SV) models, which model the
volatility probabilistically. This is usually done using a Hidden Markov Model, where the
hidden state is the logarithm of the variance of the process and its evolution is modelled as
an AR process; see Kastner (2016); Shephard and Andersen (2009) for more details. As with
MSGARCH, the randomness present in the hidden state process makes inference much more
challenging and expensive compared to the other approaches.
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6.3.5 Experimental results

As with the BCT-AR model, we first perform simulation experiments verifying that our
inferential procedures are effective with data generated by BCT-ARCH models.

Simulated data. As a first example, data are generated from a BCT-ARCH model where
the context tree is the binary tree of depth d = 1, with leaves S = {0,1}. We consider
the evolution of the posterior over trees, π(T |x), as more data become available. With
n = 1,000 observations the MAP tree model is the empty tree, corresponding to a single
ARCH model, as there are not yet enough data to support a more complex tree. With
n = 2,500 observations, the MAP tree model is now the true tree with a posterior of 42%,
with n = 5,000 observations the posterior of the true tree becomes 90%, and with n = 10,000
observations it reaches 99.9%. The true parameters of the complete BCT-ARCH model (left),
and the estimates from n = 5,000 observations are given below; note that this is a difficult
example, as the ARCH models in the two regions are very similar.

σ
2
n =

{
0.10+0.20 x2

n−1 +0.20 x2
n−2

0.10+0.20 x2
n−1

, σ̂
2
n =

{
0.10+0.20 x2

n−1 +0.16 x2
n−2, if xn−1 ≤ 0,

0.10+0.21 x2
n−1 +0.02 x2

n−2, if xn−1 > 0.

As a second example, we consider the binary tree with depth d = 2 and leaves S = {1,01,00}.
The true model (left) and the model fitted from n = 5,000 observations are given below, with
the posterior of the true tree being 98%.

σ
2
n =


0.20+0.30 x2

n−1 +0.10 x2
n−2

0.10+0.20 x2
n−1 +0.10 x2

n−2

0.10+0.20 x2
n−1

, σ̂
2
n =


0.20+0.30 x2

n−1 +0.13 x2
n−2, if s = 00,

0.10+0.21 x2
n−1 +0.14 x2

n−2, if s = 01,
0.10+0.20 x2

n−1 +0.00 x2
n−2, if s = 1.

More extensive simulation experiments are presented in Appendix D.2. In general, the
posterior of the true underlying tree is found to converge to 1, and the estimates of the
parameters to converge to their true values. So, overall it can be concluded that our inferential
procedures are very effective with data generated from BCT-ARCH models.

Real-world applications. In the following, we employ the BCT-ARCH modelling framework
to model the volatility in four major financial indices. In every example, we consider the daily
values of a stock market index in the last thirty years up to 7 April 2023 (7,821 observations),
and examine the transformed log-differenced time series, yn = 10log(xn/xn−1). In order to
explicitly capture the leverage effect and distinguish between positive and negative shocks,
for the BCT-ARCH model we use binary trees with a quantiser threshold c = 0.
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Important interpretation. The most important feature captured from the BCT-ARCH model
is that it allows for an enhanced leverage effect. In particular, it reveals that in modelling
the asymmetries present in volatility, it is not only the sign of the previous stock change that
is relevant, but the complete pattern of recent ups and downs of the stock price might be
important. The exact set of patterns (or states) that are important are automatically identified
from the data as the leaves of the fitted MAP tree model. This relevant set of patterns might
depend on the specific example, but in all cases it was found to be richer than S = {0,1},
which corresponds to just the sign of the previous change as in traditional leverage modelling.
Hence, it is concluded that this kind of enhanced leverage is required in practice, and that the
BCT-ARCH model reveals important structure that has not been identified before.

Figure 6.4: MAP tree models for major stock market indices; FTSE 100 (left), CAC 40 and
DAX (middle), S&P 500 (right).

FTSE 100. As a first example, we consider the Financial Times Stock Exchange 100 Index,
which is the most commonly used UK-based stock market indicator, including 100 companies
listed on the London Stock Exchange. The fitted BCT-ARCH model validates the enhanced
leverage effect, as it identifies the relevance of three meaningful states. The MAP tree model
identified by the CBCT algorithm is shown in Figure 6.4; it has depth d = 2 and three leaves,
S = {0,10,11}. Its posterior is 95.2%, signifying that there is strong evidence in the data
supporting this exact structure. Context s = 0 corresponds to a negative shock at the last
timestep, s = 10 to stabilising just after a negative shock whose effect is still present, and
s = 11 to a flourishing period. The complete BCT-ARCH model is given by,

σ
2
n =


0.00+0.21 y2

n−1 +0.16 y2
n−2 +0.21 y2

n−3 +0.18 y2
n−4 +0.13 y2

n−5, if s = 0,
0.00+0.02 y2

n−1 +0.19 y2
n−2 +0.21 y2

n−3 +0.15 y2
n−4 +0.12 y2

n−5, if s = 10,
0.00+0.00 y2

n−1 +0.10 y2
n−2 +0.12 y2

n−3 +0.09 y2
n−4 +0.11 y2

n−5, if s = 11.

The ARCH coefficients of s = 11 are the smallest for every lag, with s = 0 and s = 10
having very similar coefficients apart from the one corresponding to the first lag, y2

n−1,
which is essentially zero for s = 10 (i.e., when it corresponds to a price increase). All these
observations are coherent with the fact that negative shocks increase the volatility much more.
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CAC 40 and DAX. The next examples we consider are CAC 40 and DAX, the most com-
monly used stock market indices in France and Germany, respectively, each one consisting of
40 major companies. It turns out that very similar structure is present in these two examples,
resulting to an identical MAP tree model identified by the CBCT algorithm (Figure 6.4).
The MAP tree has depth d = 3 and four leaves, S = {0,10,110,111}. The estimated ARCH
coefficients at the leaves are given in Appendix D.2 for each dataset.

Importantly, the interpretation is very similar with the FTSE example, with negative
shocks being again a renewal state. That is, in order to determine the current state, the model
looks back in the past until a negative shock is detected. The only difference is in the memory
of the process, with negative shocks now being relevant even if they occur three timesteps in
the past. This gives a total of four different states, meaning that some additional structure
has been identified here. In every case, the ARCH coefficients are very small when they
correspond to a positive lag. So, for s = 10 the coefficient α1 ≈ 0, while for s = 110 both
α1 and α2 are small. Overall, the BCT-ARCH model gives evidence of a rich asymmetric
response in volatility, with negative shocks always having a stronger effect.

S&P 500. Finally, we examine Standard and Poor’s 500 Index, one of the most commonly
followed indices worldwide, which consists of 500 of the largest companies in the US.
Comparing with the previous examples, the MAP tree model shown in Figure 6.4 reveals
even more additional structure: It has depth d = 3, five leaves, S = {00,01,10,110,111},
and a posterior of 91.4%, which is again very high. Actually, the MAP tree model is the
exact tree of CAC 40 and DAX, but with one additional branch added at s = 0. So, apart
from identifying slightly more structure, the interpretation of the BCT-ARCH model is very
similar with before. The ARCH coefficients (reported in Appendix D.2) are small when they
correspond to a positive lag, capturing again an interesting asymmetric response in volatility.

Forecasting. Apart from the appealing interpretation and the apparent utility of the BCT-
ARCH model in modelling volatility asymmetries, here we evaluate its performance in
forecasting, by comparing with commonly used approaches. As the volatility is not directly
observable, effectively comparing different volatility models is known to be a challenging
task (Tsay, 2005). Following standard approaches as in Vrontos et al. (2003b) and Dellaportas
and Vrontos (2007), in order to compare the predictive ability of the models we consider
the predictive distributions in 1-step ahead out-of-sample forecasting. In specific, at every
timestep in the test set, all models are estimated using the entire past, and the resulting
predictive density is evaluated at the real observed datapoint; the complete set of training
details for each method are given in Appendix D.1. We examine the cumulative log-loss,
L=−∑i log p̂(yi|yi−1

−D+1), where the sum is over all datapoints in the test set.
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The results are presented in Table 6.2 for the stock market indices. It is observed that
in terms of its predictive ability, the BCT-ARCH model outperforms all the alternatives in
almost all experiments, with the only exception being the S&P example where EGARCH
achieves the best performance. Finally, because of its low computational complexity and
its ability to allow for efficient sequential updates, the BCT-ARCH model is also found to
outperform the alternatives in terms of their computational requirements, with empirical
running times reported in Appendix D.3.

Table 6.2: Comparing the predictive ability of volatility models using the log-loss, L.

BCT-ARCH ARCH GARCH GJR EGARCH MSGARCH SV

ftse −161.9 −157.7 −154.5 −159.7 −159.0 −159.7 −154.4
cac40 −112.5 −108.6 −108.7 −111.0 −112.4 −109.2 −106.9
dax −111.7 −105.9 −105.4 −106.4 −107.5 −106.1 −103.2
s&p −78.73 −74.89 −81.04 −83.89 −84.58 −80.95 −80.16

Summary. In the above experiments, the BCT-ARCH model was found to admit interesting
interpretations, revealing important information that has not been identified before about
the asymmetries present in volatility in financial data. At the same time, the BCT-ARCH
model was found to be of high practical importance because of its performance in forecasting,
where it was found to outperform several commonly used approaches.



Chapter 7

Concluding Remarks

In this final chapter we briefly summarise the main contributions of this thesis, and then
discuss some promising directions for future research extending this work.

7.1 Summary of contributions

In general terms, the main purpose of this thesis has been to:

1. Develop flexible model classes that are appropriate and effective in various time series
settings, including both discrete-valued and real-valued observations.

2. Introduce a Bayesian inference framework for the resulting model classes, including
an appropriate prior structure together with associated methodological and algorithmic
tools for efficient and effective Bayesian inference.

3. Illustrate the practical utility of the proposed methods in a number of important
statistical tasks, comparing with state-of-the-art approaches in simulated experiments
and real-world applications.

4. Provide theoretical results that further justify the use of the proposed methods.

In view of the above general direction, the main contributions of this thesis are briefly
summarised below.

Bayesian Context Trees. Chapter 2 contains our core methodological contributions for
discrete-valued time series. A Bayesian modelling framework is introduced for the class of
variable-memory Markov chains, along with an associated collection of methodological and
algorithmic tools allowing for efficient, exact Bayesian inference. Extensive experimental
results and comparisons with state-of-the-art approaches illustrate the efficacy of our methods
in the core statistical tasks of model selection, estimation and prediction.
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Posterior representations. In Chapter 3, alternative representations are derived for the
BCT prior and posterior on model space, in terms of simple branching processes. Apart
from offering a very natural interpretation, these representations are also of high practical
importance, providing a simple way of sampling from the BCT posterior, and allowing to
establish theoretical results that further justify the BCT framework.

Fully-Bayesian estimation. In Chapters 4 and 5, building on the BCT framework, we
consider the challenging tasks of entropy estimation and change-point detection. In both
cases, we are able develop a fully-Bayesian approach, providing a way to sample from the
desired posterior distribution (i.e., of the entropy rate and the change-points, respectively, in
each case). In this way, we can estimate the entire posterior distribution of interest, providing
much richer information than simple point estimates.

General Bayesian mixture models. In Chapter 6, by extending the BCT framework, we
develop a very general Bayesian framework for building mixture models for real-valued time
series. The proposed framework can be combined with any existing model class as a base
model, producing flexible and interpretable mixture models. By extending our inference
algorithms, we show that we are still able to perform effective Bayesian inference in this
much more general setting, in a very efficient manner. The utility of the general framework is
studied in detail when AR and ARCH models are used as the building block for the mixture
models. In both cases, the resulting mixture models are found to be flexible nonlinear models
of practical interest, which perform well in a number of real-world applications.

7.2 Future work

In closing, it is noted that a number of promising research directions exist for extending the
work in thesis. These are briefly described below, starting with the more important, general,
and promising directions, and progressing with more specific ideas.

The perhaps most notable direction for further research stems from the generality of
the proposed framework for building mixture models. In particular, the BCT-SSM can be
combined with any existing state-of-the-art model for each specific application, and give
potential improvements. As a few examples, it could be combined, among others, with
ARIMA and EGARCH models, with general state space models and HMMs, or even with
modern machine learning models including GPs and neural networks, ultimately resulting
in very flexible model classes. Perhaps even more importantly, our methods could also be
extended to the setting of multivariate time series, which would greatly broaden the scope of
applications of the proposed framework, by a lot.
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In a different but also quite general direction, BCTs could also be used to model the hidden
state process in general HMMs, resulting in a Hidden Bayesian Context Trees model class.
In specific, consider any particular HMM that uses an ordinary discrete-valued Markov chain
for its hidden state process. By replacing the ordinary Markov chain with a corresponding
variable-memory chain modelled as a BCT, we could create a more flexible model, which
might yield potential improvements in practice.

Another interesting direction would be to consider the challenging problems of online
change-point detection and anomaly detection. These tasks come with critical applications
in areas including security and the health sciences, where they can be used to automatically
detect and prevent cyber attacks, and to monitor the health condition of patients. A promising
idea in this setting would be to combine the BCT framework with the Bayesian Online
Change-Point Detection (BOCPD) method of Adams and MacKay (2007), which has been
used widely and with great success in combination with simple baseline models to detect
change-points in dynamic environments. These two methods are perfectly suited for each
other since the only thing that BOCPD really requires is a sequential update of the evidence,
which is precisely what the BCT algorithms allow to compute exactly and sequentially.

Lastly, since throughout this thesis we have only considered discrete-time data, another
possible extension would be to consider the continuous-time setting. In particular, extending
the BCT model class to also include holding times for the corresponding states would
create an interesting continuous-time jump process, in some sense generalising the class of
continuous-time Markov chains. The resulting model might be useful in practice, especially
in applications where the observations do not arrive in regular time intervals, so that modelling
their arrival times apart from their values is also important.
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Appendix A

The actual k-BCT algorithm

Here we describe a practical version of the k-BCT algorithm, which only differs from the
idealised version of Section 2.3.3 in the initialisation step of the maximal probabilities and
the position vectors at the leaves of depth d < D. After describing the algorithm, we also
make some comments on its implementation complexity.

A.1 Algorithm description

(i) Initially, perform two pre-processing steps:

(ia) Execute the first two steps (i) and (ii) of the idealised k-BCT algorithm on
the complete m-ary tree of depth D, with all the count vectors as assumed to
be equal to zero, as = (0,0, . . . ,0) for all s. Since all nodes at the same depth
are identical, this process can be carried out effectively, by performing the
relevant computations only at a single node (instead of all md nodes) for each
depth 0 ≤ d ≤ D.

(ib) Build the tree TMAX from the contexts of xn
−D+1 and compute the count vectors as

and the probabilities Pe,s = Pe(as) at all nodes s of TMAX, as in steps (i)–(iii)
of the CTW algorithm.

(ii) Starting at the leaves and proceeding recursively towards the root, at each node s
we compute a list of k maximal probabilities P(i)

m,s and k position vectors c(i)s =

(c(i)s (0),c(i)s (1), . . . ,c(i)s (m−1)), for i = 1,2, . . . ,k, recursively as follows.

(iia) At each leaf s at depth D, with a nonzero count vector as, let P(1)
m,s = Pe,s and

c(1)s = (0,0, . . . ,0). For i = 2,3, . . . ,k, we leave P(i) and c(i)s undefined.
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(iib) Similarly, at each leaf s at depth D, with an all-zero count vector as, let P(1)
m,s =

Pe,s = 1, c(1)s = (0,0, . . . ,0), and for i = 2,3, . . . ,k, leave P(i) and c(i)s undefined.

(iic) At each leaf s at depth d < D, we let the list of the maximal probabilities P(i)
m,s and

position vectors c(i)s of s be those that are computed for a node at depth d in the
preprocessing stage (ia).

(iid) Continue with steps (iib) and (iic) as in the idealised version of k-BCT.

(iii) We perform the same steps as described in (iiia)–(iiid) of the idealised version, with
the following addition:

(iiie) While examining a node s at depth 0 < d < D in step (iiib) or (iiic) of the
idealised algorithm, we may reach a point where the algorithm dictates that we
examine its m children, when these children are not included in the tree TMAX.
In that case, we add them to TMAX, and we define their corresponding maximal
probabilities and position vectors according to the initialisation described in step
(iib) or (iic) above, depending on whether d = D−1 or d < D−1, respectively.

(iv) As in the idealised version, output the k resulting trees T ∗
i and the k maximal probabili-

ties at the root, P(i)
m,λ , i = 1,2, . . . ,k.

A.2 Computational complexity

As discussed in detail in Section 2.3.5, the complexity of the CTW and the BCT algorithms
is O(nmD). Following a similar argument, it is easy to see that the complexity of the k-BCT
algorithm in its most naive implementation would be O(nmD× km). The factor km comes
from step (iic) of the idealised algorithm, where for every internal node s, all possible
combinations from the m lists of probabilities Pm,s j are computed. However, the fact that
these lists Pm,s j are already ordered means that the top-k combinations can be found more
efficiently, without performing an exhaustive search over all the km possible combinations.
Instead, a best-first search can be employed to find only the top-k combinations: A priority
queue can be used to maintain all possible candidates and efficiently pick the next best. This
reduces the complexity to O(nmD× km log(km)).
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Proofs of theoretical results

In this section we provide complete proofs for all the theoretical results established in this
thesis, for most of which only proof sketches were given in the main text.

B.1 Results of Chapter 2

Chapter 2 contains our main theoretical results for the setting of discrete-valued time series.
In specific, these include the fact that the BCT prior πD(T ;β ) is a probability distribution on
the model space T (D) (Lemma 2.1), together with the main results for the CTW, BCT and
k-BCT algorithms (Theorems 2.1–2.3).

B.1.1 Proof of Lemma 2.1

Throughout this section, for the sake of clarity of notation, we simply write πD(T ) for the
model prior πD(T ;β ), without explicit reference to β .

The proof is by induction. Note first that for D = 0,1 the result is trivial to check. Also
observe that we can write any tree T which does not contain only the root node λ , as the
union T = ∪ jTj of a collection of m subtrees T0,T1, . . . ,Tm−1. Clearly we will then have,

|T |= ∑
j
|Tj|, and LD(T ) = ∑

j
LD−1(Tj). (B.1)

For the inductive step, suppose that the result holds for all depths less than or equal to
some d ≤ D−1. We will show that it holds for d+1 as well. Let Λ = {λ} denote the empty



138 Proofs of theoretical results

tree that consists only of the root node λ . Using (B.1), we have,

∑
T∈T (d+1)

πd+1(T ) = πd+1(Λ)+ ∑
T∈T (d+1),T ̸=Λ

α
|T |−1

β
|T |−Ld+1(T )

= β + ∑
T0,T1,...,Tm−1∈T (d)

α∑ j |Tj|−1
β ∑ j |Tj|−∑ j Ld(Tj) (B.2)

= β +α
m−1

∑
T0,T1,...,Tm−1∈T (d)

∏
j

α
|Tj|−1

β
|Tj|−Ld(Tj)

= β +α
m−1

∏
j

∑
Tj∈T (d)

πd(Tj)

= β +α
m−1 = 1, (B.3)

where (B.2) follows by (B.1), and (B.3) follows from the inductive hypothesis and the
assumption that β = 1−αm−1. □

B.1.2 Proof of Theorem 2.1

Before giving the proof of Theorem 2.1, we note for later use the following simple properties
of the prior πD(T ). Recall that we write Λ = {λ} for the empty tree consisting of only the
root node λ .

Lemma B.1. (i) If T ∈ T (D), T ̸= Λ, is expressed as the union T = ∪ jTj of the subtrees
Tj ∈ T (D−1), then,

πD(T ) = am−1
m−1

∏
j=0

πD−1(Tj), (B.4)

where αm−1 = 1−β .

(ii) If T ∈ T (D), t ∈ T is at depth d < D, S ∈ T (D−d) is nonempty, and T ∪S consists
of the tree T with S added as a subtree rooted at t, then,

πD(T ∪S) = β
−1

πD(T )πD−d(S).

Proof. The result of (i) immediately follows from the observation (B.1) in the proof of
Lemma 2.1. Similarly, (ii) follows from the simple observations that |T ∪S|= |T |+ |S|−1
and LD(T ∪S) = LD(T )+LD−d(S), together with the definition of the prior. □
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For the proof of Theorem 2.1, we first note that, without loss of generality, we may
assume that the tree TMAX is the complete tree of depth D; if some node s of the complete
tree is not in TMAX, we simply assume that it has an all-zero count vector as.

The proof is again by induction. We adopt the notation of the proof of Lemma 2.1 and
observe that, in view of Lemma 2.2, it suffices to show that,

Pw,λ = ∑
T∈T (D)

πD(T )∏
s∈T

Pe(as). (B.5)

We claim that the following more general statement holds: For any node s at depth d with
0 ≤ d ≤ D, we have,

Pw,s = ∑
U∈T (D−d)

πD−d(U) ∏
u∈U

Pe(asu), (B.6)

where su denotes the concatenation of contexts s and u. Clearly (B.6) implies (B.5) upon
taking s = λ , and (B.6) is trivially true for nodes s at depth D, since it reduces to the fact that
Pw,s = Pe,s for leaves s, by definition.

Suppose (B.6) holds for all nodes s at depth d for some fixed 0 < d ≤ D. Let s be a node
at depth d −1; then, by the inductive hypothesis,

Pw,s = βPe(as)+(1−β )
m−1

∏
j=0

Pw,s j

= βPe(as)+(1−β )
m−1

∏
j=0

 ∑
Tj∈T (D−d)

πD−d(Tj) ∏
t∈Tj

Pe(as jt)

 ,
where s jt denotes the concatenation of context s, then symbol j, then context t, in that order.
Therefore,

Pw,s = βPe(as)+(1−β ) ∑
T0,T1,...,Tm−1∈T (D−d)

m−1

∏
j=0

[
πD−d(Tj) ∏

t∈Tj

Pe(as jt)

]

= βPe(as)+
1−β

αm−1 ∑
T0,T1,...,Tm−1∈T (D−d)

πD−d+1(∪ jTj)

[
m−1

∏
j=0

∏
t∈Tj

Pe(as jt)

]
,

where for the last step we have used (B.4) from Lemma B.1.
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Concatenating every symbol j with every leaf of the corresponding tree Tj, we end up
with all the leaves of the larger tree ∪ jTj. Therefore,

Pw,s = βPe(as)+
1−β

αm−1 ∑
T0,T1,...,Tm−1∈T (D−d)

πD−d+1(∪ jTj) ∏
t∈∪ jTj

Pe(ast),

and since 1−β = αm−1 and πd(Λ) = β for all d ≥ 1,

Pw,s = πD−d+1(Λ)Pe(as)+ ∑
T0,T1,...,Tm−1∈T (D−d)

πD−d+1(∪ jTj) ∏
t∈∪ jTj

Pe(ast)

= πD−d+1(Λ)Pe(as)+ ∑
T∈T (D−d+1),T ̸=Λ

πD−d+1(T )∏
t∈T

Pe(ast)

= ∑
T∈T (D−d+1)

πD−d+1(T )∏
t∈T

Pe(ast).

This establishes (B.6) for all nodes s at depth d −1, completing the inductive step and the
proof of the theorem. □

B.1.3 Proof of Theorem 2.2

Again we observe that, without loss of generality, we may assume that the tree TMAX is the
complete tree of depth D; if some node s of the complete tree is not in TMAX, we simply
assume that it has an all-zero count vector as. It is easy to see that, for β ≥ 1/2, these
assumptions are equivalent to the ones in the description of the BCT algorithm, giving the
same initial values to all leaves of TMAX.

The proof is once again by induction, and we adopt the same notation as in the proofs
of Lemma 2.1 and Theorem 2.1. First we will prove that,

Pm,λ = max
T∈T (D)

P(x,T ), (B.7)

which, in view of Lemma 2.2, is equivalent to,

Pm,λ = max
T∈T (D)

πD(T )∏
s∈T

Pe(as). (B.8)

As in the proof of Theorem 2.1, we claim that the following more general statement holds:
For any node s at depth d with 0 ≤ d ≤ D, we have,

Pm,s = max
U∈T (D−d)

πD−d(U) ∏
u∈U

Pe(asu), (B.9)

where su denotes the concatenation of contexts s and u.
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Taking s = λ in (B.9) gives (B.8), and (B.9) is trivially true for nodes s at depth D, since
it reduces to the fact that Pm,s = Pe,s for leaves s, by definition.

For the inductive step, we assume that (B.9) holds for all nodes s at depth d for some
fixed 0 < d ≤ D, and consider a node s at depth d −1. By the inductive hypothesis we have,

Pm,s = max

{
βPe(as),(1−β )

m−1

∏
j=0

Pm,s j

}

= max

{
βPe(as),(1−β )

m−1

∏
j=0

[
max

Tj∈T (D−d)
πD−d(Tj) ∏

t∈Tj

Pe(as jt)

]}

= max

{
βPe(as),(1−β ) max

T0,T1,...,Tm−1∈T (D−d)

m−1

∏
j=0

[
πD−d(Tj) ∏

t∈Tj

Pe(as jt)

]}

= max

{
βPe(as),

1−β

αm−1 max
T0,T1,...,Tm−1∈T (D−d)

πD−d+1(∪ jTj)

[
m−1

∏
j=0

∏
t∈Tj

Pe(as jt)

]}
,

where the last step follows by (B.4) from Lemma B.1. Arguing as in the proof of Theorem 2.1,

Pm,s = max

{
πD−d+1(Λ)Pe(as), max

T0,T1,...,Tm−1∈T (D−d)
πD−d+1(∪ jTj) ∏

t∈∪ jTj

Pe(ast)

}

= max

{
πD−d+1(Λ)Pe(as), max

T∈T (D−d+1),T ̸=Λ

πD−d+1(T )∏
t∈T

Pe(ast)

}
= max

T∈T (D−d+1)
πD−d+1(T )∏

t∈T
Pe(ast).

This establishes (B.9) for all nodes s at depth d −1, completing the inductive step and hence
also proving (B.7) and (B.8). To complete the proof of the theorem, it now suffices to show
that,

Pm,λ = P(x,T ∗
1 ), (B.10)

because this is exactly (2.12), and combined with (B.7) it implies,

max
T∈T (D)

P(x,T ) = P(x,T ∗
1 ),

which, after dividing both sides by the prior predictive likelihood, P∗
D(x), gives (2.11).
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By Lemma 2.2, (B.10) is equivalent to,

Pm,λ = πD(T ∗
1 ) ∏

s∈T ∗
1

Pe(as), (B.11)

and, once again, we will establish the following more general statement: For any node s at
depth d with 0 ≤ d ≤ D, we have,

Pm,s = max
{

βPe(as),(1−β )
m−1

∏
j=0

Pm,s j

}
= πD−d(T (s)) ∏

t∈T (s)
Pe(ast), (B.12)

where T (s) is the tree that the BCT algorithm would produce if it started its step (iii) at
node s. Taking s = λ in (B.12) gives (B.11), and (B.12) is again trivially true for leaves s at
depth D, by the definition of the maximal probabilities Pm,s.

Finally, for the inductive step, suppose (B.12) holds for all nodes at depth 0 < d ≤ D, and
let s be a node at depth d −1. We consider two separate cases: (i) If the maximum in (B.12)
is achieved by the first term, then Pm,s = βPe,s and T (s) consists of s only, so that (B.12) holds
trivially; (ii) If the maximum in (B.12) is achieved by the second term, then T (s) = ∪ jT (s j),
and using (B.4) from Lemma B.1 and the inductive hypothesis, we obtain:

Pm,s = (1−β )
m−1

∏
j=0

Pm,s j

= (1−β )
m−1

∏
j=0

[
πD−d(T (s j)) ∏

t∈T (s j)
Pe(as jt)

]

= πD−d+1(∪ jT (s j))
m−1

∏
j=0

∏
t∈T (s j)

Pe(as jt)

= πD−d+1(∪ jT (s j)) ∏
t∈∪ jT (s j)

Pe(ast) = πD−d+1(T (s)) ∏
t∈T (s)

Pe(ast).

This establishes (B.12) and completes the proof of the theorem. □

B.1.4 Proof of Theorem 2.3

Before giving the proof of Theorem 2.3, we observe that it is easy (though somewhat tedious)
to verify that the two versions of the k-BCT algorithm are equivalent, in that they produce
identical results as long as β ≥ 1/2. Therefore, for the sake of simplicity, the proof below is
given only for the idealised k-BCT algorithm.
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The proof is again by induction, and we adopt the same notation as in the proof of
Theorem 2.2. First we will prove that, for all 1 ≤ i ≤ k,

P(i)
m,λ = max(i)

T∈T (D)
P(x,T ), (B.13)

which, in view of Lemma 2.2, is equivalent to,

P(i)
m,λ = max(i)

T∈T (D)
πD(T )∏

s∈T
Pe(as). (B.14)

As in the proof of Theorem 2.2, we claim that the following more general statement holds:
For all i and any node s at depth d with 0 ≤ d ≤ D, we have,

P(i)
m,s = max(i)

U∈T (D−d)
πD−d(U) ∏

u∈U
Pe(asu), (B.15)

where su denotes the concatenation of contexts s and u. Taking s = λ in (B.15) gives (B.14),
and (B.15) is trivially true for nodes s at depth D, since at depth D we only consider i = 1
and then P(1)

m,s = Pe,s for leaves s, by definition.
For the inductive step, we assume that (B.15) holds for all i and all nodes s at depth d for

some fixed 0 < d ≤ D, and consider a node s at depth d −1. By the inductive hypothesis we
have, in the notation of (2.13), that P(i)

m,s is equal to,

P(i)
m,s =max(i)

 k0⋃
i0=1

· · ·
km−1⋃

im−1=1

{
(1−β )

m−1

∏
j=0

P(i j)
m,s j

}⋃ {
βPe(as)

}
=max(i)

 k0⋃
i0=1

· · ·
km−1⋃

im−1=1

{
(1−β )

m−1

∏
j=0

[
max(i j)

Tj∈T (D−d)
πD−d(Tj) ∏

t∈Tj

Pe(as jt)

]}⋃ {
βPe(as)

}
=max(i)

 k0⋃
i0=1

· · ·
km−1⋃

im−1=1{
(1−β ) max(i0)

T0∈T (D−d)
· · · max(im−1)

Tm−1∈T (D−d)

m−1

∏
j=0

[
πD−d(Tj) ∏

t∈Tj

Pe(as jt)

]}
⋃ {

βPe(as)
}]

.
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And using (B.4) from Lemma B.1 and arguing as before finally gives,

P(i)
m,s =max(i)

 k0⋃
i0=1

· · ·
km−1⋃

im−1=1{
max(i0)

T0∈T (D−d)
· · · max(im−1)

Tm−1∈T (D−d)
πD−d+1(∪ jTj)

[
m−1

∏
j=0

∏
t∈Tj

Pe(as jt)

]}
⋃ {

βPe(as)
}]

=max(i)

 k0⋃
i0=1

· · ·
km−1⋃

im−1=1

{
max(i0)

T0∈T (D−d)
· · · max(im−1)

Tm−1∈T (D−d)
πD−d+1(∪ jTj) ∏

t∈∪ jTj

Pe(ast)

}
⋃{

πD−d+1(Λ)Pe(as)
}]

=max(i)
[

k⋃
i′=1

{
max(i

′)

T∈T (D−d+1),T ̸=Λ

πD−d+1(T )∏
t∈T

Pe(ast)

}⋃{
πD−d+1(Λ)Pe(as)

}]
= max(i)

T∈T (D−d+1)
πD−d+1(T )∏

t∈T
Pe(ast).

This establishes (B.15) for all i and all nodes s at depth d −1, completing the inductive step
and hence also proving (B.13) and (B.14). To complete the proof of the theorem, it now
suffices to show that, for all 1 ≤ i ≤ k,

P(i)
m,λ = P(x,T ∗

i ), (B.16)

because, combined with (B.13) this implies,

max(i)
T∈T (D)

P(x,T ) = P(x,T ∗
i ),

which, after dividing both sides by the prior predictive likelihood, gives (2.14). In view of
Lemma 2.2, (B.16) is equivalent to,

P(i)
m,λ = πD(T ∗

i ) ∏
s∈T ∗

i

Pe(ast), (B.17)

and, once again, we will establish the following more general statement.
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For all i and any node s at depth d with 0 ≤ d ≤ D, we have,

P(i)
m,s = max(i)

 k0⋃
i0=1

k1⋃
i1=1

· · ·
km−1⋃

im−1=1

{
(1−β )

m−1

∏
j=0

P(i j)
m,s j

}⋃ {
βPe(as)

} (B.18)

= πD−d(T (i)(s)) ∏
t∈T (i)(s)

Pe(ast), (B.19)

where T (i)(s) is the ith tree that k−BCT would produce if it started its step (iii) at node s.
Taking s = λ in (B.19) gives (B.17), and (B.19) is again trivially true for leaves s at depth D,
by the definition of the maximal probabilities Pm,s.

Finally, for the inductive step assume (B.19) holds for all nodes at depth 0 < d ≤ D,
and let s be a node at at depth d −1. We consider two separate cases: (i) If the maximum
in (B.18) is achieved by the last term, then P(i)

m,s = βPe,s and T (i)(s) consists of s only, so
that (B.19) holds trivially; (ii) If the maximum in (B.18) is achieved by the collection of
indices (i0, i1, . . . , im−1), then T (i)(s) = ∪ jT (i j)(s j), and using (B.4) from Lemma B.1 and
the inductive hypothesis, we obtain:

P(i)
m,s = (1−β )

m−1

∏
j=0

P(i j)
m,s j(as j)

= (1−β )
m−1

∏
j=0

πD−d(T (i j)(s j)) ∏
t∈T (i j)(s j)

Pe(as jt)


= πD−d+1(∪ jT (i j)(s j))

m−1

∏
j=0

∏
t∈T (i j)(s j)

Pe(as jt)

= πD−d+1(∪ jT (i j)(s j)) ∏
t∈∪ jT

(i j)(s j)

Pe(ast)

= πD−d+1(T (i)(s)) ∏
t∈T (i)(s)

Pe(ast).

This establishes (B.19) and completes the proof of the theorem. □

B.1.5 Arbitrary Dirichlet parameters

In some cases it may be desirable to consider a more general Dirichlet prior π(θ |T ) on the
parameters θ associated with a given model T ∈ T (D). Instead of the Dir(1/2,1/2, . . . ,1/2)
distribution defined in (2.5) we may place a different, general Dir(γs(0),γs(1), . . . ,γs(m−1))
prior on each context s ∈ T .
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For an arbitrary collection of hyperparameters γ = {γs = (γs(0), . . . ,γs(m−1)) ; s ∈ T},
with each γs( j)> 0, let π(θ |T ) = ∏s∈T π(θs), with,

π(θs) = π(θs(0),θs(1), . . . ,θs(m−1)) =
Γ(M′

s)

∏
m−1
j=0 Γ(γs( j))

m−1

∏
j=0

θs( j)γs( j)−1 ∝
m−1

∏
j=0

θs( j)γs( j)−1,

where M′
s := ∑

m−1
j=0 γs( j), s ∈ T .

As in Section 2.2.2, the marginal likelihood P(x|T ) of a data string x given a model
T ∈ T (D) can be computed explicitly. Lemma B.2 below is the analog of Lemma 2.2 in this
case; its proof is a straightforward modification of that of Lemma 2.2.

Lemma B.2. The marginal likelihood P(x|T ) of the observations x given a model T is,

P(x|T ) =
∫

P(x,θ |T )dθ =
∫

P(x|θ ,T )π(θ |T )dθ = ∏
s∈T

Pe(as,γs),

where the count vectors as = (as(0),as(1), . . . ,as(m−1)) are defined in (2.3) as before and
the estimated probabilities Pe(as,γs) are now defined by,

Pe(as,γs) :=
Γ(M′

s)

Γ(Ms +M′
s)

m−1

∏
j=0

Γ(as( j)+ γs( j))
Γ(γs( j))

, (B.20)

where Ms := as(0)+as(1)+ · · ·+as(m−1) and M′
s := γs(0)+γs(1)+ · · ·+γs(m−1), again

with the convention that any empty product is taken to be equal to 1.

Now, it is possible to modify the CTW, BCT and k-BCT algorithms, simply by replacing
the estimated probabilities Pe(as) of (2.7) by Pe(as,γs) as in (B.20). A careful inspection of
the proofs of Theorems 2.1, 2.2 and 2.3 shows that their results remain valid in this more
general case by replacing Pe(as) with Pe(as,γs) as in (B.20).

Similarly, all the additional results in Chapter 2 remain valid as stated there, with the
exception of the expression for the full conditional density in (2.16). In the case of a general
prior π(θ |T ) in terms of the hyperparameters γ , the same computation shows that here:

π(θ |T,x) = ∏
s∈T

Dir
(
as(0)+ γs(0), . . . ,as(m−1)+ γs(m−1)

)
.

Finally, we note that sequential updates can be carried out for the CTW, BCT, and
k-BCT algorithms in this setting as before; see Section 2.3.5. The only change is in the
update needed for Pe(as,γs), which should now be updated by multiplying its earlier value
by (as( j)+ γs( j)−1)/(M′

s +Ms −1), using the updated values of as and Ms.
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B.2 Results of Chapter 3

Chapter 3 contains theoretical results connected with the branching process representation
of the BCT posterior on model space. The equivalence of this representation is established
in Proposition 3.2, and is later used to provide asymptotic results that further justify the
BCT framework. In specific, these results include the asymptotic concentration of the model
posterior on the ‘true’ underlying model (Theorem 3.1), together with an explicit almost sure
rate for this convergence (Theorem 3.2), and with corresponding results when the data are
generated from general stationary ergodic processes (Theorems 3.3 and 3.4).

B.2.1 Proof of Proposition 3.2

The proof parallels that of Proposition 3.1 for the BCT prior, which is included in the main
text. When D = 0, T (D) consists of a single tree, T = {λ}, which has probability 1 under
both the BCT posterior π(·|x) and under the distribution πb(·) induced by the branching
process construction. Suppose D ≥ 1.

As before, we view every tree T ∈ T (D) as a collection of k of m-branches, and we
proceed by induction on k. For k = 0, i.e., for T = {λ}, by the definitions,

πb({λ}) = Pb,λ =
βPe,λ

Pw,λ
= πD({λ};β )

Pe,λ

Pw,λ
,

and using Lemma 2.2 and the fact that Pw,λ is exactly the normalising constant P(x),

πb({λ}) = πD({λ};β )P(x|{λ})
P(x)

= π({λ}|x),

completing the proof for the base case k = 0.
Now assume the result of the proposition holds for all trees with k m-branches, and

suppose T ′ ∈ T (D) contains (k+1) m-branches and is obtained from some T ∈ T (D) by
adding a single m-branch to one of its leaves, s. Again, we consider two cases.

(i) If s is at depth D−2 or smaller, then by construction,

πb(T ′) =
πb(T )

Pb,s
(1−Pb,s)

m−1

∏
j=0

Pb,s j,

and therefore, using the inductive hypothesis,

πb(T ′) = π(T |x)
(1−Pb,s

Pb,s

)
∏

j
Pb,s j = π(T ′|x) π(T |x)

π(T ′|x)

(1−Pb,s

Pb,s

)
∏

j
Pb,s j. (B.21)
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Using the definitions of πD and Pb,s together with Lemma 2.2, we can express the posterior
odds π(T ′|x)/π(T |x) in (B.21) as,

π(T ′|x)
π(T |x)

=
πD(T ′;β )

πD(T ;β )

P(x|T ′)

P(x|T )
=

πD(T ′;β )

πD(T ;β )

∏
m−1
j=0 Pe,s j

Pe,s

=
β m(1−β )

β

∏ j Pe,s j

Pe,s

=(1−Pb,s)
1−β

βPe,s(1−Pb,s)
∏

j
βPe,s j

=(1−Pb,s)
Pw,s

βPe,s

1−β

(Pw,s −βPe,s)
∏

j
βPe,s j,

and from the definitions of Pw,s and Pb,s in (2.9) and (3.1) we obtain,

π(T ′|x)
π(T |x)

= (1−Pb,s)
1

Pb,s

1
∏ j Pw,s j

∏
j

βPe,s j =
(1−Pb,s

Pb,s

)
∏

j
Pb,s j. (B.22)

Substituting (B.22) into (B.21) yields, πb(T ′) = π(T ′|x), as claimed.

(ii) Similarly, if s is at depth D−1, from the inductive hypothesis,

πb(T ′) =
πb(T )

Pb,s
(1−Pb,s) = π(T |x)

(1−Pb,s

Pb,s

)
= π(T ′|x) π(T |x)

π(T ′|x)

(1−Pb,s

Pb,s

)
, (B.23)

where the posterior odds can be expressed as,

π(T ′|x)
π(T |x)

=
πD(T ′;β )

πD(T ;β )

∏
m−1
j=0 Pe,s j

Pe,s

=
(1−β

β

)
∏ j Pw,s j

Pe,s

=
Pw,s −βPe,s

βPe,s
=

1−Pb,s

Pb,s
, (B.24)

where in the second equality we used that Pw,s j = Pe,s j, as all nodes s j are at depth d = D in
this case. Substituting (B.24) above in (B.23) yields πb(T ′) = π(T ′|x), and completes the
proof of the proposition. □
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B.2.2 Proof of Lemma 3.2

Lemma 3.2 considers the asymptotic behaviour of the branching probabilities Pb,s for internal
nodes s of T ∗, which is the first step in proving Theorem 3.1. Here we establish the two
missing steps in the proof of Lemma 3.2 given in Section 3.2.1 of the main text.

Proof of (3.8). Using the upper bound of Lemma 3.1 for a fixed context s, and the
corresponding lower bound for the context s j, we obtain the upper bound,

1
Ms

(
logPe,s −

m−1

∑
j=0

logPe,s j

)
≤

m−1

∑
i=0

as(i)
Ms

log
as(i)
Ms

−
m−1

∑
j=0

Ms j

Ms

m−1

∑
i=0

as j(i)
Ms j

log
as j(i)
Ms j

+
m−1
2Ms

(
m−1

∑
j=0

logMs j − logMs

)
+

C
Ms

, (B.25)

for some constant C. Since Ms and Ms j both tend to infinity a.s. as n → ∞ by positive-
ergodicity, the last two terms above both vanish a.s.

For the first two terms, we first note that, by the ergodic theorem for Markov chains (e.g.,
(Chung, 1967, p. 92)),

as(i)
Ms

=
as(i)

n
n

Ms
→ π(si)

π(s)
= π(i|s), a.s., (B.26)

where for the stationary distribution π , the notation we use is that si denotes the concatenation
of context s followed by symbol i moving ‘forward’ in time.

Recalling the definition of X and J, we have,

P(X = i|s) = π(si)
π(s)

= π(i|s), P(J = j|s) = π( js)
π(s)

, (B.27)

so that for the first term of (B.25), as n →∞,

m−1

∑
i=0

as(i)
Ms

log
as(i)
Ms

→−H(X |s), a.s. (B.28)

Similarly, for the second term of (B.25), from the ergodic theorem,

as j(i)
Ms j

=
as j(i)

n
n

Ms j
→ π( jsi)

π( js)
= π(i| js) = P(X = i|s,J = j), a.s., (B.29)

Ms j

Ms
=

Ms j

n
n

Ms
→ π( js)

π(s)
= P(J = j|s), a.s., (B.30)
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so that, as n →∞,

−
m−1

∑
j=0

Ms j

Ms

m−1

∑
i=0

as j(i)
Ms j

log
as j(i)
Ms j

→
m−1

∑
j=0

P(J = j|s)H(X |s,J = j) = H(X |s,J), (B.31)

by the definition of conditional entropy. Finally, combining with (B.28), we get,

m−1

∑
i=0

as(i)
Ms

log
as(i)
Ms

−
m−1

∑
j=0

Ms j

Ms

m−1

∑
i=0

as j(i)
Ms j

log
as j(i)
Ms j

→−I(X ;J|s), a.s. (B.32)

Following the same sequence of steps, we can similarly obtain a lower bound correspond-
ing to (B.25) as,

1
Ms

(
logPe,s −

m−1

∑
j=0

logPe,s j

)
≥

m−1

∑
i=0

as(i)
Ms

log
as(i)
Ms

−
m−1

∑
j=0

Ms j

Ms

m−1

∑
i=0

as j(i)
Ms j

log
as j(i)
Ms j

+
m−1
2Ms

(
m−1

∑
j=0

logMs j − logMs

)
+

C′

Ms
, (B.33)

where the only difference from (B.25) is the constant C′. Therefore,

1
Ms

(
logPe,s −

m−1

∑
j=0

logPe,s j

)
→−I(X ;J|s), a.s.,

or, equivalently,

logPe,s −
m−1

∑
j=0

logPe,s j =−MsI(X ;J|s)+o(Ms), a.s. (B.34)

And since Ms = nπ(s)+o(1) a.s. by the ergodic theorem, we finally get (3.8). □

Proof of final step in Lemma 3.1. As already noted in the main text, (3.8) implies Pb,s → 0
a.s. for nodes whose children are leaves of T ∗. The same holds for all internal nodes s
of T ∗ for which I(X ;J|s)> 0. The only remaining case is that of internal nodes u for which
I(X ;J|u) = 0. The fact that again Pb,u → 0 a.s. is an immediate consequence of the result
given as Lemma B.3 in Appendix B.2. □

B.2.3 Proof of Lemma 3.3

Lemma 3.3 now considers the asymptotic behaviour of the branching probabilities Pb,s for
the leaves s of T ∗, which is the second step in proving Theorem 3.1. Here we establish the
two missing steps in the proof of Lemma 3.3 given in Section 3.2.1 of the main text.
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Proof of (3.9). We can rewrite (B.33) as,

m−1

∑
j=0

logPe,s j − logPe,s ≤
m−1

∑
j=0

m−1

∑
i=0

as j(i) log
as j(i)
Ms j

−
m−1

∑
i=0

as(i) log
as(i)
Ms

− m−1
2

(
m−1

∑
j=0

logMs j − logMs

)
−C′. (B.35)

We write p̂s and πs for the empirical and stationary conditional distributions of the symbol
following s,

p̂s(i) :=
as(i)
Ms

, πs(i) := π(i|s) = π(si)
π(s)

, i ∈ A.

Let D(p∥q) denote the relative entropy (or Kullback-Leibler divergence) between two
probability mass functions p,q on the same discrete alphabet (Cover and Thomas, 1999,
Ch. 2). By the nonnegativity of the relative entropy we have,

m−1

∑
i=0

as(i) logπs(i)−
m−1

∑
i=0

as(i) log
as(i)
Ms

= Ms

m−1

∑
i=0

p̂s(i) log
πs(i)
p̂s(i)

=−MsD(p̂s∥πs)≤ 0.

Adding and subtracting the term ∑
m−1
i=0 as(i) logπs(i) to (B.35) and using the last inequality,

m−1

∑
j=0

logPe,s j − logPe,s ≤
m−1

∑
j=0

m−1

∑
i=0

as j(i) log p̂s j(i)−
m−1

∑
i=0

as(i) logπs(i)

− m−1
2

(
m−1

∑
j=0

logMs j − logMs

)
−C′. (B.36)

We examine the first and second terms in (B.36) separately. For the first (and main) term,
since for all count vectors, as(i) = ∑

m−1
j=0 as j(i), we can express,

m−1

∑
j=0

m−1

∑
i=0

as j(i) log p̂s j(i)−
m−1

∑
i=0

as(i) logπs(i) =
m−1

∑
j=0

m−1

∑
i=0

as j(i) log
p̂s j(i)
πs(i)

=
m−1

∑
j=0

Ms j

m−1

∑
i=0

p̂s j(i) log
p̂s j(i)
πs(i)

=
m−1

∑
j=0

Ms jD(p̂s j∥πs)

=
m−1

∑
j=0

Ms jD(p̂s j∥πs j),

where the last equality holds because s is either a leaf or an external nodes of T ∗, so that
I(X ;J|s) = 0 and πs j = πs j′ = πs, for all j, j′.
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In order to bound the relative entropy between the empirical and the stationary conditional
distributions, we first recall that the relative entropy is bounded above by the χ2-distance,
e.g., (Gibbs and Su, 2002),

D(p̂s j∥πs j)≤ dχ2(p̂s j,πs j) =
m−1

∑
i=0

(p̂s j(i)−πs j(i))2

πs j(i)
. (B.37)

From the law of the iterated logarithm (LIL) for Markov chains (Chung, 1967, p. 106), we
have, a.s. as n →∞,

as j(i) = nπ( jsi)+O(
√

n log logn), Ms j = nπ( js)+O(
√

n log logn), (B.38)

so that,

p̂s j(i) =
as j(i)
Ms j

=
π( jsi)
π( js)

+O

(√
log logn

n

)
= πs j(i)+O

(√
log logn

n

)
.

Substituting in (B.37) yields,

D(p̂s j∥πs j)≤ O
(

log logn
n

)m−1

∑
i=0

1
πs j(i)

= O
(

log logn
n

)
, a.s., (B.39)

and finally, using (B.38) again,

m−1

∑
j=0

Ms jD(p̂s j∥πs j) = O(log logn), a.s. (B.40)

For the third term in (B.36),

m−1

∑
j=0

logMs j − logMs =
m−1

∑
j=0

log
Ms j

Ms
+(m−1) logMs. (B.41)

Using the LIL, Ms = nπ(s)+O(
√

n log logn), a.s., so,

logMs = log
(

nπ(s)
{

1+O(
√

log logn/n)
})

= logn+O(1), a.s.,

and using the LIL again as above, Ms j/Ms = π( js)/π(s)+O(
√

log logn/n) = O(1), a.s., so
that, logMs j/Ms = O(1), a.s.



B.2 Results of Chapter 3 153

So, we finally get that,

m−1

∑
j=0

logMs j − logMs = (m−1) logn+O(1), a.s., (B.42)

which together with (B.36) and (B.40) complete the proof of (3.9). □

Proof of final step in Lemma 3.3. As discussed in the proof of Lemma 3.3 in the main text,
the asymptotic relation (3.9) implies that ∏ j Pe,s j/Pe,s → 0, a.s., for all leaves and external
nodes s of T ∗. The next proposition states that it also implies that ∏ j Pw,s j/Pe,s → 0, so that
Pb,s → 1 a.s. by (3.6), completing the proof of Lemma 3.3. Note that it suffices to consider
leaves at depths d ≤ D−1, since for leaves s at depth D we already have Pb,s = 1.

Proposition B.1. Under the assumptions of Theorem 3.1, for all leaves and external nodes s
of T ∗ at depths d ≤ D−1 we have, as n →∞:

∏
m−1
j=0 Pw,s j

Pe,s
→ 0, a.s.

Proof. Note that, since the stationary distribution is positive on all finite contexts, the tree
TMAX is eventually a.s. the complete tree of depth D, so we need not consider special cases
of contexts s that do not appear in the data separately. Let s be a leaf or external node of T ∗

at depth 0 ≤ d ≤ D−1. The proof is by induction on d.
For d = D−1, the claim is satisfied trivially as Pw,s j = Pe,s j, since nodes s j are at depth D.

For the inductive step, we assume that the claim holds for all leaves and external nodes s
of T ∗ at some depth d ≤ D−1, and consider a leaf or external node s of T ∗ at depth d −1.
We have, as n →∞,

∏
m−1
j=0 Pw,s j

Pe,s
=

∏
m−1
j=0
[
βPe,s j +(1−β )∏

m−1
t=0 Pw,s jt

]
Pe,s

=
∏

m−1
j=0
[
βPe,s j +(1−β )∏

m−1
t=0 Pw,s jt

]
∏

m−1
j=0 βPe,s j

∏
m−1
j=0 βPe,s j

Pe,s

=
m−1

∏
j=0

(
1+

1−β

β

∏
m−1
t=0 Pw,s jt

Pe,s j

)
∏

m−1
j=0 Pe,s j

Pe,s
β

m → 0, a.s., (B.43)

as ∏
m−1
t=0 Pw,s jt/Pe,s j → 0 by the inductive hypothesis, and ∏

m−1
j=0 Pe,s j/Pe,s → 0 for a node s

which is either a leaf or external node of T ∗. This establishes the inductive step and completes
the proof of the proposition. □
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B.2.4 Proof of Theorem 3.2

The starting point of the proof is the representation of the posterior given in equation (3.2)
of the main text. In particular, we examine the asymptotic behaviour of the branching
probabilities Pb,s separately for leaves and internal nodes.

Leaves. Let s be a leaf or an external node of T ∗. We already have a strong upper bound for
the estimated probabilities of s in (3.9). Write r = (m−1)2/2. Since the bound (3.9) holds
a.s., a straightforward sample-path-wise computation immediately implies that, for all ε > 0,

∏
m−1
j=0 Pe,s j

Pe,s
= O

(
n−r+ε

)
, a.s. (B.44)

Proposition B.2 states that ∏ j Pw,s j/Pe,s has the same asymptotic behaviour.

Proposition B.2. For all leaves and external nodes s of T ∗ at depths d ≤ D− 1, for any
ε > 0 we have, as n →∞:

∏
m−1
j=0 Pw,s j

Pe,s
= O

(
n−

(m−1)2
2 +ε

)
, a.s.

Proof. The proof is similar to that of Proposition B.1, by induction on d. If d = D−1, then
Pw,s j = Pe,s j and the claim follows from (B.44). For the inductive step, assume the claim holds
for all leaves and external nodes at some depth d ≤ D−1, and consider a leaf or external
node s at depth d−1. Then substituting (B.44) into (B.43) and noting that ∏t Pw,s jt/Pe,s j → 0
a.s. by Proposition B.1, completes the proof of the proposition. □

Combining Proposition B.2 with equation (3.6), we get that, for any leaf or external
node s at depth d, a.s. as n →∞:

Pb,s = 1−O
(

n−
(m−1)2

2 +ε

)
, if d ≤ D−1, and, Pb,s = 1, if d = D. (B.45)

Internal nodes. As in the proof of Lemma 3.2, we first consider internal nodes whose
children are leaves of T ∗, so that I = I(X ;J|s)> 0. For these nodes, equation (3.8) gives,

Pe,s

∏
m−1
j=0 Pe,s j

= exp
{
−nIπ(s)+o(n)

}
, a.s., (B.46)

so that for any ε > 0,

Pe,s

∏
m−1
j=0 Pe,s j

= o
(

exp
{
−n(1− ε)Iπ(s)

})
, a.s. (B.47)
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Substituting (B.47) in equation (3.7) of the main text we obtain the same bound for the
branching probabilities,

Pb,s = o
(

exp
{
−n(1− ε)Iπ(s)

})
, a.s. (B.48)

Next, we establish a corresponding bound for all internal nodes; indeed, for any node u
that is a suffix of a node s that has I(X ;J|s)> 0.

Lemma B.3. Let s be a context of length l(s)≤ D−1 for which I(X ;J|s)> 0, and let u be
any suffix of s. Then, for any ε > 0, we have as n →∞:

Pb,u = o
(

exp
{
−n(1− ε)I(X ;J|s)π(s)

})
, a.s. (B.49)

Proof. Let ∆l = l(s)− l(u) ≥ 0; the proof is by induction on ∆l. For ∆l = 0, the claim is
satisfied trivially as u = s, for which I(X ;J|s)> 0, corresponding to the previous case.

For the inductive step, we assume that the claim holds for context u j which is the suffix
of s with ∆l = k ≥ 0, and prove that it also holds for the context u, which is the suffix of s
with ∆l = k+1. For node u, which is at depth d < D−1, from (3.6) and the definition of the
branching probabilities in (3.1) we get,

Pb,u ≤
(

β

1−β

) Pe,u

∏
m−1
t=0 Pw,ut

=C
Pe,u

∏
m−1
t=0 Pe,ut

m−1

∏
t=0

Pb,ut ,

where the constant C = [β m−1(1−β )]−1. And, as Pb,ut ≤ 1 for all t, we can further bound,

Pb,u ≤C
Pe,u

∏
m−1
t=0 Pe,ut

Pb,u j, (B.50)

keeping only the specific child u j of u which is a suffix of s. From (B.46) for node u, we
know that, even if I(X ;J|u) is zero, we have,

Pe,u

∏
m−1
t=0 Pe,ut

= exp(o(n)), a.s., (B.51)

and combining this with (B.50) and the inductive hypothesis that (B.49) holds for u j in place
of u, we get,

Pb,u = o
(

exp
{
−n(1−2ε)I(X ;J|s)π(s)

})
, a.s.,

completing the proof of the inductive step and hence the proof of Lemma B.3. □
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Substituting the bounds on the branching probabilities for the leaves (B.45) and internal
nodes (B.49) in the expression for the posterior of T ∗ from (3.2), yields the result claimed in
Theorem 3.2, completing its proof. Finally, a simple examination of (B.45) and (B.49) in
the case when T ∗ is the full tree of depth D shows that Pb,s = 1 for all leaves s, so the rate is
determined by the exponential bounds in (B.49) as claimed in Corollary 3.1. □

B.3 Results of Chapter 6

Chapter 6 contains our main theoretical results associated with the general BCT-SSM model
class for real-valued time series, together with more specific results for the BCT-AR and
BCT-ARCH models. In particular, Theorems 6.1–6.2 provide corresponding results for
the CCTW and CBCT algorithms in the general BCT-SSM setting, with Proposition 6.1
establishing the equivalent branching process representation of the posterior in this case.
Lemmas 6.1–6.3 establish expressions for the estimated probabilities Pe(s,x) to be used with
our inference algorithms in the cases of BCT-AR and BCT-ARCH models, respectively.

B.3.1 Proofs of Theorems 6.1 and 6.2

Theorems 6.1–6.2 are the extensions of Theorems 2.1–2.2 from the discrete-valued case,
establishing the corresponding results for the CCTW and CBCT algorithms in the much
more general setting of the BCT-SSM for real-valued time series.

The important observation in their proofs is that, using our different form of the esti-
mated probabilities Pe(s,x) defined in (6.4), here it is still possible to factorise the marginal
likelihoods p(x|T ) for the general BCT-SSM, as,

p(x|T ) =
∫

p(x|θ ,T )π(θ |T )dθ =
∫

∏
s∈T

(
∏
i∈Bs

p(xi|T,θs,xi−1
−D+1) π(θs) dθs

)
= ∏

s∈T
Pe(s,x),

where the second equality follows from the likelihood of the general BCT-SSM in (6.2),
together with the fact that we still use independent priors on the parameters at the leaves, so
that π(θ |T ) = ∏s∈T π(θs). The above factorisation of the marginal likelihoods p(x|T ) is the
exact analog of Lemma 2.2 for the general BCT-SSM setting.

With this modification, a careful inspection of the proofs of Theorems 2.1–2.2 shows that
the remaining steps can be still be carried out as before. So, the proofs of Theorems 6.1–6.2
follow along the same lines as those of Theorems 2.1–2.2, with the main difference being
that our new general version of the estimated probabilities Pe(s,x) of (6.4) need to be used in
place of their simple discrete versions Pe(as) of (2.7). Similarly, the proof of Proposition 6.1
follows along the same lines as that of Proposition 3.2. □
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B.3.2 The k-CBCT algorithm

The k-BCT algorithm can be generalised in a similar manner to the way the CTW and BCT
algorithms were generalised for the BCT-SSM setting. The resulting k-CBCT algorithm
identifies the top-k a posteriori most likely context trees in this case. The proof of the
theorem claiming this is similar to the proof of Theorem 2.3 and thus omitted here. Again,
the important difference, both in the algorithm description and in the proof of the theorem,
is that the estimated probabilities Pe(s,x) of (6.4) are used in place of their simple discrete
version Pe(as) of (2.7).

B.3.3 Proof of Lemma 6.1

The proofs of Lemmas 6.1-6.2 are mostly based on explicit computations. Recall that, for
each context s, the set Bs consists of those indices i ∈ {1,2, . . . ,n} such that the context of xi

is s. The important step in the following is the factorisation of the likelihood using the sets Bs

as in (6.2). In order to prove the lemmas for the AR model with parameters θs = (φ s,σ
2
s ),

we first consider an intermediate step in which we assume the noise variance to be known
and equal to σ2.

Known noise variance. Here, to any leaf s of the context tree T , we associate an AR model
with known variance σ2, so that,

xn = φs,1xn−1 + · · ·+φs,pxn−p + en = φ s
T x̃n−1 + en, en ∼N (0,σ2). (B.52)

In this setting, the parameters of the model are only the AR coefficients θs=φ s. For these,
we use a Gaussian prior,

θs ∼N (µo,Σo) , (B.53)

where µo,Σo are hyperparameters. In this setting we prove the following for the estimated
probabilities Pe(s,x).

Lemma B.4. The estimated probabilities Pe(s,x) for the known-variance case are given by,

Pe(s,x) =
1

(2πσ2)|Bs|/2
1√

det(I +ΣoS3/σ2)
exp
{
− Es

2σ2

}
, (B.54)

where I is the identity matrix and Es is given by,

Es = s1 +σ
2
µ

T
o Σ

−1
o µo − (s2 +σ

2
Σ
−1
o µo)

T(S3 +σ
2
Σ
−1
o )−1(s2 +σ

2
Σ
−1
o µo). (B.55)
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Proof. For the AR model of (B.52),

∏
i∈Bs

p(xi|T,θs,xi−1
−D+1) =

1

(
√

2πσ2)|Bs|
exp
{
− 1

2σ2 ∑
i∈Bs

(xi −θs
Tx̃i−1)

2
}
.

Expanding the sum in the exponent gives,

∑
i∈Bs

(xi −θs
Tx̃i−1)

2 = ∑
i∈Bs

x2
i −2θ

T
s ∑

i∈Bs

xix̃i−1 +θ
T
s ∑

i∈Bs

x̃i−1x̃T
i−1θs

= s1 −2θ
T
s s2 +θ

T
s S3θs,

from which we obtain that,

∏
i∈Bs

p(xi|T,θs,xi−1
−D+1) =

1

(
√

2πσ2)|Bs|
exp
{
− 1

2σ2 (s1 −2θ
T
s s2 +θ

T
s S3θs)

}
=(

√
2π)p

ρs N (θs; µ,S),

by completing the square, where µ = S−1
3 s2, S = σ2S−1

3 , and,

ρs =

√
det(σ2S−1

3 )

(2πσ2)|Bs|
exp
{
− 1

2σ2 (s1 − sT
2 S−1

3 s2)

}
. (B.56)

So, multiplying with the prior:

∏
i∈Bs

p(xi|T,θs,xi−1
−D+1)π(θs) = (

√
2π)p

ρs N (θs; µ,S) N (θs; µo,Σo) = ρsZs N (θs;m,Σ),

where Σ−1 = Σ−1
o +S−1, m = Σ (Σ−1

o µo +S−1µ), and,

Zs =
1√

det(Σo +σ2S−1
3 )

exp
{
− 1

2
(µo −S−1

3 s2)
T(Σo +σ

2S−1
3 )−1(µo −S−1

3 s2)

}
. (B.57)

Therefore,

∏
i∈Bs

p(xi|T,θs,xi−1
−D+1)π(θs) = ρsZs N (θs;m,Σ), (B.58)

and hence,
Pe(s,x) =

∫
∏
i∈Bs

p(xi|T,θs,xi−1
−D+1) π(θs) dθs = ρsZs.

Using standard matrix inversion properties, after some algebra the product ρsZs can be
rearranged to give exactly the required expression in (B.54). □
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Now, we move back to the original case, where the noise variance is considered to be a
parameter of the AR model, so that θs = (φ s,σ

2
s ). Here, the joint prior on the parameters is

π(θs) = π(φ s|σ2
s )π(σ

2
s ), where,

σ
2
s ∼ Inv-Gamma(τ,λ ), (B.59)

φ s|σ2
s ∼N (µo,σ

2
s Σo), (B.60)

and where (τ,λ ,µo,Σo) are the prior hyperparameters. For the estimated probabilities Pe(s,x),
we just need to compute the integral:

Pe(s,x) =
∫

∏
i∈Bs

p(xi|T,θs,xi−1
−D+1) π(θs) dθs (B.61)

=
∫

π(σ2
s )

(∫
∏
i∈Bs

p(xi|T,φ s,σ
2
s ,x

i−1
−D+1) π(φ s|σ2

s ) dφ s

)
dσ

2
s . (B.62)

The inner integral has exactly the form of the estimated probabilities Pe(s,x) from the previous
section, where the noise variance was fixed. The only difference is that the prior π(φ s|σ2

s )

of (B.60) now has covariance matrix σ2
s Σo instead of Σo. So, using (B.54)-(B.55), with Σo

replaced by σ2
s Σo, we get,

Pe(s,x) =
∫

π(σ2
s )

{
C−1

s

(
1

σ2
s

)|Bs|/2

exp
(
− Ds

2σ2
s

)}
dσ

2
s ,

with Cs and Ds as in Lemma 1. And using the inverse-gamma prior π(σ2
s ) of (B.59),

Pe(s,x) = C−1
s

λ τ

Γ(τ)

∫ ( 1
σ2

s

)τ ′+1

exp
(
− λ ′

σ2
s

)
dσ

2
s , (B.63)

with τ ′ = τ + |Bs|
2 and λ ′ = λ + Ds

2 .

The integral in (B.63) has the form of an inverse-gamma density with parameters τ ′

and λ ′, whose closed-form solution is,

Pe(s,x) =C−1
s

λ τ

Γ(τ)

Γ(τ ′)

(λ ′)τ ′
,

which, as required, completes the proof of Lemma 6.1. □
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B.3.4 Proof of Lemma 6.2

In order to derive the required expressions for the posterior distributions of φ s and σ2
s , for a

leaf s of model T , first consider the joint posterior π(θs|T,x) = π(φ s,σ
2
s |T,x), given by,

π(θs|T,x)∝ p(x|T,θs)π(θs) =
n

∏
i=1

p(xi|T,θs,xi−1
−D+1)π(θs)∝ ∏

i∈Bs

p(xi|T,θs,xi−1
−D+1)π(θs),

where we used the fact that, in the product, only the terms involving indices i ∈ Bs are
functions of θs. So,

π(φ s,σ
2
s |T,x)∝

(
∏
i∈Bs

p(xi|T,φ s,σ
2
s ,x

i−1
−D+1) π(φ s|σ2

s )

)
π(σ2

s ).

Here, the first two terms can be computed from (B.58) of the previous section, where the
noise variance was known. Again, the only difference is that we have to replace Σo with
σ2

s Σo because of the prior π(φ s|σ2
s ) defined in (B.60). After some algebra, this gives,

π(φ s,σ
2
s |T,x)∝

(
1

σ2
s

)|Bs|/2

exp
(
− Ds

2σ2
s

)
N (φ s;ms,Σs) π(σ2

s ),

with ms defined as in Lemma 6.2, and Σs = σ2
s (S3 +Σ−1

o )−1. Substituting the prior π(σ2
s ) in

the last expression gives,

π(φ s,σ
2
s |T,x)∝

(
1

σ2
s

)τ+1+|Bs|/2

exp
(
− λ +Ds/2

σ2
s

)
N (φ s;ms,Σs). (B.64)

From (B.64), it is easy to integrate out φ s and get the posterior of σ2
s ,

π(σ2
s |T,x) =

∫
π(φ s,σ

2
s |T,x) dφ s ∝

(
1

σ2
s

)τ+1+|Bs|/2

exp
(
− λ +Ds/2

σ2
s

)
,

which is of the form of an inverse-gamma distribution with parameters τ ′ = τ + |Bs|
2 and

λ ′ = λ + Ds
2 , proving the first part of the lemma.

However, as Σs is a function of σ2
s , integrating out σ2

s requires more algebra. In specific,
we have that,

N (φ s;ms,Σs)∝
1√

det(Σs)
exp
{
− 1

2
(φ s −ms)

T
Σ
−1
s (φ s −ms)

}
∝
(

1
σ2

s

)p/2

exp
{
− 1

2σ2
s
(φ s −ms)

T(S3 +Σ
−1
o )(φ s −ms)

}
,
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and substituting this in (B.64) gives that π(φ s,σ
2
s |T,x) is proportional to,

(
1

σ2
s

)τ+1+ |Bs|+p
2

exp
{
− 1

2σ2
s

(
2λ +Ds +(φ s −ms)

T(S3 +Σ
−1
o )(φ s −ms)

)}
,

which as a function of σ2
s has the form of an inverse-gamma density, allowing us to integrate

out σ2
s . Denoting L = 2λ +Ds +(φ s −ms)

T(S3 +Σ−1
o )(φ s −ms), and τ̃ = τ + |Bs|+p

2 ,

π(φ s|T,x) =
∫

π(φ s,σ
2
s |T,x) dσ

2
s ∝

∫ ( 1
σ2

s

)τ̃+1

exp
(
− L

2σ2
s

)
dσ

2
s =

Γ(τ̃)

(L/2)τ̃
.

So, as a function of φ s, the posterior π(φ s|T,x) is,

π(φ s|T,x)∝ L−τ̃ =

(
2λ +Ds +(φ s −ms)

T(S3 +Σ
−1
o )(φ s −ms)

)− 2τ+|Bs|+p
2

∝
(

1+
1

2τ + |Bs|
(φ s −ms)

T (S3 +Σ−1
o )(2τ + |Bs|)

(2λ +Ds)
(φ s −ms)

)− 2τ+|Bs|+p
2

∝
(

1+
1
ν
(φ s −ms)

TP−1
s (φ s −ms)

)− ν+p
2

,

which is exactly in the form of a multivariate t-distribution, with p being the dimension of φ s,
and with ν ,ms and Ps exactly as given in Lemma 6.2, completing its proof. □

B.3.5 Proof of Lemma 6.3

For the BCT-ARCH model, at every leaf s,

xn ∼N (0,σ2
n ), σ

2
n = αs,0 +αs,1x2

n−1 + · · ·+αs,px2
n−p = α

T
s zn−1, (B.65)

where θs = αs = (αs,0,αs,1, . . . ,αs,p)
T and zn−1 = (1,x2

n−1, . . . ,x
2
n−p)

T. The proof of the
lemma follows directly by considering the log-likelihood of data with context s, given by,

Ls(θs) = ∑
i∈Bs

log p(xi|xi−1
−D+1,θs) =−|Bs|

2
log(2π)− 1

2 ∑
i∈Bs

(
logσ

2
i +

x2
i

σ2
i

)
, (B.66)

and taking its derivatives with respect to θs.
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As the dependence is implicit through σ2
i = θ T

s zi−1, taking the first derivative gives,

∂Ls

∂θs
=

1
2 ∑

i∈Bs

1
σ2

i

(
x2

i

σ2
i
−1
)

∂σ2
i

∂θs
=

1
2 ∑

i∈Bs

1
σ2

i

(
x2

i

σ2
i
−1
)

zi−1, (B.67)

and similarly taking the second derivative and its expectation finally gives,

Îs =

{
−E
(

∂ 2Ls

∂θ 2
s

)}
=

1
2 ∑

i∈Bs

(
1

σ4
i

)
zi−1zT

i−1, (B.68)

completing the proof of the lemma. □

B.4 MCMC samplers

Finally, in this section we give explicit expressions for the accept-reject ratios in the various
MCMC samplers developed in this thesis. The exact expressions follow easily from standard
Metropolis-Hastings methodology, by considering the corresponding proposal distribution
that is used in each case.

RW sampler. The ratios r(T,T ′) in the acceptance probabilities of the RW sampler in
Section 2.3.4 are given by,

r(T,T ′) :=
π(T ′|x)
π(T |x)

×



1/2, in case (a);

mD−1/2, in case (b);

(|T |−LD(T ))/ND(T ′), in case (c), if T ′ ̸= Tc(D);

2m−D+1, in case (c), if T ′ = Tc(D);

ND(T )/(|T ′|−LD(T ′)), in case (d), if T ′ ̸= Λ;

2, in case (d), if T ′ = Λ,

where ND(T ) denotes the number of internal nodes in a tree T having only m descendants,
and the posterior odds π(T ′|x)/π(T |x) can be easiliy computed via (2.15).

Jump sampler. The jump sampler of Section 2.3.4 incorporates the RW sampler’s proposal
distribution as one of its steps: Let q(T ′|T ) denote the proposal probabilities of the RW
sampler, so that q(T ′|T ) equals 1, m−D+1, 1/[2(|T |−LD(T ))] and 1/[2ND(T )], in each of
its cases (ia), (ib), (ic) and (id), respectively. We say that two models T,T ′ are neighbours
if they differ by exactly one branch of m children.
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The ratios r(T,T ′) in the acceptance probabilities of the jump sampler are given by,

r(T,T ′) :=
π(T ′|x)
π(T |x)

×


(1−p)q(T |T ′)+pk−1I{T∈T ∗}
(1−p)q(T ′|T )+pk−1I{T ′∈T ∗} , if T,T ′ are neighbours,

I{T ∈ T ∗}, if T,T ′ are not neighbours,

where I{·} denotes the indicator function of the event {·}.

Change-point detection. Here we consider the MCMC sampler introduced in Chapter 5
in the setting of change-point detection, where the number of change-points is unknown.
In this case, the ratio r((ℓ,p),(ℓ′,p′)) in the acceptance probability of the MCMC sampler
described in Section 5.1.2 is given by,

P(x|p′, ℓ′)

P(x|p, ℓ)
×

ℓ′

∏
j=0

(p′j+1 − p′j −1)

ℓ

∏
j=0

(p j+1 − p j −1)

×



2(n−2)
(n−3)(n−4) , if ℓ= 0;

(n−3)(n−4)
2(n−2) , if ℓ= 1, ℓ′ = 0;

3(2ℓmax+1)(n−ℓmax−1)
(n−2ℓmax−2)(n−2ℓmax−1) , if ℓ= ℓmax −1, ℓ′ = ℓmax;

(n−2ℓmax−2)(n−2ℓmax−1)
3(2ℓmax+1)(n−ℓmax−1) , if ℓ= ℓmax, ℓ′ = ℓmax −1;

(n−2ℓ−2)(n−2ℓ−1)
2(2ℓ+1)(n−ℓ−1) , if ℓ′ = ℓ−1, ℓ ̸= 1, ℓmax;

2(2ℓ′+1)(n−ℓ′−1)
(n−2ℓ′−2)(n−2ℓ′−1) , if ℓ′ = ℓ+1, ℓ′ ̸= 1, ℓmax;

1, otherwise,

where, as before, ℓmax is the maximum possible number of change-points, and the terms
P(x|p, ℓ) and P(x|p′, ℓ′) can be easily computed using the CTW algorithm.





Appendix C

Additional results with discrete-valued
data

In this section we provide additional experimental results with discrete-valued time series.
These include both simulation experiments and real-world applications, focusing in the tasks
of model selection and change-point detection.

C.1 Model selection

Renewal process. The binary variable-memory chain {Xn} with model and parameters
shown in Figure C.1 was examined in the VLMC work of (Bühlmann, 2000, p. 303). Note
that the distribution of the next symbol produced by the chain only depends on how far in the
past the most recent “0” appeared.

1

0

(1/17, 16/17)

(8/9, 1/9)

(6/7, 1/7)

(1/17, 16/17)

(4/5, 1/5)

(1/7, 6/7)

(4/5, 1/5)

(1/15, 14/15)

(4/7, 3/7)

Figure C.1: The model and parameters of the renewal-like binary chain.

• n = 200. With n = 200 samples, the BCT algorithm with β = 1/2 and D = 10 produces
a MAP model T ∗

1 which is the same as the true model pruned at depth 4; its prior probability
is π(T ∗

1 )≈ 0.002 and its posterior is π(T ∗
1 |x)≈ 0.0725. The next four most likely models

produced by the k-BCT algorithm are small variations of T ∗
1 of maximal depth 4 or 5. The

total posterior probability of the top-5 models is ≈ 0.1782.
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The best-BIC-VLMC gives the same model as the BCT algorithm (with good AIC and
BIC scores), while the default-VLMC and best-AIC-VLMC both produce a tree of depth 8.
It is the same as the true model up to depth 4, but it also includes the depth-8 branch
corresponding to the context s = 01111001, which does not appear in the true model. It has
a marginally better AIC score than T ∗

1 (by ≈ 1%), but a much worse BIC score, somewhat
overfitting the data.

The best-BIC and best-AIC versions of MTD both give D = 2; and the best-BIC and
best-AIC versions of MTDg both give D = 4. In all four cases, the resulting AIC and BIC
scores are not competitive with those of the BCT and the best-BIC-VLMC algorithms.

• n = 1,000. The results of the k-BCT algorithm (with k = 5, D = 10 and β = 1/2) on a
sample of length n = 1,000, reproduce more of the true underlying structure; see Figure C.2.
The MAP tree T ∗

1 is the true model pruned at depth 6, and it has at least as good BIC and AIC
scores as all the other methods.

0

1

0

1

0

1 1

0

1

0

Figure C.2: The top k = 5 models obtained by k-BCT with n = 1,000 samples from the renewal-like
chain. The prior probability of T ∗

1 is π(T ∗
1 )≈ 1.2×10−4 and its posterior is π(T ∗

1 |x)≈ 0.0799. The
posterior odds π(T ∗

1 |x)/π(T ∗
i |x) for the next four models are approximately 1.25, 1.98 2.48 and 4, for

i = 2,3,4,5, respectively. The total posterior probability of the top 5 models is approximately 0.2336.

Despite the larger data length, the best-BIC-VLMC again gives the depth-4 version of
the true model. The default-VLMC and best-AIC-VLMC produce larger trees of depth 11,
very similar between them but very different from the true model and the MAP tree; all of
their leaves except one are not present in the true model. The long branches of depth 8-11
are clear examples of overfitting, resulting in poor BIC scores, while even the AIC score of
the best-AIC-VLMC tree is within less than 0.1% of that of our MAP model.

The best-AIC-MTD and best-BIC-MTD both give D = 5 as the optimal depth, while
the best-AIC-MTDg and best-BIC-MTDg both give D = 4. Once again, their scores are not
competitive with those of the MAP model and the VLMC results.

A third order binary chain. Here we examine data generated from the 3rd order variable-
memory chain in example V4 of the MTD paper (Berchtold and Raftery, 2002, p. 353). The
model and its associated parameters are shown in Figure C.3.
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Figure C.3: True model and MAP tree model in the third order binary chain example. Left: True
underlying model. Right: MAP tree model identified by the BCT algorithm from n = 200 samples.

• n = 200. The MAP model T ∗
1 identified by the BCT algorithm (with D = 10 and β = 1/2)

from n = 200 simulated samples is shown in Figure C.3; its prior is π(T ∗
1 ) ≈ 4.9× 10−4,

and its posterior is π(T ∗
1 |x)≈ 0.0363. The top part of the true tree is correctly identified, the

lower part is cropped at 1, and there is an extra branch of depth 4 that is not in the true model.
The next four a posteriori most likely models are shown in Figure C.4.

1

0

1

0

1

0

λ

Figure C.4: The next four a posteriori most likely trees T ∗
i identified by k-BCT with n = 200 samples

from the third order binary chain. Notice that T ∗
5 is empty tree Λ consisting of just the root node λ .

The posterior odds π(T ∗
1 |x)/π(T ∗

i |x) for i = 2,3,4,5 are approximately 1.27, 1.33, 2.53 and 2.78,
respectively, and the sum of the posteriors of the top-5 models is ≈ 0.12.

The result of the best-BIC-VLMC is the same as T ∗
2 . Both T ∗

1 and T ∗
2 have very good and

very similar AIC and BIC scores. The results of the default-VLMC and the best-AIC VLMC
are shown in Figure C.5. They both have depth 6, and they bear little resemblance to the true
model. Their AIC scores are good but not significantly better than the scores of T ∗

1 and T ∗
2 .

Their BIC scores are rather poor, once again suggesting that the results of the default-VLMC
and the best-AIC-VLMC overfit the data.

0 0

0

1

0

1

Figure C.5: The models produced by the default-VLMC (left) and the best-AIC-VLMC (right) with
n = 200 samples from the third order binary chain.
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The best-AIC-MTD and best-BIC-MTD both give D = 3, corresponding to a 3rd order
chain which is not terribly different from the true model. Its BIC score is about 0.4% better
than that of the MAP and the best-BIC-VLMC models, while its AIC is slightly worse
than the other two. The best-BIC-MTDg gave D = 0, and the best-AIC-MTDg gave D = 3.
In both cases of MTDg, the corresponding scores were not competitive with those of the
other methods.

• n = 1,000. The MAP tree T ∗
1 produced by the BCT algorithm (with D = 10 and β = 1/2)

from n = 1,000 samples is the true underlying model; its prior is π(T ∗
1 )≈ 1.2×10−4 and

its posterior is π(T ∗
1 |x)≈ 0.1065. The next four a posteriori most likely models are shown

in Figure C.6.
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0

Figure C.6: The next four a posteriori most likely trees T ∗
i identified by k-BCT with n = 1,000

samples from the third order binary chain. Their posterior odds π(T ∗
1 |x)/π(T ∗

i |x) for i = 2,3,4,5 are
approximately 2.52, 3.96, 4.66 and 5.47, respectively, and the sum of the posteriors of the top-5 tree
models is ≈ 0.2179.

The best-BIC-VLMC produces the true model as well, while the default-VLMC and
best-AIC-VLMC produce very large trees of depth 18, which are not at all similar to the
true model. They have good AIC scores (although not much better than the MAP and
best-BIC-VLMC models), but their BIC scores are significantly worse.

The best-AIC-MTD and best-BIC-MTD give D = 3, which corresponds to a model with
a BIC about 0.2% higher than that of the true underlying tree. The best-AIC-MTDg and
best-BIC-MTDg also give D = 3, but the scores of the corresponding models are worse than
those produced by the other methods.
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Financial data. Here we consider the tick-by-tick price changes of the Facebook stock price
during a six-and-a-half-hour-long trading period on October 3, 2016. The price change is
recorded every time there is a trade; if the price goes down during the ith trade we set xi = 0,
if it stays the same we set xi = 1, and if it goes up xi = 2. This produces a ternary time series
of length n = 50,745 observations.

1

2

0

Figure C.7: The MAP tree model in the Facebook stock price dataset.

The MAP model T ∗
1 identified by the BCT algorithm with D= 20 and β = 3/4 is shown in

Figure C.7. Its prior probability is π(T ∗
1 )≈ 2.9×10−4, and its posterior is π(T ∗

1 |x)≈ 0.416.
Note that T ∗

1 admits an interpretation very similar to that of other tree models that were
selected in various financial datasets considered in this thesis, including Example 2.1 of
Section 2.5 and the financial examples studied in Chapter 6. In particular, in order to
determine the distribution of the next value, you need to look as far back as necessary until
you see a price change, or until you have looked four places back in the past.
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Figure C.8: The next four a posteriori most likely trees T ∗
i identified by k-BCT in the Facebook stock

price dataset. Their posterior odds π(T ∗
1 |x)/π(T ∗

i |x) are 1.017,5.074,5.161,72.8, for i = 2,3,4,5,
respectively, and the sum of the posterior probabilities of the top-5 models is ≈ 0.993.
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The next four a posteriori most likely models identified by k-BCT are shown in Figure C.8.
The second most likely tree T ∗

2 , shown on the top left of Figure C.8, is the same as T ∗
1 but

now pruned at depth 3; its posterior is π(T ∗
2 |x)≈ 0.409. Its form, together with the fact that

the sum of the posteriors of the top-2 models is over 82%, provide further evidence of the
above interpretation for the dependence structure present in financial data.

In this example, VLMC produces a model which is almost identical to the MAP tree,
with the only difference being that VLMC gives the same parameter vectors θs to contexts
s = 1111 and s = 1112. Their AIC and BIC scores are also essentially identical. Finally,
the MTD produces a model of depth D = 4, with AIC and BIC scores only slightly worse
than those of the MAP model, while the MTDg selects a model of order D = 2, whose
corresponding AIC and BIC scores are much worse.

C.2 Change-point detection

Simulated data. The parameters of the four variable-memory Markov chains used for
generating the simulated dataset of Section 5.2.2 are given below; the corresponding four
tree models were also shown in Figure 5.3.

Model 1 Probability
Context 0 1 2
0 0.3 0.4 0.3
2 0.5 0.3 0.2
10 0.2 0.5 0.3
11 0.1 0.4 0.5
121 0.7 0.2 0.1
122 0.4 0.2 0.4
1200 0.6 0.1 0.3
1201 0.3 0.5 0.2
1202 0.4 0.1 0.5

Model 2 Probability
Context 0 1 2
0 0.4 0.5 0.1
2 0.4 0.4 0.2
10 0.4 0.2 0.4
11 0.2 0.4 0.4
12 0.6 0.1 0.3

Model 3 Probability
Context 0 1 2
0 0.5 0.3 0.2
1 0.3 0.6 0.1
2 0.3 0.2 0.5

Model 4 Probability
Context 0 1 2
λ 0.4 0.2 0.4

For this example, the posterior over the number of change-points and the change-point
locations were presented in Figure 5.4 of Section 5.2.2, in the main text. In Figure C.9, here
we also show zoomed-in versions of the MCMC histograms, showing the posterior of the
location of each of the three change-points separately. The histograms were constructed
using N = 105 MCMC samples obtained from the MCMC sampler of Section 5.1.2, with the
first 10,000 samples discarded as burn-in.
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Figure C.9: MCMC histograms of the posterior of each change-point location in the simulated
example of Section 5.2.2.

Bacteriophage lambda genome. In Figure C.10, we show zoomed-in versions of the MCMC
histograms showing the posterior of the location of each of the four change-points separately
for the bacteriophage lambda genome from Section 5.2.2.

Figure C.10: MCMC histograms of the posterior of each change-point location in the bacteriophage
lambda genome from Section 5.2.2.
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El Niño occurrences. In Section 5.2.2, we studied a real dataset consisting of binary
observations for the occurrences of El Niño events in the time period between 1525 and 2020.
In Figure C.11 we show zoomed-in versions of the MCMC histograms, showing the posterior
of the location of each of the two change-points separately.

Figure C.11: MCMC histograms of the posterior of each change-point location in the El Niño
example from Section 5.2.2.
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Additional results with real-valued data

In this section we provide additional experimental results with real-valued time series. These
include results with both versions of the general BCT-SSM model class considered in this
thesis, namely, with BCT-AR and BCT-ARCH models. In addition, we provide a complete
specification of the training details for all the methods used in the forecasting experiments of
Chapter 6, and also report the corresponding empirical running times for each method.

D.1 Training details

D.1.1 BCT-AR experiments

Here we specify the training details for all the methods used in the forecasting experiments in
Section 6.2.5. In all the examples the training set consists of the first 50% of the observations,
and we allow updates at every timestep for all methods.

For the BCT-AR model, the complete training details are given in Section 6.2.3. There
is no hyperparameter tuning from the data, the hyperparameters are just set to their default
values. In particular, for the BCT prior we choose the default value β = 1−2−m+1 and a
maximum depth D = 10. We choose the AR order and the quantiser thresholds at the end of
the training set by maximising the evidence, and then use the MAP tree model and parameters
updated at every timestep, as explained in detail in the main text.

For ARIMA and ETS models we use the R package forecast (Hyndman and Khandakar,
2008); the corresponding functions auto.arima and ets are completely automated, so there
are no parameters to specify here. For the NNAR model, we use the function nnetar that is
also contained in the forecast package, and search over AR orders between p= 1 and p= 5.
For the SETAR model, we use the R package TSA (Chan and Ripley, 2020), along with the
commonly used conditional least squares method of Chan (1993). We search over AR orders
between p = 1 and p = 5, and values of the delay parameter between d = 1 and d = 5. For
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the MAR model, we use the R package mix-AR (Boshnakov and Ravagli, 2021), and try
K = 2 and K = 3 components with AR orders between p = 1 and p = 5. For the MSA
model, we use the R package MSwM (Sanchez-Espigares and Lopez-Moreno, 2021), which
uses the EM algorithm for estimation, and try K = 2 and K = 3 hidden states with AR orders
between p = 1 and p = 5.

For DeepAR and N-BEATS, we use the implementations available in the Python library
‘GluonTS’ (Alexandrov et al., 2020). As the computational cost per iteration differs for these
methods, we use slightly different numbers of epochs and batches-per-epoch for each of
them, in order to give similar empirical running times – which are still much higher than
those of our methods; see below in Appendix D.3. For DeepAR we use 5 epochs with 50
batches/epoch, and for N-BEATS we use 3 epochs with 20 batches/epoch. In all cases we try
AR orders between p = 1 and p = 5.

D.1.2 BCT-ARCH experiments

Here we specify the training details for all the methods used in the experiments of Sec-
tion 6.3.5. Following Dellaportas and Vrontos (2007), in all forecasting experiments the size
of the test set is T = 130 observations, which corresponds to half a year of working days.
We allow for updates so that all models are re-trained at every timestep in the test set.

For the BCT-ARCH model we use binary trees with a quantiser threshold c = 0, in order
to explicitly capture the leverage effect by distinguishing between positive and negative
shocks. For the BCT prior we use the default value β = 1/2 corresponding to binary trees,
and for the maximum tree depth and ARCH order take D = p = 5, corresponding to a full
week of working days. Finally, we use M = 10 iterations for the scoring algorithm, which
were always found to be enough in practice. In the forecasting experiments, for the predictive
density we use the MAP tree model identified by the CBCT algorithm, together with the
estimates of the ARCH coefficients from the scoring algorithm.

As benchmarks in the experiments we consider all the commonly used methods de-
scribed in Section 6.3.4. For the family of ARCH models and their extensions, we use
the implementation in the R package rugarch (Ghalanos, 2022). We use the automated
function ugarchforecast, together with the model specifications sGARCH, gjrGARCH, and
eGARCH, respectively, for the GARCH, GJR and EGARCH models. For the MSGARCH
model we similarly use the R package MSGARCH (Ardia et al., 2019), and try K = 2 and K = 3
hidden states. For the SV model we use the R package stochvol (Kastner, 2016), which
implements MCMC samplers for Bayesian inference. The function predict.svdraws is
used to draw samples from the desired predictive density; where at every timestep in the test
set we use 1,000 MCMC samples after a burn-in of 100 samples.
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D.2 Model selection

D.2.1 BCT-AR experiments

Simulated data. The dataset sim_1 is a simulated dataset consisting of n = 600 observations
generated from a BCT-AR model with the tree of Figure 6.1, quantiser threshold c = 0,
and AR order p = 2. The complete specification of this BCT-AR model was also given in
Section 6.2.5 of the main text, as,

xn=


0.7 xn−1 −0.3 xn−2 + en, en ∼N (0,0.15), if s = 1: xn−1 > 0,
−0.3 xn−1 −0.2 xn−2 + en, en ∼N (0,0.10), if s = 01: xn−1 ≤ 0, xn−2 > 0,
0.5 xn−1 + en, en ∼N (0,0.05), if s = 00: xn−1 ≤ 0, xn−2 ≤ 0.

In Section 6.2.5, the MAP tree model and parameters at the leaves were reported for this
example, verifying the the BCT-AR inferential framework is very effective. Here, we also
report the evidence p(x|c, p) for a range of values of c and p. Although maximising the
evidence is a very common, well-justified Bayesian practice (MacKay, 1992, 2003), here we
report some values as a sanity check, to show that the evidence is indeed maximised at the
true values of c = 0.0 and p = 2, and thus verify that our inferential procedure for choosing
the quantiser and AR order is also effective.

Table D.1: Using the evidence p(x|c, p) to choose the AR order and quantiser threshold.

AR order p Threshold c

1 2 3 4 5 −0.1 −0.05 0 0.05 0.1

− log2 p(x|c, p) 533 519 526 531 535 558 539 519 555 577

0

1

2

Figure D.1: Tree model of sim_2.

The dataset sim_2 is a simulated dataset consisting
of n = 500 observations generated from a BCT-AR
model with respect to the ternary tree in Figure D.1. The
thresholds of the quantiser are {c1 = −0.5,c2 = 0.5},
and the AR order is p = 1. The complete specification
of this BCT-AR model, is given by,

xn=

{
0.5 en, if s = 1, 01, 02, 20, 21,
0.99 xn−1 +0.005 en, if s = 00, 22,

where en ∼N (0,1).
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Finally, the dataset sim_3 is a simulated dataset which consists of n = 200 observations
generated from a SETAR model of order p = 5, given by,

xn=

{
−0.1+0.9 xn−1 +0.9 xn−2 −0.2 xn−5 + en, if xn−1 >−0.2,
0.2+0.1 xn−1 +0.9 xn−5 + en, if xn−1 ≤−0.2,

where en ∼N (0,1).

US unemployment rate. The dataset unemp is a real-world dataset, which consists of
n = 288 observations of the quarterly US unemployment rate in the time period from
1948 to 2019. It is publicly available from the US Bureau of Labor Statistics (BLS), at
https://data.bls.gov/timeseries/LNS14000000?years_option=all_years. The MAP BCT-AR
model in this example is reported in Section 6.2.5 of the main text.

US Gross National Product. The dataset gnp is a real-world dataset, which consists of
n = 291 observations of the quarterly US GNP from 1947 to 2019. It is available from the
US Bureau of Economic Analysis (BEA), and can be retrieved from the Federal Reserve
Bank of St. Louis (FRED) at https://fred.stlouisfed.org/series/GNP. Following Potter (1995),
we consider the difference in the logarithm of the series, yn = logxn − logxn−1.

For this dataset, the MAP BCT tree model is given in the main text, in Figure 6.2. It
has depth d = 3, four leaves, S = {0,10,110,111}, and posterior 42.6%. The threshold of
the binary quantiser selected using the procedure of Section 6.2.3 is c = 0.2, so that s = 1 if
yn−1 > 0.2 and s = 0 if yn−1 ≤ 0.2. The AR order selected is p = 2. The complete BCT-AR
model, with its MAP estimated parameters is given by,

yn=


1.16+0.71 yn−1 +0.19 yn−2 +1.23 en, if s = 0,
0.18+0.68 yn−1 −0.26 yn−2 +1.19 en if s = 10,
−1.05+1.40 yn−1 +0.19 yn−2 +1.04 en if s = 110,
0.59+0.28 yn−1 +0.31 yn−2 +0.75 en if s = 111,

where en ∼N (0,1).

IBM stock price. The dataset ibm is a real dataset, which consists of n = 369 observations
of the daily IBM common stock closing price, in the time period from May 17, 1961 to
November 2, 1962. The dataset is taken from Box et al. (2015), and it is also available from
the R package fma (Hyndman, 2020).

https://data.bls.gov/timeseries/LNS14000000?years_option=all_years
https://fred.stlouisfed.org/series/GNP
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The MAP tree model fitted to this dataset is shown in the main text, in Figure 6.3. The
complete BCT-AR model, with its MAP estimated parameters, is given by,

xn=



1.03 xn−1 −0.03 xn−2 +12.3 en, if s = 0,
1.17 xn−1 −0.17 xn−2 +6.86 en, if s = 2,
−0.11 xn−1 +1.11 xn−2 +10.8 en, if s = 10,
1.22 xn−1 −0.22 xn−2 +5.32 en, if s = 11,
0.15 xn−1 +0.85 xn−2 +5.17 en, if s = 12,

where en ∼N (0,1).

D.2.2 BCT-ARCH experiments

Simulated data. In this section, some more extensive simulation experiments are presented,
verifying that our inferential procedures are effective with data generated by BCT-ARCH
models. As the effectiveness of our CCTW and CBCT algorithms was already tested with
the BCT-AR model, the emphasis here is on illustrating that the approximations of (6.15) for
the estimated probabilities are good enough in practice.

In general, this relies on two conditions. First, the maximum likelihood estimates of
the scoring algorithm need to have converged; something which is easy to check by trying
different initialisations and allowing for a large enough number of iterations M. Secondly,
there need to be enough datapoints associated to each context s of TMAX so that the Laplace
approximations in (6.15) are close enough to the integrals of (6.4). This can be ensured by
checking that the maximum depth D is small enough compared to the dataset size n1. In
practice, values of M = 10 and D = 5 satisfy both the above conditions, and hence guarantee
effective inference for datasets with size approximately in the range from n = 1,000 to
n = 10,000 observations that we will be considering in the real-data section. This fact is
illustrated in the simulation experiments presented below.

In the first simulated experiment, data are generated from a BCT-ARCH model where
the underlying context tree is the binary tree T ∗ of depth d = 1, with leaves S = {0,1}. First,
we consider the evolution of the posterior over trees, π(T |x), as more data from the model
become available. The corresponding posterior of the true tree model, π(T ∗|x), is reported
in Table D.2 for different values of the parameters M and D. Overall, it can be observed that
with M = 10 and D = 5 our inferential procedures are effective.

1It is noted that this final condition would not be required with the MCMC approach of Chib (1995); Chib
and Jeliazkov (2001), but at the expense of computational complexity.
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Table D.2: Posterior of the true tree model, π(T ∗|x), as more data become available.

n = 1,000 n = 2,500 n = 5,000 = 10,000

D = 3,M = 10 0.07 0.43 0.89 0.99
D = 4,M = 10 0.07 0.43 0.90 0.99
D = 5,M = 10 0.00 0.42 0.90 0.99
D = 5,M = 100 0.00 0.42 0.90 0.99

In specific, for all values of M and D, with n = 1,000 observations the MAP tree model
is always the empty tree, corresponding to a single ARCH model. In this case, the posterior
of the true tree is still small, as there are not enough data yet to support a more complex
model. For D = 5, there is a small difference in π(T ∗|x) compared to D = 3,4, which might
suggest that there are also not enough data yet for the Laplace approximations of (6.15)
to be good. With n = 2,500 observations the MAP tree model is now the true tree, with a
posterior probability of π(T ∗|x)≈ 0.42, and with all values of D effectively giving identical
results. With n = 5,000 and n = 10,000 observations, the posterior of the true tree becomes
respectively 0.90 and 0.99, for all values of D. Increasing the number of Fisher iterations
from M = 10 to M = 100 and trying different initialisations also gave identical results in all
cases, suggesting that M = 10 iterations are enough for our purposes.

The true parameters of the complete BCT-ARCH model (left), and the estimates from
n = 5,000 observations with M = 10 and D = 5 (right) are given below; note that this is a
difficult example, as the ARCH models in the two regions are very similar. These results with
our final choice of M = 10 and D = 5 are the ones shown in Section 6.3.5 of the main text.

σ
2
n =

{
0.10+0.20 x2

n−1 +0.20 x2
n−2

0.10+0.20 x2
n−1

, σ̂
2
n =

{
0.10+0.20 x2

n−1 +0.16 x2
n−2, if xn−1 ≤ 0,

0.10+0.21 x2
n−1 +0.02 x2

n−2, if xn−1 > 0.

As a second example, we consider the binary tree with depth d = 2 and leaves S = {1,01,00}.
The true model (left) and the model fitted from n = 5,000 observations with M = 10 and
D = 5 (right) are given below, with the posterior of the true tree being π(T ∗|x)≈ 0.98.

σ
2
n =


0.20+0.30 x2

n−1 +0.10 x2
n−2

0.10+0.20 x2
n−1 +0.10 x2

n−2

0.10+0.20 x2
n−1

, σ̂
2
n =


0.20+0.30 x2

n−1 +0.13 x2
n−2, if s = 00,

0.10+0.21 x2
n−1 +0.14 x2

n−2, if s = 01,
0.10+0.20 x2

n−1 +0.00 x2
n−2, if s = 1.

Overall, it can be concluded that the concentration of the model posterior to the true tree,
together with the convergence of the parameter estimates, both indicate that the BCT-ARCH
inferential framework with M = 10 and D = 5 is very effective.
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FTSE 100. The dataset ftse is a real dataset, consisting of n = 7,821 daily observations
of the most commonly used UK-based stock market indicator, FTSE 100 (Financial Times
Stock Exchange 100 Index), in a time period of thirty years up to 7 April 2023. It is available
from Yahoo Finance, at https://finance.yahoo.com/quote/^FTSE/. The MAP BCT-ARCH
model in this example is given in Section 6.3.5 of the main text.

CAC 40. The dataset cac40 is a real dataset, consisting of n = 7,821 daily observations of
the most commonly used French stock market index, CAC 40 (Cotation Assistée en Continu),
in a time period of thirty years up to 7 April 2023. It is available from Yahoo Finance, at
https://finance.yahoo.com/quote/^FCHI/. As in all examples in this section, we consider the
transformed log-differenced time series, yn = 10log(xn/xn−1).

The MAP tree model in this example is given in the main text, in Figure 6.4. It has
depth d = 3, four leaves, S = {0,10,110,111}, and a posterior of 63.5%. The complete
BCT-ARCH model is given by,

σ
2
n =


0.01+0.16 y2

n−1 +0.17 y2
n−2 +0.24 y2

n−3 +0.14 y2
n−4 +0.09 y2

n−5, if s = 0,
0.01+0.00 y2

n−1 +0.21 y2
n−2 +0.15 y2

n−3 +0.13 y2
n−4 +0.16 y2

n−5, if s = 10,
0.00+0.08 y2

n−1 +0.04 y2
n−2 +0.32 y2

n−3 +0.11 y2
n−4 +0.13 y2

n−5, if s = 110,
0.00+0.06 y2

n−1 +0.09 y2
n−2 +0.04 y2

n−3 +0.15 y2
n−4 +0.07 y2

n−5, if s = 111.

DAX. The dataset dax is a real dataset, consisting of n = 7,821 daily observations of the
most commonly used German stock market index, DAX (Deutscher Aktienindex), in a
time period of thirty years up to 7 April 2023. It is available from Yahoo Finance, at
https://finance.yahoo.com/quote/^GDAXI/. As before, we consider the transformed log-
differenced time series, yn = 10log(xn/xn−1).

The MAP tree model in this example is the same with the CAC 40 index (Figure 6.4), but
now with a posterior of 48.6%. The estimated ARCH coefficients are also very similar, with
the complete BCT-ARCH model given by,

σ
2
n =


0.01+0.14 y2

n−1 +0.19 y2
n−2 +0.22 y2

n−3 +0.19 y2
n−4 +0.12 y2

n−5, if s = 0,
0.01+0.00 y2

n−1 +0.24 y2
n−2 +0.19 y2

n−3 +0.13 y2
n−4 +0.16 y2

n−5, if s = 10,
0.01+0.02 y2

n−1 +0.05 y2
n−2 +0.28 y2

n−3 +0.06 y2
n−4 +0.10 y2

n−5, if s = 110,
0.01+0.00 y2

n−1 +0.08 y2
n−2 +0.04 y2

n−3 +0.13 y2
n−4 +0.14 y2

n−5, if s = 111.

S&P 500. The dataset s&p is a real dataset, consisting of n = 7,821 daily observations of
Standard and Poor’s 500 Index (S&P 500), in a time period of thirty years up to 7 April 2023.
It is available from Yahoo Finance, at https://finance.yahoo.com/quote/^GSPC/. Again, we
consider the transformed time series, yn = 10log(xn/xn−1).

https://finance.yahoo.com/quote/^FTSE/
https://finance.yahoo.com/quote/^FCHI/
https://finance.yahoo.com/quote/^GDAXI/
https://finance.yahoo.com/quote/^GSPC/
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The MAP tree model in this example is given in the main text, in Figure 6.4. It has
depth d = 3, five leaves, S = {00,01,10,110,111}, and posterior 91.4%. The complete
BCT-ARCH model is given by,

σ
2
n =



0.00+0.12 y2
n−1 +0.43 y2

n−2 +0.17 y2
n−3 +0.29 y2

n−4 +0.13 y2
n−5, if s = 00,

0.00+0.20 y2
n−1 +0.05 y2

n−2 +0.15 y2
n−3 +0.18 y2

n−4 +0.19 y2
n−5, if s = 01,

0.00+0.06 y2
n−1 +0.27 y2

n−2 +0.19 y2
n−3 +0.16 y2

n−4 +0.11 y2
n−5, if s = 10,

0.00+0.09 y2
n−1 +0.10 y2

n−2 +0.24 y2
n−3 +0.14 y2

n−4 +0.15 y2
n−5, if s = 110,

0.00+0.01 y2
n−1 +0.14 y2

n−2 +0.03 y2
n−3 +0.20 y2

n−4 +0.12 y2
n−5, if s = 111.

D.3 Empirical running times

In this section, we report empirical running times for all the methods used in the forecasting
experiments in Chapter 6. All experiments were carried out on a common laptop.

D.3.1 BCT-AR experiments

As discussed in in detail in Section 6.2.2, an important advantage of the BCT-AR framework
is that the associated algorithms allow for very efficient sequential updates, making it
very practical for online forecasting applications. This is in sharp contrast with DeepAR
and N-BEATS, whose current implementation in GluonTS does not allow for incremental
training, so the models are re-trained in each timestep from scratch; something which is
computationally very costly as it involves gradient optimisation. The classical statistical
approaches lie somewhere in-between the two extremes. They need to be re-trained at every
timestep using the corresponding R package, but the cost required per timestep is lower than
that of the ML methods; see also Makridakis et al. (2018b) for a relevant review comparing
the computational requirements of ML versus statistical techniques.

The above remarks were verified in practice in our experiments, as it can be observed
from the results of Table D.3, where empirical running times are reported for the forecasting
experiments of Section 6.2.5. First, it is observed that because of its efficient sequential
updates, the BCT-AR model clearly outperforms all the benchmarks in terms of empirical
running times. Also, as discussed in Section 6.2.4, the MSA model has much higher
computational requirements compared to the other classical statistical methods, as the
presence of the hidden state process makes inference much harder; this was also verified
in practice here. Finally, the only method that was found to achieve somewhat comparable
performance with BCT-AR in terms of running times was ETS, but BCT-AR was found to
perform much better in terms of MSE; see also Section 6.2.5.
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Table D.3: Empirical running times in the BCT-AR experiments*

BCT-AR ARIMA ETS NNAR DeepAR N-BEATS MSA SETAR MAR

sim_1 7.4 s 68 s 31 s 4.9 min 2.4 h 7.4 h 45 min 81 s 19 min
sim_2 8.1 s 61 s 23 s 3.2 min 2.1 h 6.3 h 24 min 98 s 2.5 min
sim_3 2.4 s 28 s 5.2 s 48 s 1.0 h 4.0 h 12 min 11 s 2.7 min

unemp 3.1 s 42 s 11 s 69 s 1.0 h 4.1 h 16 min 17 s 6.4 min
gnp 2.2 s 80 s 10 s 91 s 1.5 h 5.2 h 17 min 19 s 6.6 min
ibm 4.6 s 58 s 16 s 32 s 2.2 h 5.3 h 22 min 28 s 7.6 min

D.3.2 BCT-ARCH experiments

In Table D.4, empirical running times are reported for the forecasting experiments of
Section 6.3.5. Similarly with the BCT-AR model, because of its efficient sequential updates
and its low computational complexity, the BCT-ARCH model is also found to outperform all
the alternatives in terms of empirical running times. The family of ARCH models and their
extensions follow, as they need to be re-trained at every timestep using the rugarch package.
Finally, the MSGARCH and SV models perform much worse in terms of running times, as in
these cases the randomness present in the hidden state process makes inference much more
challenging and expensive compared to the other approaches; see also Section 6.3.4.

Table D.4: Empirical running times in the BCT-ARCH experiments*

BCT-ARCH ARCH GARCH GJR EGARCH MSGARCH SV

ftse 4.1 s 5.5 min 2.5 min 4.8 min 5.0 min 35 min 1.1 h
cac40 4.8 s 6.3 min 3.3 min 7.2 min 5.9 min 47 min 1.2 h
dax 4.5 s 6.9 min 3.0 min 5.9 min 6.2 min 39 min 1.0 h
s&p 4.2 s 5.2 min 2.6 min 4.6 min 4.7 min 43 min 1.2 h

*The empirical running times of all benchmarks could be reduced if the models were not re-trained at every
timestep (i.e., as the corresponding software packages do not allow for sequential updates), but at the expense
of prediction performance.
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Nomenclature

Basic Notation

log Natural logarithm

log2 Binary logarithm

max, max(i) Maximum value, and ith largest value of a function (of a discrete argument)

∂/∂θ Partial derivative(s) with respect to θ (scalar/vector)

∂ 2/∂θ 2 Second-order partial derivative(s) with respect to θ (scalar/vector)

O(·) Big-O notation

o(·) Little-o notation

P(·) Probability distribution on a discrete space, such as a finite alphabet

p(·) Probability density on a continuous space, such as R

X j
i Vector of random variables (Xi,Xi+1, . . . ,X j), for i ≤ j.

x j
i Vector of observations (xi,xi+1, . . . ,x j), for i ≤ j.

{Xn} Discrete-time stochastic process

A−1 Inverse of matrix A

AT, bT Transpose of matrix A / vector b

N Natural numbers

R Real numbers

Z Integers
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Probability

Op(·) Big-O in probability notation; stochastic boundedness

αn α-mixing coefficients of a stationary and ergodic process {Xn}

δx Unit mass at point x

I (·) Indicator function

E(·) Expectation operator

P(·) Probability measure

N (m,Σ) Multivariate normal distribution with mean vector m and covariance matrix Σ

N (µ,σ2) Normal distribution with mean µ and variance σ2

φσ (z) Density of a zero-mean Normal distribution with variance σ2

π(·) Prior/posterior distribution

π Stationary distribution of Markov chain (alternate use)

σ(X) σ -algebra generated by the random variable X

a.s. Almost surely

CLT Central limit theorem

Dir(α) Dirichlet distribution with parameters α = (α0, . . . ,αm−1)

i.i.d. Independent and identically distributed

Inv-Gamma(τ,λ ) Inverse-gamma distribution with parameters (τ,λ )

LIL Law of the iterated logarithm

MAP Maximum a posteriori probability

p̂(·) Empirical distribution

D−→ Convergence in probability/weak convergence of probability measures

tν(m,P) Multivariate t-distribution with ν degrees of freedom, mean m, and scale matrix P

U(0,1) Uniform distribution on (0,1)
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Information Theory

H(X) Entropy of a discrete random variable X , in nats

H(X ,Y ) Joint entropy of random variables X and Y

H(X |Y ) Conditional entropy of X given Y

H̄ Entropy rate of a discrete-valued stochastic process {Xn}

I(X ;Y ) Mutual information between random variables X and Y

I(X ;Y |Z) Mutual information between X and Y given Z

D(p||q) Relative entropy between two probability mass functions p,q on the same alphabet

dχ2(p,q) χ2-distance between p and q

L Log-loss in prediction; redundancy in data compression

Bayesian Context Trees

A Finite alphabet of size m; without loss of generality, taken as A = {0,1, . . . ,m−1}

m Size of alphabet A

n Number of observations/length of time series x

T Context tree model

D Maximum depth of tree models

T (D) Collection of all proper m-ary tree models T with depth no greater than D

πD(T ;β ) BCT prior on the model space T (D); sometimes simply denoted as π(T )

β Hyperparameter of the BCT prior, taking values in (0,1); default is β = 1−2−m+1

α Shorthand notation for (1−β )1/(m−1)

|T | Number of leaves of tree T

LD(T ) Number of leaves of tree T at depth D

s ∈ T Context s belongs to the set of leaves of tree T

θ Vector of parameters associated at the leaves s of tree T, θ = {θs ; s ∈ T}
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λ Root node; T = {λ} denotes the empty tree consisting of only the root node

s j Concatenation of context s and symbol j

TMAX Tree constructed to contain all contexts of length D that appear in the time series

as Count vector for context s; its elements as( j) are defined as the number of times that
symbol j ∈ A follows context s in the time series

Pe(as) Estimated probability at node s; simple version for discrete-valued time series

Pe(s,x) General version of the estimated probabilities, for the general BCT-SSM setting with
real-valued observations

Pw,s Weighted probability at node s

Pm,s Maximal probability at node s

Pb,s Branching probability at node s

T ∗ True underlying tree model, when data are generated by a BCT model in T (D)

T∞ Limiting tree model, when data are generated by a general stationary ergodic process

ℓ Number of change-points in a time series; the maximum possible number is ℓmax

p Vector of locations of change-points in a time series

x( j;p) jth segment of a time series x, as partitioned by the change-points, for 1 ≤ j ≤ ℓ+1

Q Quantiser from R to A; used to extract a discrete context from real-valued observations,
in the BCT-SSM setting

p Order of AR/ARCH models in the corresponding BCT-AR/BCT-ARCH models

x̃n−1 Vector of p previous values in a time series x, x̃n−1 = (xn−1, . . . ,xn−p)
T

zn−1 Vector of p previous squared values in a time series x, zn−1 = (1,x2
n−1, . . . ,x

2
n−p)

T

Bs Set of time indices i, such that the context of observation xi in the times series x is s

Ls(θs) Log-likelihood of data with context s in the BCT-SSM setting; similarly, its maximiser
is denoted θ̂s, and the corresponding expected information matrix Îs =−E

(
∂ 2Ls
∂θ 2

s

)
S Set of relevant discrete states/leaves of context-tree model in the BCT-SSM setting
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Acronyms / Abbreviations (Time series models)

AR Autoregressive model

ARCH Autoregressive conditional heteroscedasticity model

ARIMA Autoregressive integrated moving average model

CTF Conditional tensor factorisations

DeepAR Nonlinear autoregressive model based on recurrent neural networks

EGARCH Exponential GARCH model

ETS Exponential smoothing model

GARCH Generalised autoregressive conditional heteroscedasticity model

GJR Threshold GARCH model of Glosten, Jagannathan, and Runkle

HMM Hidden Markov model

MAR Mixture autoregressive model

MSA Markov switching autoregressive model

MSGARCH Markov switching GARCH model

MTD Mixture transition distribution model; MTDg is the multi-matrix MTD model

N-BEATS Neural basis expansion analysis for interpretable time series forecasting

NNAR Neural network autoregressive model

PST Probabilistic suffix trees

SMC Sparse Markov chains

SSM State space model

SV Stochastic volatility model

TAR Threshold autoregressive model; similarly, SETAR is the self-exciting threshold
autoregressive model

VLMC Variable length Markov chains
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Acronyms / Abbreviations (Bayesian Context Trees)

BCT Bayesian Context Trees (framework)

BCT Bayesian context tree algorithm (alternate use)

BCT-AR Bayesian context trees autoregressive model

BCT-ARCH Bayesian context trees autoregressive conditional heteroscedasticity model

BCT-SSM Bayesian context trees state space model

CBCT Continuous Bayesian context tree algorithm

CCTW Continuous context tree weighting algorithm

CTW Context tree weighting algorithm

k-BCT Top-k Bayesian context trees algorithm

Acronyms / Abbreviations (Datasets)

CAC 40 Cotation Assistée en Continu; major French stock market index

DAX Deutscher Aktienindex; major German stock market index

DNA Deoxyribonucleic acid; genomic DNA data are studied Chapters 2 and 5

FTSE 100 Financial Times Stock Exchange 100 Index; major UK-based stock market index

GNP Gross national product; the quarterly US GNP is studied in Chapter 6

IBM International Business Machines Corporation; its stock price is studied in Chapter 6

S&P 500 Standard and Poor’s 500 Index; major US-based stock market index, and one of
the most commonly followed indices worldwide

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2; virus responsible for the
Covid-19 global pandemic, studied in Chapter 2

SV40 Simian virus 40; a commonly studied animal virus

BEA US Bureau of Economic Analysis; data source for US GNP

BLS US Bureau of Labor Statistics; data source for US unemployment rate
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Acronyms / Abbreviations (Miscellaneous)

AIC Akaike information criterion

BIC Bayesian information criterion

BOCPD Bayesian online change-point detection

CART Classification and regression trees

EM Expectation-maximisation algorithm

GP Gaussian process

LSTM Long short-term memory neural network

LZ Lempel-Ziv (compression algorithm/entropy estimator)

MC Monte Carlo

MCMC Markov chain Monte Carlo

MDL Minimum description length principle

MH Metropolis-Hastings algorithm

ML Machine learning

MLE Maximum likelihood estimation

MSE Mean squared error

NN Neural network

PPM Prediction by partial matching

RNN Recurrent neural network

RW Random walk MCMC sampler

SGVB Stochastic gradient variational Bayes
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