How heavy is 1 kg of information?

A very short introduction to information theory

Dr. Jossy Sayir, Dept of Engineering and EBI

About the speaker．．．

Gocgle jotay ampi

－Affiliated lecturer at the Department of Engineering
－Fellow of Robinson College and Director of Studies at Newnham College
－Currently teaching：
－ $2^{\text {nd }}$ year probability
－ $3^{\text {rd }}$ year information theory
－ $4^{\text {th }}$ year coding theory
－Research in information theory，coding and communications
－Research fellow at the European Bioinformatics Institute

About the talk...

- Material from $3^{\text {rd }}$ year course on information theory (without the maths)
- Claude Shannon's "Mathematical Theory of Communications" (1948)
- Big Bang of the information age
- Modern basis for data communication, storage, processing
- You use information theory in your mobile phone, when you skype, when you use the internet, when you listen to music, etc.

- Information, like weight or energy, can be measured and quantified

Cambridge College 20 Questions

囦因图 UNIVERSITY OF
（4．）CAMBRIDGE

Cambridge College 20 Questions

- Guess a college in as few as possible "yes/no" questions
- 31 colleges
- How many questions?

Cambridge College 20 Questions

Guessing tree

20 Questions－analysis

－This tree could be improved to get to 5 questions
－Can you think of how you could ask all question at once？
－What college do you think I would pick？

Admissions Numbers Engineering 2014 cycle

Information measures...

- Hartley's information: if a question has N possible answers, the information content in its answer is $\log N$
- Shannon's information: if an answer has probability p, it's as if it were one of $N_{p}=1 / p$ equally likely answers and hence its information content is $\log (1 / p)=-\log p$
- Shannon's "entropy" formula: $H=-\sum_{n} p_{n} \log _{b} p_{n}$
- What base is the log?

English text

- Entropy of English is $\mathrm{H}=4.17$ bits
- Better than 5, but do we really need 4-5 yes/no questions to guess the next letter in English text?

Wikipedia: "The frequency of letters in text has been studied for use in cryptanalysis, and frequency analysis in particular, dating back to the Iraqi mat..."

Source Coding

- English text can be compressed well below 2 bits per letter by modern data compression algorithms
- All sources (images, sound, video, files) are compressed before transmission (lossy or lossless)
- Data compression removes all redundancy so that the result is perfectly unpredictable
- Can you compress the 6 numbers between 1 and 59 resulting from a lottery draw?
- "Compressing Sets and Multisets of Sequences"
 Christian Steinruecken

Interlude

Reed Solomon Coding

, rex
湅 CAMBRIDGE

SUDOKU

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

夌縕 UNIVERSITY OF (W) CAMBRIDGE

SUDOKU

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

 (W) CAMBRIDGE

SUDOKU

5	3	4	5	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	1	5	6	7
9	5	9	7	6	1	4	2	3
4	2	7	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	8	2	8	4
2	8	7	4	1	9	6	2	5
3	4	5	2	8	6	1	7	9

 (4) CAMBRIDGE

1-error correction

0	1	1	0	
0	1	0	1	
1	0	1	1	
0	1	0	1	

1-error correction

0	1	1	0	0
0	1	0	1	0
1	0	1	1	1
0	1	0	1	0
1	1	0	1	1

1-error correction

Can we still correct erasures?

0		1		0
	1		1	
1	0		1	1
	1	0		0
1	1	0		1

1-error correction

0	1	1	0	0
0	1	0	1	0
1	1	1	1	1
0	1	0	1	0
1	1	0	1	1

Dimensions and rate

- Load a K=fxf grid of data
- Add $2 f+1$ redundancy bits
- Total length: $N=f^{2}+2 f+1=(f+1)^{2}$
- Information rate: $R=K / N=f^{2} /(f+1)^{2}$

1	1	0
0	1	1
1	0	1

- For example, for $f=2$ we encode $K=4$ information digits, add 5 redundancy digits for an information rate of 4/9 and correct 1 error
- Can we do better?

$(7,4)$ Hamming Code

䇎 CAMBRIDGE

$(7,4)$ Hamming Code

, (x) UNIVERSITY OF
湅 CAMBRIDGE

$(7,4)$ Hamming Code

娄置 UNIVERSITY OF
湅 CAMBRIDGE

$(7,4)$ Hamming Code Dimensions

- Decoding rule: flip the bit in the intersection of the circles that have the wrong parity
- We encode $K=4$ information digits and add 3 redundancy digits to transmit $\mathrm{N}=7$ digits
- We can always correct 1 error, at an information rate 4/7 (much better than 4/9)

The best card trick ever...

園图 UNIVERSITY OF

* . .

Analysis

- The "guesser" needs to guess one of 52-4=48 possible cards
- The "guesser" needs to receive $\log _{2} 48=5.58$ bits of information
- The "helper" has a choice among 5 cards to return to the member of the public, followed by a choice of $4 \times 3 \times 2$ orderings of the remaining 4 cards, totaling $5!=120$ possibilities
- The "channel" between the helper and the guesser has a capacity to transmit $\log _{2} 120=6.91$ bits of information
- There is ample capacity to comfortably transmit the information the guesser needs
- All you need is a clever code that the "helper" and the "guesser" can work out easily in their heads

An unusual storage channel...

The Atew Hork ©imes: Double Helix Serves Double Duty

Nick Goldman, a molecular biologist at the European Bioinformatics Institute in Hinxton, England, used a technique with error-correction software to store and retrieve data in synthetic DNA molecules.

Channel Coding

－Every communication or storage channel has a capacity that can measured and computed
－Clever coding can achieve any desired error probability for rates below capacity
－Above channel capacity，there is a minimum error probability that cannot be beaten

What we＇ve learned．．．

Shannon＇s legacy：
－Information is measureable，like weight and energy

谵• How much is 1 kg of information？
On DNA， 2 Petabyte per gram （1 Petabyte is 1000 Terabytes）
－ $1 \mathrm{~kg} \approx$ the internet （1200 petabytes）

