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Abstract

The field of medicine has witnessed numerous improvements in recent decades, yet many
of the biological processes underlying the medical problems faced today remain a mystery.
Recent advances in machine learning enable the extraction of features that would be nearly
impossible for experts to find in the massive medical datasets. The techniques not only
offer improved continuous patient monitoring but also provide novel empirical methods for
solving the latest medical problems when combined with medical practitioners. This report
is focussed on the physiological signals stemming from intensive care units. We argue that
the ability of Long Short-term Memory (LSTM) Recurrent Neural Networks (RNNs) to infer
long and short-term dependencies in time series make their combination with high-resolution
physiological signals the best solution for predicting patient status. A brief background of the
machine learning techniques that are often used for medical time series analysis is provided.
Moreover, previous studies that applied machine learning to vital signs are reviewed and
compared for both the neonatal and general intensive care unit settings.
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Chapter 1

Introduction

A pivotal challenge in science and technology is the assurance of making the optimal
decision in any given situation. In recent developments, machine learning techniques have
been able to produce compelling advances toward making the optimal decision given real
world data, much of which is temporal in nature. Standard machine learning techniques are
sufficient when data are independent over time. However, when it cannot be assumed that
the data in different time steps are independent, as in most cases of human decision making,
sequential machine learning techniques, modelling dependencies across time, become the
logical approach.

Sequential machine learning models have been largely adopted in domains such as image
captioning, language processing, and handwriting recognition [Lipton, 2015; Singh et al.,
2012; Sutskever et al., 2014], but there have been relatively few applications in healthcare
[Alagoz et al., 2010; Lipton et al., 2015; Schaefer et al., 2005]. McGlynn et al. [2003] has
shown that patients receive correct diagnoses and treatment less than 50% of the time (at first
pass). There has also been distinct evidence of a 13-to-17-year gap between research and use
clinical practice [Bauer, 2002]. The combination of the high cost of training human doctors
in the complexity of modern healthcare (±10 years) and out-of-date clinical care, means
that improvement in healthcare is bound to plateau [Bennett and Hauser, 2013]. Whilst still
in its infancy, it has been argued that machine learning holds substantial promise for the
future of medicine, and for our ability to tailor care to the particular physiology of the patient
[Abston et al., 1997; Clifton et al., 2015; Cooper et al., 1997; Lapuerta et al., 1995; Mani
et al., 1999; Morik et al., 2000; Ohmann et al., 1996; Sboner and Aliferis, 2005; Svátek et al.,
2003; Vairavan et al., 2012].

Clinicians typically determine the course of treatment given the current health status of
the patient as well as some internal estimate of the outcome of possible future treatments.
The effect of treatments for a given patient is non-deterministic (uncertain), and predicting
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the effect of a series of treatments over time compounds the uncertainty [Bennett and Hauser,
2013]. There is a growing body of evidence that complex medical treatment decisions are
better handled with the aid of modelling, compared to intuition alone [Meehl, 1986; Schaefer
et al., 2005]. Intensive care units (ICUs) are responsible for much of the increase in the
healthcare budget [Halpern and Pastores, 2010]. As such, ICUs are a major target in our
drive to limit healthcare costs. Evolving systematic processes, such as haemorrhage, sepsis,
and acute lung injury are mostly disguised by the body’s own defensive mechanisms. As
a result, serious internal pathological processes are often hidden from the causal observer.
Machine learning holds great potential for improving critical care outcomes: (i) providing
aid to clinicians through accurate and timely detection of pathological processes; (ii) efficient
patient stratification according to risk, combined with optimal resource allocation; and (iii)
rapid identification of proper treatments, as well as verification that provided treatments are
functional.

Generally, the management of acutely ill patients is arduous, even more so when patients
are preterm infants. Physiological time-series data from the neonatal ICU (NICU), constitutes
an abundant and largely untapped source of medical insights. The vast majority of studies on
clinical applications for machine learning have been based on ICU for adults [Braga et al.,
2014; Clifton et al., 2015; Gultepe et al., 2014, 2012; Hravnak et al., 2011; Kim et al., 2011;
Meyfroidt et al., 2009; Pirracchio et al., 2015; Ramon et al., 2007; Tarassenko et al., 2011; Tu
and Guerriere, 1993; Zhai et al., 2014; Zhang et al., 2007]. Fewer studies have been based in
the NICU because the data is often more noisy and sparse compared to that in the ICU. In the
NICU, cot-side monitors are used to display continuous physiological signals of the patients
to the tending clinicians. Alarms are sounded to indicate a change in the patient’s state when
one or more of the patient’s vital signs, such as heart rate (HR), blood pressure (BP), or
temperature, breach predetermined thresholds. The intention of these alarms is to allow for
timely intervention by clinical staff. It is reported that current technology often provides
false alarms and clinicians ignore the alarms when signals are observed to look healthy even
though the signals might exceed certain ‘normal’ thresholds. This results in a muddling of
alarms with clinical activities [Da Costa, 2016]. There is a need for models that analyse the
dynamic waveforms of signals over time to allow for serendipitous discovery of important
features, in lieu of combining domain knowledge and hand-engineered features. The Holy
Grail of neonatology has been to stratify the infants according to risk. Many prediction
methods attest to the difficulty of the task, ranging from the well-established Apgar score to
modern techniques such as CRIB, SNAP, and SNAPPE scores [Saria et al., 2010]. Current
challenges encompass identification of compelling clinical problem areas, construction of
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powerful predictive models based on quality data and the prudent validation of these models.

Most research on the application of machine learning in medicine has made use of low-
resolution (data sampled at frequencies lower than 1 Hz) physiological data [Choi et al.,
2015; Colopy et al., 2015; Ghassemi et al., 2015; Güiza et al., 2013; Ongenae et al., 2013;
Ryan et al., 2013; Stanculescu et al., 2014]. Critical information is embedded in the high-
resolution waveforms of physiological signals from the human body. Whilst long-term trends
could indicate significant correlations, our work argues that the combination of long-term
trends and high-resolution waveform dynamics paves the way to achieving unparalleled
diagnosis accuracies with machine learning. To elucidate the amount of information lost
when using low-resolution data, Figure 1.1 illustrates an ECG signal sampled at 240 Hz
and 1 Hz. Studies have made use of trends of HR values averaged over an hour or more to
predict patient outcomes [Caballero Barajas and Akella, 2015; Lipton et al., 2015], where
high-resolution changes would remain unnoticed in these models. Research indicates that
complex datasets, such as those containing high-resolution physiological signals, contain
information that is neither extractable with conventional methods of analysis nor visually
apparent [Goldberger et al., 2000; Ivanov et al., 1999; Vikman et al., 1999]. Such datasets
promise to be of clinical value in forecasting sudden death or cardiopulmonary catastrophes
during medical procedures such as critical care or surgery. Goldberger [1996] suggests that
the embedded information may relate to basic mechanisms in physiology and molecular
biology.
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Fig. 1.1 Comparison of high-resolution waveforms (Left) to low-resolution per second heart
rate (Right) for an ECG signal. The graphs highlight the amount of information lost when

downsampling high-resolution waveforms.
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Feature extraction is a promising technique for reducing the resolution of data, whilst
retaining the embedded information. Studies such as those by Lipton et al. [2015] and
Temko et al. [2011] have successfully implemented feature extraction methods combined
with classification algorithms (Naïve Bayes (NB) or Support Vector Machines (SVMs)) on
medical time series. Classification algorithms such as NB and SVMs ‘cannot directly deal
with temporal data’ [Ongenae et al., 2013]. As mentioned before, feature extraction requires
domain knowledge, and the research reported here takes a more non-parametric approach,
in order to have the models learn the important features heuristically. Gaussian Processes
(GPs), Hidden Markov Models (HMMs), Conditional Random Fields (CRFs), and Recurrent
Neural Networks (RNNs) are machine learning techniques that are well suited for sequential
data [Baccouche et al., 2011; Bishop, 2006; Hill et al., 1996; Lafferty et al., 2001]. These
techniques provide the means to model and analyse the underlying features of temporal data.
When applied to medicine the task often requires prediction or classification of multiple
categories over the continuous time axis and is, therefore, similar to sequential learning
tasks such as those in natural language processing, where there have been major recent
research successes [De Mulder et al., 2015]. Two main classes of sequential techniques have
been proposed in medicine: (i) intensity-based point process modelling techniques such as
Hawkes processes [Liniger, 2009; Zhu, 2013]; and (ii) continuous-time Markov chain-based
models [Johnson and Willsky, 2013; Lange et al., 2015; Nodelman et al., 2002], but both are
expensive to generalise to multilabel and nonlinear settings [Choi et al., 2015]. Moreover,
these techniques often make strong assumptions about the data generation process, which
might not be valid in ICU monitored datasets.

The key aim of this research is to learn an accurate representation of patient status over
time and to leverage the representation to predict future clinical events of the patient. This
study proposes the implementation of RNNs to learn such representations based on the
time series data collected in the ICU. Most of these time series are of different lengths, and
RNNs have been shown to be successful in dealing with this sort of sequential data [Graves,
2013; Graves and Jaitly, 2014; Sutskever et al., 2014; Zaremba et al., 2014]. The focus will
be specifically on the long short-term memory (LSTM) variation of RNNs, which enables
the accurate modelling of long and short term dependencies, abundant in high-resolution
physiological signals. HMMs and their combination with GPs will also be explored and
compared to the LSTM architecture in this work.

RNNs are recurrent versions of Neural Networks (NNs); but while they have received
much attention in the medical research field, any superior performance has yet to be proven
[Meyfroidt et al., 2009; Sargent, 2001; Tong et al., 2002]. Moreover, the black-box nature of
NNs results in a lack of interpretability, which is especially unfavoured in the medical com-
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munity. Recent decades have witnessed a change in the spectrum of diseases, from infectious
conditions to tumours and cardiovascular diseases.This has hindered the translation of bench
research into clinical efficacy. Scientific knowledge has lead to a reduction of infectious
diseases and malnutrition, but evidence-based research has yet to find the underlying mecha-
nisms of tumours or cardiovascular diseases. There is a possibility to develop a diagnostic
algorithm and treatment strategy by learning from millions of examples. Much of medical
science is non-deterministic and cannot be predicted accurately via formulae – the random
errors in medicine stem from the largely unknown underlying molecular pathways [Zhang,
2016]. As the biological or pathological reasonings behind many treatments are often vague,
a black-box machine learning approach would not be a far stretch from these current ap-
proaches. It might even provide a more relevant solution for aiding doctors in their diagnoses.





Chapter 2

Literature Review

The aim of this chapter is to provide a concise overview of research in the application of
machine learning in medicine and an overview of the literature on the machine learning
techniques employed for sequence modelling in this study.

2.1 Machine Learning

This section serves as a background on the machine learning techniques and performance
metrics often referred to in this study.

2.1.1 Naïve Bayes Classifiers

The Naïve Bayes (NB) classifier is a probabilistic statistical classifier based on Bayes’
theorem

P(h|e) = P(e|h)P(h)
P(e)

(2.1)

and it assumes conditional independence among the attributes (see Figure 2.1). Here h refers
to the hypothesis and e is the evidence. The NB classifier assigns a class label ŷ = Ck as
follows:

ŷ = argmax
k∈{1,...,K}

p(Ck)
n

∏
i=1

p(xi|Ck) (2.2)

where K is the number of classes and n is the number of different features. The conditional
independence assumption is unrealistic in most medical cases, as patient physiology and
symptoms are often very highly correlated, for example, HR and respiratory rate (RR).
Despite this drawback, the NB algorithm has yielded excellent results in medical machine
learning, and as a result, is widely used [Kononenko, 2001]. The good performance could be
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attributed to the data used in most studies having a low-resolution, which leads to a reduction
or removal of dependence between signals. The advantage of this classifier is that it requires
a small training dataset and the training is rapid, owing to the simplicity of the model.

Fig. 2.1 Naïve Bayes classifier example, illustrating the independence assumption. X1 to Xn
are feature vectors that are independent of each other (no connecting edges), given the label
Y . (Adapted from: Zheng and Webb [2010])

2.1.2 Bayesian Networks

Bayesian Networks (BN), a form of supervised learning [Meyfroidt et al., 2009], are prob-
abilistic graphical models that specify a joint probability distribution on a set of random
variables. The two components of a Bayesian network are a graph structure G, illustrating
dependencies, and a probability distribution θ . G is a directed acyclic graph with nodes
representing each variable. The conditional dependence of variable Xi on variable Xj is
encoded by an edge in G directed from node i to j. Xi is called the parent of Xj. A variable
Xi is independent of its non-descendants given all its parents Pa(Xi) in G [Wang et al., 2011].
Therefore the joint probability distribution over X, a vector of variables X1, ...,Xn, can be
decomposed by the chain rule

p(X) =
n

∏
i=1

p(Xi|Pa(Xi)) (2.3)

The parameter set θ = {θi}i=1....n specifies the parameters of each conditional distribution
p(Xi|Pa(Xi)) in Equation 2.3. The form of the distribution determines how θi is interpreted.
If the distribution is Gaussian, θi may contain the values of the variance and mean; when the
distribution is multinomial, θi is a conditional probability table. A network that best matches
the training dataset is found by a scoring function that evaluates each network with respect to
the training data. The resulting network returns the label c given the variables X1, ...,Xn, that
maximizes the posterior probability P(c|X1, ...,Xn) [Friedman et al., 1997].
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2.1.3 Decision Trees

Decision tree (DT) classifiers construct a flowchart-like tree structure in a top-down, recursive,
divide and conquer manner as shown in Figure 2.2. Intuitively, this is the closest to what
physicians do in the ICU. Attributes (nodes of the DT) are selected in such a way as to
partition the data records in the purest way by class in terms of the class values. The class-
focussed visualisation of the data allows users to readily understand the overall structure of
the model. When too many parameters cause the model to become too complex, an approach
called pruning is used to remove the least important nodes and in doing so, makes the model
less susceptible to overfitting and more interpretable. DTs where the target variable takes a
continuous value are called regression trees.

Fig. 2.2 A simple decision tree example for predicting whether a customer will buy a given
kind of computer. Each decision node (rectangles) represents a choice between a number
of alternatives called branches (edges). The leaf nodes (ovals) represent a classification or
decision.

An ensemble technique called bagging, short for ‘bootstrap aggregating’ [Breiman,
1996], can be used to create another tree-based technique called Random Forests (RF), where
several different trees are trained on different subsets of the data and outputs are averaged
[Murphy, 2012]. Whereas bagging is parallel, boosting is the sequential application of the
DT to weighted versions of the data, where more weight is given to samples that were
misclassified in previous rounds [Schapire, 1990; Yoo et al., 2011; Zhang and Szolovits,
2008]. Ensemble techniques, such as bagging and boosting, have demonstrated improved
classification performance in healthcare [Meyfroidt et al., 2009; Moon et al., 2007; Ramon
et al., 2007; Santos-Garcıa et al., 2004; Zhou et al., 2002].
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2.1.4 Support Vector Machines

Support Vector Machines (SVMs) find a (linear) optimal separating hyperplane in a high
dimensional feature space of that dataset. The hyperplanes are decision boundaries between
different sets of objects, where the hyperplane with the maximal margin is determined via
the use of support vectors (see Figure 2.3). Compared to 16 classification methods including
Neural Networks, and 9 regression methods, Meyer et al. [2003] found that SVMs provide
good classification accuracies, but are not always top ranked. Murphy [2012] argues that
the popularity of SVMs are not due to their superior performance, but to ignorance and lack
of high quality software implementations of alternatives such as GPs and Relevance Vector
Machines. The use of SVMs is sensible under circumstances where the output is structured
and likelihood-based methods could be slow. Relevance Vector Machines are a Bayesian
approach to SVMs, which operates over distributions and provides probabilistic classification
instead of point estimates, making them more suitable when speed is important. SVMs are
particularly efficient in making predictions, but training on large datasets can quickly become
intractable, due to memory limitations and the complexity involved in inference [Scalzo
and Hu, 2013]. SVMs are designed for two-class classification problems and a common
modification for multi-class classification is to reduce the problem into multiple binary
problems (one-vs-one or one-vs-all). Figure 2.3 illustrates an example of SVM classification
between two classes, for simplicity, only two dimensions are shown.

Fig. 2.3 SVM example, showing the maximum margin between support vectors (filled
shapes). The circles and squares are data vectors from two different classes. (Adapted from:
OpenCV [2014])
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2.1.5 Gaussian Processes

A Gaussian Process (GP) is fully specified by its covariance function k(x,x′) and mean
function m(x) [Rasmussen and Williams, 2006]. The mean and covariance are a vector and
a matrix, respectively, for this natural generalisation of the Gaussian distribution. The GP
is defined over functions, where the Gaussian distribution is over vectors. The function f
distributed as a GP with covariance function k and mean function m is written as

f ∼ GP(m,k) (2.4)

Essentially, GPs dispense with the parametric model and instead define a prior probability
distribution over functions directly. Although the function space is infinite, in practice the
working space is finite, because only the values of the function at a discrete set of input
values, corresponding to the training data, have to be considered. Thus GPs can be defined as
a probability distribution over functions y(x) such that the set of values of y(x) evaluated at
an arbitrary set of points x1, ...,xN jointly have a Gaussian distribution [Bishop, 2006]. The
family of functions, such as the choice of mean and covariance functions, remain infinite and
have to be specified based on prior knowledge.

Similar to SVMs, GPs are kernel methods. They have a small number of tunable
parameters, allowing for multi-dimensional input and provide full predictive distributions as
opposed to point predictions normal to other methods. GPs are increasingly being adopted
in probabilistic health informatics as they offer a principled manner of coping with noisy
or incomplete data [Clifton et al., 2015]. The ability to learn complex non-linear decision
boundaries allows GPs to outperform traditional methods such as logistic regression (Section
2.1.6), and motivates implementation in the ICU, especially the NICU.

There are two main advantages in the use of Gaussian Processes (GPs), which allow a
Bayesian use of kernels for learning. First, the Bayesian evidence framework (updating the
probability of a hypothesis as more data becomes available) applied to GPs allows learning of
the parameters of the kernel. Second, GPs provide fully probabilistic predictive distributions,
including the estimates of the uncertainty of the predictions. The undesirable behaviour of
Bayesian Linear Regression, of being very confident in its predictions when extrapolating
outside the region occupied by the basis functions [Bishop, 2006], is thus mitigated by GPs.
A disadvantage is that the naïve implementation of GPs requires computation of O(n3),
where n is the number of training samples [Chu and Ghahramani, 2009]. Consequently,
the simple implementation on current desktop machines can handle problems with at most
a few thousand training samples. Recent studies [Snelson and Ghahramani, 2005; Titsias,
2009] have proposed approximation techniques to allow for scalable applications of GPs.
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The techniques can broadly be classified into two classes: i) those relying on approximate
matrix-vector multiplication conjugate gradient methods, and ii) techniques based on sparse
methods, where the full posterior is approximated by expressions involving matrices of lower
rank m ≪ n [Quinonero-Candela et al., 2007]. Where well-calibrated probabilistic output
matters and speed has a lower priority (e.g., active learning or control problems), GPs provide
well-suited solutions [Murphy, 2012].

2.1.6 Logistic Regression

Logistic Regression (LR) is one of the most widely-used methods in medicine [Bagley et al.,
2001]. The technique measures the relationship between the categorical dependent variable
and one or more independent variables by estimating probabilities as described by

p(y|x,w) = Ber(y|sigm(wT x)) (2.5)

which takes inputs x and weights w. The label y has a Bernoulli distribution, and the sigmoid
function, also known as the logistic or logit function, is defined as

sigm(wT x)≜ 1
1+ exp(−wT x)

(2.6)

The sigmoid function maps the whole real line to [0,1], which is necessary for the output to
be interpreted as a probability. It should be noted that LR is a form of classification and not
regression [Murphy, 2012]. The sensitivity of LR models to data of poor quality depends
on the method used for fitting the model, for example, the maximum likelihood approach
is sensitive to poor quality data [Pregibon, 1981]. The model’s prediction ypred is the class
whose probability is maximal:

ypred = argmaxiP(y = i|x,w) (2.7)

2.1.7 Neural Networks

NNs consist of computational nodes that emulate the functions of neurons in the brain. The
nodes referred to as neurons, are connected via adjustable weights which are modified during
the training of the model. Each neuron has an activation function transforming all its inputs
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into a specific output according to the activation function generally defined as

y = f (φ(x,w)) (2.8)

where φ is usually a linear function (such as a sum) of the inputs x and the weights w.
Function f is chosen from a small selection of functions, including the popular sigmoidal
nonlinearity given in Equation 2.6, producing output between 0 and 1, and the tanh function
producing outputs between -1 and 1 [Cheng and Titterington, 1994]. The neurons are
classified into three types of layers (input, output, and hidden), where the input layer is not
considered as it merely passes the input values to the next layer. A popular output function is
the softmax function σ defined for a specific class j as

σ(xw) j =
exw j

∑K
k=1 exwk

, (2.9)

where subscripts of the weight matrix w indicate weight matrices for each specific class, and
K is the number of classes.

The most widely used NN is the multi-layer perceptron with back-propagation because
its performance is considered superior to other NN algorithms [Delen et al., 2005; Yoo et al.,
2011]. Back-propagation is a method used for calculating the gradient of a loss function with
respect to all the weights in the network. The gradients are then used to train the network by
updating the weights through some function, such as the commonly used stochastic gradient
descent (SGD):

wt = wt−1 −η
∂E
∂w

(2.10)

where E is the specified loss function, η is the specified learning rate, and t denotes the current
weight update [Orr and Müller, 2003]. NNs were considered to be the best classification
algorithms prior to the introduction of DTs and SVMs. Although NNs can handle noisy
training data and yield decent classification performance on unseen data, there remain
disadvantages in their use. NNs have a large number of parameters, resulting in training
that is computationally expensive and time-consuming. The performance of NNs greatly
depends on the hyperparameters (number of layers and neurons) and parameter optimisation.
Furthermore, NNs lack the transparency or exploratory power of, for example, DTs. This
makes it difficult for medical domain experts to properly understand the classification
decisions reached, which has lead to difficulties with their implementation in practice.
Regularisation is a technique that introduces additional information to a model, usually to
penalise complexity, in order to prevent overfitting. For NNs this is mostly done via dropout,
which is a recently developed technique that effectively approximates an entire ensemble
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of neural networks. Dropout temporarily removes a random selection of neurons in each
iteration during training [Pham et al., 2014; Srivastava et al., 2014; Zaremba et al., 2014],
and as a result, prevents overfitting to the training data and improves generalisation.

2.1.8 Performance Evaluation

The testing process in classification is usually computationally inexpensive compared to
the complex training process. The approaches for validation of the model performances
include cross-validation [Efron, 1983] and data splitting [Picard and Berk, 1990] into training,
testing, and occasionally validation sets. Cross-validation involves randomly splitting the
data into n folds (subsets of the data), and n−1 folds are then used to train the classifier and
the remaining fold is used to test the performance. An unbiased estimate of the classifier
performance is then obtained by rotating or ‘shuffling’ the data and repeating the above n
times [Greene et al., 2007].

Performance metrics are useful for comparing the quality of classifications and predictions
across systems and studies. Measures (define below) often used in binary classification
include accuracy, precision, recall (sensitivity), F-score, specificity, and AUC. For multi-
class classification, average accuracy, error rate, micro-averaged precision, micro-averaged
F-score, and macro-averaged F-score are often used for performance evaluation [Sokolova
and Lapalme, 2009]. In healthcare the preferred measures of performance are sensitivity
and specificity. Sensitivity is defined as the percentage of correctly identified true positive
events, for example, the percentage of patients with sepsis, correctly classified as having the
condition.

Sensitivity =
True positve events

True positive events + False negative events
(2.11)

Specificity is defined as the percentage of correctly classified true negative events, for example,
the percentage of healthy patients who are correctly identified as being healthy.

Specificity =
True negative events

True negative events + False positive events
(2.12)

The Receiver Operating Characteristic (ROC) curve (see Figure 2.4) illustrates the
classifier performance as the discrimination threshold is varied. The curve is a plot of the
sensitivity (true positive rate) against 1 - specificity (false positive rate). In the clinical setting,
it is imperative to maintain high sensitivity. The area under the curve (AUC) of the ROC,
popular in medical research, provides a measure of the performance of a classifier over all
discrimination thresholds of sensitivity and specificity. For a randomly chosen pair of positive
and negative samples, the AUC can be interpreted as the probability that the classifier will
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assign a higher score to the positive sample [Scalzo and Hu, 2013]. However, AUC is not
an ideal indicator in the clinical setting, because a high AUC value could arise from a high
specificity and a relatively low sensitivity. AUC was chosen as the comparative measure
for literature reviewed in this study because it was the most consistently reported metric. A
perfect classification model, which correctly classifies all positive and negative examples,
would have an AUC value of 1 [Braga et al., 2014]. It should be noted that currently there
is no well-developed multi-class ROC analysis [Lachiche and Flach, 2003; Sokolova and
Lapalme, 2009] and that most of the studies reported here involve binary classification.

Fig. 2.4 Receiver Operating Characteristic curve example. The diagonal line with an AUC of
0.5 indicates random classification, and the green line represents good classification with an
AUC of roughly 0.85. (Adapted from: Morgan [2015])

2.2 Machine Learning in Medicine

A large variety of machine learning techniques have been applied to various medical problems.
In the interest of brevity, we only report studies that are the most important to our work. Data
and therefore outcomes in the NICU are different to those in general medicine. Consequently,
reported studies are grouped by medical domain to avoid confusion in technique comparisons.

2.2.1 General Medical Data

In this section, we report studies that involve physiological signals that are less noisy than
those stemming from NICUs.
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Support Vector Machines

Scalzo and Hu [2013] compared kernel spectral regression (SR-KDA) and SVMs for the
reduction of false alarms for intracranial pressure (ICP) using a semi-supervised approach.
The study aimed to determine whether semi-supervised learning methods, that can naturally
integrate unlabelled data samples in the model, could improve accuracy. This is important to
our study, because, as with most medical datasets, our datasets had insufficient annotations
and the annotations are not always accurately timed. The ICP signals used in the study were
recorded at 240 Hz for 108 neurosurgical patients and filtered with a 40 Hz low-pass filter.
The Bayesian tracking algorithm [Scalzo et al., 2012] was used to extract 4 features from
the 20-minute segments in which the signals were analysed. Three-fold cross-validation was
used for performance analysis. With a sensitivity of 0.99, the specificity improved from 0.03
(supervised) to 0.16 (semi-supervised) for SVMs. The study clarified that more labelled data
is always beneficial and that the optimal proportion of labelled and unlabelled samples is
application dependent. Given a model with effective regularisation, the supervised approach
would be preferred.

Logistic Regression

LR has been used to predict the need for paediatric ICU transfer within the first 24 hours
of admission [Zhai et al., 2014]. The dataset consisted of temporal, narrative and nominal
measurements collected from the EHRs of 7,298 patients. The performance analysis was done
by means of 10-fold cross-validation. The model yielded a 0.91 AUC value - outperforming
two published Early Warning Scores (EWS).

APACHE III is one of the currently used methods for acute physiology and chronic
health evaluation, and it is based on LR [Kim et al., 2011; Knaus et al., 1991]. The system
analyses 12 low-resolution routinely measured variables, along with age and chronic health
points, during the first 24 hours of admission. The analysis is compared to approximately
18,000 cases in its memory to reach a prognosis with 95% accuracy. The two types of
outputs provided by the system is a morbidity score and a predictive equation. Although
exact performance measures are unclear, the system does prove that LR is effective in
low-resolution medical data applications.

Vital signs, laboratory values, and demographic variables were used in a discrete-time
survival analysis to predict the outcome of death, cardiac arrest, or ICU transfer [Churpek
et al., 2016]. Two LR models, one using restricted cubic splines and the other using linear
predictor terms, were compared to various other machine learning methods. Ten variables
originating from 5 different hospitals were collected from EPIC, Verona, and WI electronic
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health records (EHRs). Data were separated into discrete eight-hour intervals, due to the
frequency of physiological data collection in previous work [Churpek et al., 2014]. The
balance of the training dataset was improved by matching windows where events occurred
with non-event windows. Dropouts were replaced by values from the previous interval and
the median was imputed if no previous values were present. The models compared were tree-
based models, K-Nearest Neighbours (KNN), SVMs, and NNs, and had to predict whether
an event occurred in the next window. Models were optimised using 10-fold cross-validation
[Churpek et al., 2016].

In this study, the commonly cited Modified Early Warning score yielded the worst AUC
of 0.7. The ensemble tree-based methods achieved the best AUC values, outperforming
SVMs, NNs, and LR. Interestingly, the RF yielded an AUC of 0.8 and the gradient boosted
machine an AUC of 0.79. The gradient boosted machine is where the consecutive trees are
derived using random samples of the training data to predict the residuals of the previous
models. The result is a combination of trees that weight the ‘difficult to predict’ events to a
greater degree. This utilises the boosting ensemble approach and is expected to outperform
the bagging techniques used in RFs [Breiman, 1998]. For the RF, the principal components
were found to be RR, HR, age, and systolic blood pressure (BP) [Churpek et al., 2016]. This
supports our focus on using ECG and BP as input variables for most of the experiments.
Compared with our work, this study has a much larger cohort of patients (269,999 patient
admissions), but the inputs to the models are of low resolution (8-hour intervals).

Neural Networks

A study by Clermont et al. [2001] compared two NN models (categorised and uncategorised
input data) to LR (APACHE III). The worst value of 16 acute physiological variables for
the first 24 hours in ICU were used along with age for the 1,647 patients in the dataset. The
results indicated that the performance of NNs was generally comparable to LR techniques.
Similarly, a study by Kim et al. [2011] compared NNs, SVMs, and DTs to the conventional
LR model for ICU mortality prediction. Fifteen non-temporal variables were selected for data
analysis in the first 24 hours of admission for 23,446 patients. DTs performed the best (0.98
AUC) followed by SVMs (0.876 AUC) and NNs (0.874 AUC), compared to the APACHE III
(0.871 AUC). Conversely, a study by Zhang and Szolovits [2008] found NNs (0.99 accuracy)
to outperform DTs (0.97 accuracy) in classifying eleven patients as stable or deteriorating,
based on 1 Hz 8-channel data. Whether NNs perform better than other techniques remains
unclear, but these studies do indicate that NNs perform better when the data has a higher
resolution. Some studies have suggested that DTs can be applied to uncover the hidden layers
of NNs, which could be valuable in our applications of LSTMs as well.
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A feedforward multilayer perceptron (MLP) was used for cardiovascular disease detection
[Oresko et al., 2010]. Cardiovascular disease, encompassing a variety of cardiac conditions,
such as hypertension and heart attack, is the single leading cause of death. The MLP, with a
51-30-5 structure, was used for QRS complex (Figure 2.5) beat classification. The dataset
consisted of 48 ambulatory ECG recordings of 30 minutes each, from the MIT-BIH database.
A one-vs-all classification approach was taken with an average accuracy of 93.3% over
all the classes. The Pan-Tompkins QRS-detection algorithm [Pan and Tompkins, 1985],
consisting of a bandpass filtering stage using a set of cascaded filters, was used for feature
extraction. The study demonstrates that classification of cardiovascular disease using ECG is
possible. However, the dataset used in this study is small compared to other clinical machine
learning application studies. Important to the continuation of our study, this study supports
the reasoning that high-resolution signals contain features related to pathologies.
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Fig. 2.5 Single ECG pulse with interest points labelled. (Adapted from: Atkielski [2007])

NNs were used to predict ICU patient mortality (binary) from the Physionet/Computing
in Cardiology Challenge 2012 in a study by Ryan et al. [2013]. The dataset consisted of
12,000 patients with 4 static variables and 37 dynamic variables that could be measured once,
more than once, or not at all for a given patient. The performance of the models in this study
is reported as score achieved for the Physionet challenge, which is not relevant to report in
our review. The importance of this study was the use of deep Boltzmann machines (DBMs),
a generative model, to pre-train the feed-forward NNs and increase the performance of the
final discriminative model. Our study could investigate the use of simpler generative models
to pre-train the deep LSTM networks, similar to what has been done in this study.

A relatively out-dated review comparing studies of NN and logistic regression found
that both methods provide inadequate performance [Sargent, 2001]. In contrast, a more
recent study by Meyfroidt et al. [2009] found that NNs provide increased classification
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accuracy in the ICU compared to LR. However, NNs have also been found to manifest
inferior classification results compared to DT and SVM algorithms, with SVMs achieving
the highest accuracies, followed by DT [Yoo et al., 2011].

Gaussian Processes

GPs have demonstrated outstanding performance in various ICU applications; accurate
predictions of the length of patient stay based on a patient’s specific characteristics [Guiza
Grandas et al., 2006], successful prediction of patient core temperatures several hours in
advance [Güiza et al., 2006], outperforming conventional methods for EEG seizure detection
[Faul et al., 2007]. Moreover, GPs have been used for regression in the ICU, due to their
multi-parameter input and good predictive characteristics [Meyfroidt et al., 2009]. Our study
sought to use GPs in smoothing signals before fitting HMMs to the data. The success of GPs
in the reviewed literature supports the decision in our study.

An interesting and novel approach with GPs was the study by Ghassemi et al. [2015], in
which multi-task GPs were used to assess and forecast patient acuity. Whereas other studies
made use of the predictive mean of GPs for preprocessing and smoothing, this study used
the inferred hyperparameters for supervised learning. The correlation between and within
multiple time series was used to estimate parameters, instead of considering time series
separately. The approach was applied to two problems. The first was to estimate and forecast
the cerebrovascular autoregulation index by using the ICP and ABP signals. Data from 35
patients was collected over more than 24 hours at 0.1 Hz. The data was analysed in 10 minute
windows and the result was a 0.09 root mean squared error between the estimated and true
correlation coefficients. The second problem was to predict patient mortality using scores
and notes from the EMRs of 10202 patients. The data split used for performance analysis
was 70:30 (training:testing), and the AUC value achieved for predicting hospital mortality
was 0.81. Although both applications made use of low-resolution data, the main limitation in
the studies was computational cost, which was experienced in our study as well.

Colopy et al. [2015] made use of GP regression for prediction of HR time series. Five
signals were measured for 333 patients in the surgical trauma step down unit and downsam-
pled to 1-minute averages. Seven different sum combinations of covariance functions were
explored in the study, which was important in our covariance function considerations for the
GP applications. The models were trained sequentially on 5 windows of an hour long each,
and then tested on the following 2 windows of an hour long each. The windows were moved
through the entire dataset of one patient, to allow for several performance evaluations. It was
found that using the mean of the hyperparameters yielded superior results compared to the use
of the Maximum a posterior (MAP) of the hyperparameters. The study suggests exploration
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of Markov Chain Monte Carlo (MCMC) techniques to determine the most accurate posterior
values of the hyperparameters. The covariance functions yielding the best performance are

k = kSE1 + kSE2 + kWN (2.13)

and
k = kMat( 5

2 )
+ kSE2 + kSE3 + kWN (2.14)

Where kSE is the squared exponential function (numeric subscripts indicate functions with
different hyperparameters), kWN is the white-noise covariance function, and kMat( 5

2 )
is the

Matern( 5
2 )

covariance function (for a definition of the covariance functions see [Rasmussen
and Williams, 2006]). This study was very similar to our implementation of GPs for
smoothing the signals, and provided valuable guidance.

Multivariate LR and GPs were used to predict intracranial pressure episodes 30 minutes
in advance in a study by Güiza et al. [2013]. The patient cohort consisted of 264 traumatic
brain injury (TBI) patients with their ICP and MAP measured every minute. The Glasgow
Outcome Score (GOS) [Jennett and Bond, 1975] at 6 months was used to label patients into a
binary set (good or bad outcomes). A sigmoid function was applied to the GP (with squared
exponential covariance function) inferred mean and standard deviation values to produce
a probabilistic output. For the data split of 178:61 an AUC value of 0.87 was achieved for
30-minute predictions. The models including dynamic data outperformed those based solely
on static data, which indicates that the analysis of dynamic features holds promise.

Hidden Markov Models

Gultepe et al. [2014] made use of HMMs, Gaussian Mixture Models (GMMs), and NB
classifiers to predict patient lactate levels. The dataset consisted of 7 EHR collected variables
from 741 patients. The GMMs yielded the best results with an AUC of 1, and the HMMs
followed yielding and AUC of 0.9. This study indicates that HMMs and GMMs are effective
when applied to low-resolution datasets.

A study by Pimentel et al. [2015] fused features derived from ECG and ABP into a
hidden semi-Markov model (HSMM) (see Section 2.3.1), in order to detect heart beats. A
two-state heart beat HMM is a case of a ‘non-ergodic’ HMM. As shown in Figure 2.6, a
non-QRS period has to precede a QRS complex; a QRS complex cannot occur directly after
another QRS complex without a period of non-QRS activity. The mean delay between ABP
and ECG was dealt with by removing the first 250ms of the ABP feature vectors and zero
padding the end. Whereas this study mitigated the delay manually, our argument is that the
non-parametric nature of LSTMs would be able to handle the delays serendipitously. The
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wavelet transform, signal gradient, and signal quality were extracted and fed into the HSMM
framework. The features were downsampled to 50 Hz to increase the speed of computation.
An interesting aspect of this study is that the data analysed remained high-resolution even
though features were extracted. The reported performance was an average sensitivity of 0.9.

Fig. 2.6 ABP and ECG signals for two example heart beats. The beats in the ABP signal lag
the ECG signal due to the pulse transit time. Shaded areas resemble the QRS period, ‘state 1’
in an HMM and non-shaded areas are labelled as ‘state 2’. (Adapted from: Pimentel et al.
[2015])

Recurrent Neural Networks

Ongenae et al. [2013] compared the efficacy of RNNs to SVMs and NB in predicting the
need for dialysis between the fifth and tenth day after ICU admission. The dataset consisted
of roughly three days of low-resolution creatinine and diuresis measurements for each of the
830 patients of which only 82 required dialysis. The NB and SVM models were combined
with feature extraction methods, because, unlike RNNs, they ‘can not directly deal with
temporal data’. Echo state networks (ESNs) (Section 2.3.2), a recent development to improve
RNN training, was employed in this study. The RNNs (0.85 AUC) performed second best,
trumped by the NB (0.87 AUC) classifiers, which is understandable given that RNNs are not
well suited for long-term memory.

A study by Choi et al. [2015] used Gated Recurrent Units (GRUs) (Section 2.3.2) to
jointly forecast medication prescription and disease diagnosis along with their timing. Low-
resolution data collected from the EHRs of 263,706 patients was used in this study. The
models aimed to predict future diagnoses, medication and durations until the next event.
Dropout was used between the GRU and predictive layer as a regularizer. The predictive
layer was a softmax layer for predicting future codes and a rectified linear unit to predict the
duration until the next event. Performance evaluation was done by means of cross-validation
on an 85:15 split. The GRU model outperformed the NN and LR models it was compared to,
yielding an accuracy of 80% for prediction of diagnoses and medication codes, and a 72.3%
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accuracy for predicting the duration, disease and medication codes. The predictions were
made on a patient-independent basis, proving that acceptable generalisation could be made
across patients. The outcome is important, because GRUs and LSTMs are similar and the
better suited of the two for medical data, has yet to be determined.

Lipton et al. [2014] made use of LSTMs to classify patients in the paediatric ICU as
having one of a selection (128) of medical conditions, given multivariate physiological time
series. Multilabel classification was used since diagnoses are not mutually exclusive. Thirteen
hourly averaged variables were collected from an EHR system containing 10,401 medical
episodes that vary from 12 hours to several months. Variables without values were replaced
by ‘normal’ values as defined by domain experts, with the motivation being that clinicians
decide not to measure variables if they believe it to be normal. Each LSTM was trained
for 100 epochs using stochastic gradient descent (SGD) with momentum. For comparisons,
baseline models were chosen to be a multilayer perceptron (MLP) and LR classifiers trained
for each diagnosis. The MLP was trained for 1000 epochs and with 300 neurons in each
layer. Both raw time series and hand-engineered features were used as inputs to the MLP.
For the raw data, it was found that the first and last 6 hours of data yielded better results than
using the last 12 hours. Using data earlier in the patient’s stay was also considered in our
study, as the biological processes are unnatural during later stages of a patient’s stay, due to
clinician intervention.

The data split used for performance evaluation was 80:10:10, training:validation:testing.
Among the many performance metrics used in the study are micro- and macro-averaged
AUC values. The micro-averaged AUC value is the average AUC value for the entire dataset,
whereas the macro-averaged value weights the average AUC value according to the number
of samples in each class. The best performing LSTM model made use of dropout and target
replication (Section 2.3.2), and yielded a 0.856 micro-AUC, outperforming the strongest
baseline. A combination of the strongest baseline and the best LSTM model improved the
micro-AUC to 0.864. This study lies very close to the research in our study. However, the
key differentiator is our argument that the majority of the information is embedded in the
high-resolution data.

Other Approaches

Lugovaya [2005] made use of Linear Discriminant Analysis and a Majority Vote Classifier
to perform biometric human identification. The ECG signals of 90 patients were analysed,
and a correct classification rate of 0.96 was achieved. The argument presented is that shapes
of ECG waveforms depend on the anatomic features of the human heart and body, and can
thus be used as a human biometric characteristic [Biel et al., 2001; Yi et al., 2003]. ECG
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signals are governed by multiple individual factors, in particular, the presence and nature
of pathologies, and the shape and position of the heart. ECG is known to be variable, for
example, taking medication may temporarily change the configuration of the cardiac cycle
and some pathologies gradually change the form of the cardiac cycle. This is important to
consider when our study would attempt to find similarities in pathology induced waveform
features and generalise across certain physical induced features. An ensemble of filters
was used to preprocess the ECG signals. Wavelet drift correction was used for baseline
drift correction, and an adaptive bandstop filter, low-pass filter, and smoothing was used
to remove both power-line and high-frequency noise. The study alludes to ECG not being
unique enough for identification in large groups, but that is an application for smaller groups.
Similarly, work by Shen et al. [2002] combined template matching and a decision-based
NN to classify 20 subjects with 100% accuracy. However, results from such a small dataset
should be interpreted with caution.

NB classifiers (0.99 accuracy) outperformed DTs (0.97 accuracy) in predicting a patient’s
readmission to ICU [Braga et al., 2014]. Six variables were used in total, of which none were
high resolution, and the study concluded that the inclusion of static variables, such as age
and gender, is beneficial. The results sit well with a study by [Ramon et al., 2007], in which
NB outperformed DTs and RFs in mortality prediction.

Caballero Barajas and Akella [2015] made use of generalised linear dynamic models to
model the probability of mortality as a latent state that evolves over time. In addition to the
usual clinical data, the models made use of text features, based on statistical topical models
and medical noun phase extraction, to provide the context of the patient and in doing so,
improve the model accuracy. Essentially, the model is similar to standard LR. However, the
patient features are aggregated into a patient state that evolves over time, and a weighting
vector β made the model effective for a patient-independent approach, by allowing the
incorporation of static variables relating to patients groups (such as age).

Static and dynamic variables recorded every 3 hours, were obtained from the EMR data
of 15,000 patients. Dropouts were replaced using a regularised Expectation Maximization
(EM). Performance evaluation was done by means of 5-fold cross-validation, and the model
yielded an AUC of 0.87, outperforming RFs, LR, and NB classifiers [Caballero Barajas and
Akella, 2015]. Extensive work was done on text extraction, which could be a beneficial
process for improving classification based on the observations of clinicians and allowing
earlier deployment of models when there is an abundance of text descriptions and a shortage
of time series data. This provides the means for clinicians to work with machines and will
form part of future work in our study.
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Comparison

A summary of the studies reviewed in general medicine is provided in Table 2.1. The table
indicates the variability in the number of patients used for the different studies, and also the
variety of medical conditions addressed, with mortality receiving the most attention. Table
2.2 compares the different studies based on the main technique investigated. From the table,
it is evident that most of the research efforts were based on NNs, SVMs, and LR. It could be
argued that the best performance was obtained by the DT employed by Kim et al. [2011]
for mortality prediction over many patients. Another study showing high performance is the
implementation of HMMs by Gultepe et al. [2014], which also yielded a high AUC value.
The studies by Lipton et al. [2015] and Choi et al. [2015], which are similar to our work,
achieved a micro-AUC (average AUC value for all classes) of 0.856 and an accuracy of
0.8 respectively on datasets containing orders of magnitude more patients than our datasets.
Moreover, it is interesting to note that the studies by Lugovaya [2005] and Oresko et al.
[2010] achieved similar accuracies on a similar number of patients for applications with
almost opposite targets, the prior to differentiate between patients, and the latter to find
similarities among patients (classes).

2.2.2 Neonatal Intensive Care Unit

Work reported in this section identified studies on the application of machine learning in
the NICU. The studies were grouped according to the medical condition addressed because
multiple machine learning techniques would often be implemented in a single study.

Seizure Detection

Seizure is common in premature infants [Gangadharan, 2013]. Faul et al. [2007] made use
of windowed GPs to model EEG data for the detection of seizures in neonates. In total,
51 hours of 12-channel EEG data from 4 patients was used in this study. In the interest of
computation time, the signals were decimated to 66 Hz. The sliding window was chosen to
be 1s long, with an overlap of 1

6s, because GPs have been known to obtain good results with
small datasets [Gregorcic and Lightbody, 2005], and the computation time greatly increased
with an increase in the number of training points. The overlap ensures that the GP output is
smooth. The variance inferred by the GP was used as the indicator for seizures. It was found
that seizure EEG signals are much more deterministic than non-seizure EEG signals, and
as a result, a small variance inferred by the GP indicates the onset of a seizure. The model
yielded an accuracy of 0.83, outperforming a Wavelet energy method and an autoregressive
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Table 2.1 Summary of general medical machine learning studies

Study Targets Inputs Methods Performance Measure na

Ramon et al. [2007] Mortality Demographic and daily
measured variables

RFb , DT, NB, TANc 0.82, 0.79, 0.88, 0.86 AUC 1,548

Churpek et al. [2016] Mortality age, num-ICU-stays,
admission time, rou-
tinely collected lab
values

SVM, RF, NN, LR, DT 0.786, 0.801, 0.782,
0.77, 0.734

AUC 269,999

Kim et al. [2011] Mortality 15 non-temporal vari-
ables

SVM, LR, NN, DT 0.876, 0.871, 0.874,
0.98

AUC 23,446

Clermont et al. [2001] Mortality Temp, HR, BP, RR,
SpO2

d , acid-base sta-
tus, sodium, nitrogen,
creatinine, albumin,
bilirubin, glucose,
WBCe count, GCSf ,
urine, haematocrit

LR, NN 0.839, 0.836 AUC 1,647

Ghassemi et al. [2015] Mortality EMRg data, clinical
notes

GP 0.81 AUC 10,202

Güiza et al. [2013] ICPh ICPi , MAPj GP 0.87 AUC 264

Scalzo and Hu [2013] Artefacts ICP SVM 0.16 Specificity at 0.99 sen-
sitivity

108

Ongenae et al. [2013] Need for Dialysis diuresis, creatinine SVM, RNN, NB 0.84, 0.85, 0.87 AUC 830

Lipton et al. [2015] Diagnosis Temp, HR, BPk , cap-
illary refil rate, CO2,
GCS, pH, RR, SpO2,
glucose

SVM, LR, RNN 0.83, 0.855, 0.856 micro-AUC 10,401

Choi et al. [2015] Diagnosis, prescrip-
tion, and timing

codes from EHRl RNN 0.8 Accuracy 263,706

Zhai et al. [2014] ICU transfer continuous, narrative,
and nominal measure-
ments

LR 0.91 AUC 7,298

Lugovaya [2005] Biometric identifica-
tion

ECG LDA 0.96 Accuracy 90

Shen et al. [2002] Biometric identifica-
tion

ECG NN 0.8 Accuracy 20

Oresko et al. [2010] Cardiovascular disease
detection

ECG NN 0.93 Accuracy 48

Tu and Guerriere
[1993]

Risk stratification 15 nominal, narrative,
and discrete variables

NN 0.7 AUC 1,682

Zhang and Szolovits
[2008]

Patient deterioration HR, pulse rate, BP, RR,
SpO2

NN, RF 0.99, 0.97 Accuracy 11

Gultepe et al. [2014] Risk of hyperlactemia Temp, RR, WBC
count, MAP, lactate
levels, mortality, sepsis
occurrence

HMM 0.9 AUC 741

Pimentel et al. [2015] Detect heart beats ECG, ABP HSMM 0.9 Average Sensitivity 410

aNumber of subjects in study
bRandom Forest
cTree Augmented Networks
dOxygen saturation
eWhite Blood Cell
fGalsgow Coma Scale
gElectronic Medical Record
hIntracranial pressure
iIntracranial Pressure
jMean Arterial Pressure
kBlood Pressure
lElectronic Health Record
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Table 2.2 Machine learning techniques applied in general medicine (AUC values)

Study SVM LR NN GP HMMa RNN RF DT Other nb Validation method

Scalzo and Hu [2013] 0.16c 108 3-fold cvd

Zhai et al. [2014] 0.91 7,298 10-fold cv
Kim et al. [2011] 0.876 0.871 0.874 0.98 23,446 first 24h for training
Clermont et al. [2001] 0.839 0.836 1,647 1200:447 split
Shen et al. [2002] 0.8e 20 20 b.p.p.f for training
Oresko et al. [2010] 0.93g 48 3-fold cv
Tu and Guerriere [1993] 0.7 1,682 713:969 split
Zhang and Szolovits [2008]h 0.99 0.97 11 10-fold cv
Ghassemi et al. [2015] 0.81 10202 70:30 split
Güiza et al. [2013] 0.87 264 178:61 split
Gultepe et al. [2014] 0.9 741 10-fold cv
Pimentel et al. [2015] 0.9i 410 200:210 split
Ongenae et al. [2013] 0.84 0.85 0.87(NB) 830 30-fold cv
Lipton et al. [2015]j 0.83 0.855 0.856 10,401 80:10:10 split
Choi et al. [2015] 0.8k 263,706 85:15 split
Ramon et al. [2007] 0.82 0.79 0.88(NB) 1548 10-fold cv
Churpek et al. [2016] 0.8 0.79 269,999 60:40 split
Lugovaya [2005] 0.96l(LDA)90 65:35 split

aVariations of
bNumber of patients in study
cSpecificity at 0.99 sensitivity
dCross-validation
eAccuracy (not AUC)
fbeats per patient
gAccuracy (not AUC)
hAccuracy (not AUC)
iAverage sensitivity (not AUC)
jmicro-AUC
kAccuracy (not AUC)
lAccuracy (not AUC)
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model. The performance evaluation used in the study remains unclear, thus the study was
omitted from the comparison.

Greene et al. [2007] achieved an AUC of 0.73 for classifying the ECG epochs of 7 term
neonates as ‘seizure’ or ‘non-seizure’ with a linear discriminant classifier. For a similar
classification, a sensitivity of 100% at an operating point of 4 false detections per hour, was
reported by Temko et al. [2011] when using SVMs on EEG channels. The data from 17
full-term newborns in the NICU was used, amounting to a total of 1,920 seizures epochs. The
leave-one-out [Rangayyan, 2004] approach was used for performance analysis. Fifty-five
features were extracted from the EEG and preprocessing consisted of Fast Fourier Transform,
anti-aliasing, and downsampling.

Ansari et al. [2015] made use of a multi-stage classifier for detection of neonatal seizures
from EEG signals. The first stage is a heuristic (if-then) model, which mimics a human
expert. The second is a pre-trained SVM which reduces the number of false alarms. During
the first stage, the EEG signal was decomposed using discrete wavelet transform (DFT) to
characterise the low-frequency activities in EEG. This was an important implementation
because DFT was a consideration in the early stages of our study. Seventeen scalp electrodes
were filtered between 1 and 20 Hz for the 35 patients in the dataset. The reported performance
was a sensitivity of 72% and a false positive rate (specificity) of 1.5 per hour. Both this and
the study by Temko et al. [2011] are important for our study in determining the efficacy and
relevance of preprocessing methods. The datasets used had a similar amount of patients as
ours and also made use of high-frequency data, but the models made classifications based on
only one variable, where our model would ideally detect interdependencies between multiple
signals.

Artefact Detection

Williams et al. [2006] made use of a Factorial Switching Kalman Filter (FSKF) to model
NICU artefactual and physiological data patterns. The developed technique is able to detect
artefacts in data and provide the type of artefact among a predetermined selection (transcu-
taneous probe recalibration, disruption from sampling arterial blood, probe disconnection,
bradycardia, and open incubator). The data consisted of 9 signals collected at 1 Hz for 8
infants. Four randomly chosen patients were used for training and the rest for testing. Our
implementation selects random time series segments from all patients in order to improve
model generalisation. The mean AUC value for classifying artefacts was 0.89, with the
highest AUC achieved being 0.99 for the detection of blood samples being taken. The FSKF
outperformed the Factorial HMM (0.83 mean AUC), due to the latter not having knowledge
of dynamics and changes in baseline physiological levels over time and between patients.
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The Factorial HMM has no hidden continuous state, where the FSKF does [Ghahramani,
2001]. Although the data has a lower resolution than that in ours, this study alludes that
HMMs should not by default be considered the best models for time series.

To reduce the number of false alarms, DTs have been employed for the detection of
artefacts in physiological signals [Tsien et al., 2000]. Roughly 3 hours of 4-signal data were
collected at 1-minute intervals for 67 patients. Each signal was modelled separately with
both a DT and an LR model as the baseline. Data preprocessing included abstraction of the
raw data signals into time series features (moving mean, median, best fit linear regression,
slope, absolute value of best fit linear regression slope, standard deviation, maximum value,
minimum value, and range). The DTs outperformed LR with an average AUC of 0.94. The
time series features extracted present appropriate examples for our study.

Patient Deterioration

Kernel Density Estimators (KDE), Kernel Principal Component Analysis (KPCA), and
One-Class SVMs (OCSVMs) were compared for novelty detection [Gangadharan, 2013].
The dataset consisted of roughly 17 days of continuous data for each of the 9 patients.
Six variables were collected with the Intensive Care Monitoring Plus software package
(ICM+) [Smielewski, 2011], at 200 Hz and downsampled to 1 Hz. Noise and artefacts from
momentary movements were reduced by means of a 5s moving average filter. Short (<60s)
dropouts were replaced by the last recorded value, and the mean and standard deviation of
the training data was used to replace longer dropouts. Artefact rejection limits were manually
set through observations of histograms for each parameter, and by flagging signal values
that are impossible. A dwell period of 100s was used, meaning the signal had to sustain a
value exceeding a threshold for more than 100s for a positive to be registered. This mitigates
momentary rises in the signal, probably due to artefacts [Townsend et al., 2004]. A refractory
period of 3 minutes yielded the best classification performance. The refractory period is the
time a detector becomes inactive after detection because successive positive or false positive
detections are assumed to be part of the first. For each method compared in this study, the
first hour of each dataset was used as a reference dataset for a stable patient condition, and
the rest was classified as stable or abnormal.

The best performing model was the OCSVM, with a partial AUC of 0.71. The partial
AUC of the ROC was calculated for a sensitivity greater than 0.85. To account for the
longitudinal variation of physiological parameters within the first week of life, the model
was retrained every 24 hours, with the first model serving as a reference map to provide
a consistent novelty output. However, this did not improve the original model. Another
interesting finding is that weighting the inputs did not improve the models. The optimum
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results were obtained when the data was preprocessed to extract 3 principal components with
PCA and 120 clusters with k-means clustering. The hand-engineered approach of this study,
such as those used for dropouts, artefact rejection, and dwell period are important to our
study in providing a scope for parameters that can be specified or learned. The classification
performance achieved in this study is not adequate for medical use and we aim to prove
that high-resolution data combined with deep learning techniques could provide acceptable
indicators in practice.

Late-onset Sepsis

Late-onset sepsis is a bloodstream infection, usually bacterial, that occurs 72 hours after
birth. Additionally, sepsis is the number one cause of death in ICUs [Ongenae et al., 2013].
Detection of reduced variability and transient deceleration in HR have proved effective for
early stage diagnosis of sepsis in neonates [Shavdia, 2007]. A study by Mani et al. [2014]
found that DTs (0.65 AUC) outperformed SVMs, NB, LR, and RFs in the detection of
late-onset sepsis, which contradicts comparisons done by Ramon et al. [2007] (ICU based)
and Churpek et al. [2016], where DTs had the worst performance.

Stanculescu et al. [2014] made use of an autoregressive HMM (AR-HMM) to predict late-
onset sepsis. The AR-HMM enhances the HMM architecture (Section 2.3.1) by introducing
direct stochastic dependence between observations. It explicitly models the (possible long
range) correlations in sequential data. Samples drawn from an AR-HMM are smoother
than samples drawn from an HMM, making them a better generative model for time series
problems. Roughly 30 hours of 4-channel data were collected at 1 Hz for 38 patients, of
which half had sepsis. The model yielded an AUC of 0.8 and made extensive use of domain
knowledge to facilitate inference and learning.

Morbidity Prediction

Saria et al. [2010] used a regularised LR for predicting infant morbidity based on the first
3 hours after admission for 138 patients. The probabilities of morbidity, stemming from
the probability of each vital sign for a patient-specific class, were aggregated into a single
score [Clifton et al., 2015]. Ten hand-engineered features were used as input to the model,
which yielded an AUC of 0.92 for prediction of morbidity, and AUC values of 0.97 and 0.98
for determining the risk of infection and cardiopulmonary disease respectively. The model
had superior discrimination of neonatal morbidities compared to commonly used severity
scores (Apgar, SNAP II, SNPPE II, and CRIB). Although the data is low-resolution and the
technique does not model sequences, the study yielded good results.
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Predicting Ventilation Duration

Tong et al. [2002] made use of NNs to classify patients according to ventilation duration.
This was an extension of a project based in the adult ICU. Data from 1,321 infants were used
to predict ventilation duration being less than/equal to, or more than 8h (≤ or >). Similar to
the adult study, 6 variables were used, and the training and testing datasets consisted of 881
and 440 randomly selected patients respectively. The maximum correct classification rate
obtained was 0.93, which was similar to the adult study (0.91). The results are interesting
because it is expected that the noisier data from the NICU would result in worse classification
performances compared to the classification based on the cleaner data from adult ICUs. Our
study was based on datasets from both the NICU and ICU, and this study indicates that
results from both should be similar.

Comparison

A summary of the NICU based studies reviewed is provided in Table 2.3. The results indicate
that SVMs are better suited for temporal data, and DTs and NB classifiers are well suited
when there is a combination of temporal and non-temporal data. The datasets used in the
studies had a similar number of patients to the datasets used in our study. The findings sit
well with that of the adult ICU based studies. Zhai et al. [2014] made use of LR to predict
the need for paediatric ICU transfer within the first 24 hours of admission, achieving an AUC
of 0.91, similar to that of [Saria et al., 2010]. Studies such as those by Ansari et al. [2015];
Temko et al. [2011]; Tsien et al. [2000] made extensive use of hand-engineered features that
provided a wide range of examples to consider in our study.

Table 2.4 compares the performance of the machine learning techniques applied in the
NICU. The LR and SVM algorithms were the most popular among the studies. DTs which
are widely used in the ICU, due to their visual and interpretable representations of data, were
not as popular as expected in the NICU. Little attention was received by NNs, which are
often in medicine seen as black-box techniques. It is also evident that no research has been
done on deep learning techniques applied to NICU data. The table elucidates the difficulty in
comparing the models and studies. The best performance could be attributed to the DTs in the
study by Tsien et al. [2000], because it contained a good number of patients, compared to the
other studies, and achieved a high AUC value. Another decent performing model would be
LR in the study by [Saria et al., 2010] because it also achieved a high AUC value with more
patients than the aforementioned study, and an arguably more complex classification problem.
However, the study evaluated performance with the leave-one-out technique, which would
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Table 2.3 Summary of NICU machine learning studies

Study Targets Inputs Methods Performance Measure na

Le Compte et al. [2010] Insulin sensitivity
(pdfb)

Insulin and nutrition
records, blood glucose

2D KDEc 0.934 Accuracy at 90% confi-
dence interval

21

Gangadharan [2013] Patient deterioration
(binary)

HR, sysBPd , diaBPe ,
temp, RR, SaO2

KDE, KPCAf ,
OCSVMg

0.77, 0.8, 0.84 Specificity at 90% sen-
sitivity

9

Temko et al. [2011] Seizure EEG SVM 1 Sensitivity with 4 FD/h 17

Ansari et al. [2015] Seizure EEG SVM 0.72 Sensitivity with 1.5
FD/h

35

Greene et al. [2007] Seizure ECG LD 0.73 AUC 7

Mani et al. [2014] Late-onset sepsis 101 temporal and non-
temporal variables from
EMR

SVM, NB, RFh , KNNi ,
LBRj , TAN, LR, DT

0.61, 0.64, 0.57, 0.54,
0.62, 0.59, 0.61, 0.65

AUC 299

Stanculescu et al.
[2014]

Late-onset sepsis SpO2
k , HR, CTl , PTm AR-HMM 0.8 AUC 38

Tsien et al. [2000] Artefacts HR, mean BP, PaCO2,
PaO2

DT, LR 0.94, 0.15 AUC 67

Williams et al. [2006] Artefacts HR, sysBP, diaBP,
TcPO2

n , TcPCO2
o ,

SpO2, CT, incubator
temp.

FSKF, FHMMp 0.89, 0.83 AUC 8

Saria et al. [2010] Morbidity (score) HR, SpO2, RR, birth
weight, gestational age

LR 0.92 AUC 138

Tong et al. [2002] Ventilation duration (bi-
nary)

low BP, low temp, low
serum pH, presence
of seizures, urine,
PaO2/FiO2

q ratio

NN 0.93 CCR 1321

aNumber of subjects in study
bprobability density function
cKernel Density Estimator
dSystolic blood pressure
eDiastolic blood pressure
fKernel Principal Component Analysis
gOne-Class SVM
hRandom Forest
iK-Nearest Neighbours
jLinear Bayesian Regression
kOxygen saturation
lCore temperature

mPeripheral temperature
nTranscutaneous oxygen tension
oTranscutaneous carbon dioxide tension
pFactorial Hidden Markov Model
qFraction of inspired oxygen



32 Literature Review

always return higher performance compared to the larger data splits used for evaluation in
the other studies.

Table 2.4 Machine learning techniques applied in the NICU (AUC values)

Study LDa KDEb SVM DT NN HMMc LR NB TANd ne Validation method

Greene et al. [2007] 0.73 7 10-fold cvf

Williams et al. [2006] 0.83 8 50% split
Stanculescu et al. [2014] 0.8 38 leave-1-out
Le Compte et al. [2010] 0.93g 21 5-fold cv
Gangadharan [2013]h 0.63 0.71 9 First hour training data
Temko et al. [2011] 0.9i 17 5-fold cv
Ansari et al. [2015] 0.72j 35 17:18 split
Mani et al. [2014] 0.61 0.65 0.61 0.64 0.59 299 5-fold cv
Tsien et al. [2000] 0.94 0.15 67 (70:9:21)% split
Saria et al. [2010] 0.92 138 leave-1-out
Tong et al. [2002] 0.93k 1321 881:440 split

aLinear Discriminant Classifier
bKernel Density Estimator
cVariations of
dTree Augmented Networks
eNumber of patients in study
fCross-validation
gAccuracy (not AUC)
hValues of pAUC at 0.85 sensitivity
iSensitivity (not AUC)
jSensitivity (not AUC)
kCorrect classification rate

2.3 Machine Learning for Sequential Data

Sequential patterns are valuable, because they can be exploited to improve the prediction
accuracy of classifiers. In this section we discuss machine learning techniques suited for
sequential data.

2.3.1 Hidden Markov Models

An HMM is a stochastic process with a hidden (not observable) underlying stochastic process.
This underlying stochastic process can only be observed through another set of stochastic
processes that produce the sequence of observed symbols. An HMM has a finite number of
hidden states in the model, and within a state, the signals possess some measurable distinctive
properties. At each clock time, t, a new state (which could be the same state) is entered
based on a transition probability distribution, which depends on the previous state t − 1
(the Markovian property). After each transition, an observation output symbol is produced
according to the probability distributions which depend on the current state [Rabiner and
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Juang, 1986]. The HMM λ is defined as

λ = (A,B,π) (2.15)

where A = {ai j} is the transition matrix, defining the probability of moving from state i at
time t to state j at time t+1. The emission distribution, B = {b j(Ot)}, defines the probability
that state j generates the observations Ot at time t. π = {πi} is the initial state distribution,
defining the probability of being in state i at the first time point. The probabilistic description
provided by HMMs can be used to provide a statistical confidence measure in its analysis
of a given signal [Hughes and Tarassenko, 2006]. Furthermore, HMMs can be viewed as a
simple form of dynamic bayesian networks [Dagum and Galper, 1993; Dagum et al., 1991;
Murphy, 2012], which is a BN that relates variables over adjacent time steps. A variant of the
HMM, called a hidden semi-Markov model (HSMM), and used in the aforementioned study
by Pimentel et al. [2015], is a consideration for our future work, in order to model patient
states more effectively. An HSMM is defined as λ = (A,B,π, p) where p = {pi(d)} is the
explicitly defined probability of remaining in state i for duration d. Here only the transition
between different states is Markovian.

HMMs provide a sound and elegant methodology, but they suffer from a fundamental
drawback: the structure of the HMM is often a poor model of the true process producing
the data [Dietterich, 2002]. The Markov property is responsible for part of the problem.
The relationship between two time separated values (e.g., y1 and y4) must be communicated
through the intervening values (e.g., y2 and y3). A first-order Markov model (i.e., where P(yt)

only depends on yt−1) cannot in general capture these kinds of relationships. Additionally,
the performance of HMMs depends on the specified number of hidden states. Murphy
[2012] suggests finding the optimal number of states by means of a grid search over a
specific range, by using reversible jump MCMC, or by using variational Bayes to remove
unwanted components. Infinite HMMs (iHMMs) attempt to mitigate this limitation via a
non-parametric approach, based on the hierarchical Dirichlet process [Beal et al., 2001].

Chatzis and Tsechpenakis [2010] derived an efficient variational Bayesian inference
algorithm for the infinite Hidden Markov Random Field (iHMRF) model. Methods using
likelihood- or entropy-based criteria, and reversible MCMC methods, impose heavy com-
putation requirements and yield noisy model size estimates. When the number of clusters
is unknown a priori, Dirichlet process (DP) mixture models are well suited non-parametric
Bayesian statistical methods. Infinite mixture models based on the DP have demonstrated
promising results in image segmentation, and the variational Bayes approach has improved
scalability in terms of computational cost compared to Monte Carlo techniques. The iHMRF
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yielded better results (mean probabilistic rand index [Unnikrishnan et al., 2005] of 72) than
the DP mixture and the Markov Random Field method.

Another limitation of HMMs is the assumption of statistical independence between
successive observations within a state [Hughes and Tarassenko, 2006]. Physiological signals
clearly exhibit strong correlations over time. The transition stationary assumption also limits
HMMs in our application. The assumption is concerned with the time invariant nature of the
state transition probabilities. For any two times t1 and t2, the assumption is that

P(st1+1 = j|st1 = i) = P(st2+1 = j|st2 = i) (2.16)

The individual state durations follow a geometric distribution as a consequence of the time-
invariant transition probabilities. The distribution can lead to physiologically implausible
segmentations and can be a poor match to the true state duration distributions of many
real-world signals. Several alternatives have been explored to try to overcome the limitations
of the HMM, one of which is conditional random fields (CRFs).

CRFs are discriminative models, for which the principal advantage over generative
models is being better suited to include rich, overlapping features [Sutton and McCallum,
2010]. The classic label bias problem is solved by CRFs, leading to superior performance
compared to HMMs, when the true distribution has higher-order dependencies than the model,
which is often the case in practice. A disadvantage of discriminative models, especially for
medical data, often lacking annotations, is that supervised applications are less natural than
that for generative models. Results from a part-of-speech tagging experiment by Lafferty et al.
[2001] did not show a significant difference in HMM and CRF performance. Since LSTMs
are the focus of our study, HMMs, which have received more attention in the literature
compared to CRFs, were used as our baseline model.

2.3.2 Recurrent Neural Networks

The characteristic that makes RNNs stand out from other machine learning methods is their
ability to learn and carry out complicated transformations of data over extended periods of
time [Graves and Jaitly, 2014]. Lipton [2015] provides a thorough review of RNN’s. Here it
is argued that since the earliest conception of artificial intelligence, such as Alan Turing’s
"imitation game" [Turing, 1950], researchers have sought to build systems that interact with
humans in time, hence the motivation for models of sequential behaviour.

Standard operations become infeasible with an HMM when the set of possible hidden
states grows large, because the Viterbi algorithm used to perform efficient inference with
HMMs, scales in time as O(N2T ) [Viterbi, 1967], where N is the number of states, and T is
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the sequence length. The transition matrix, with time-adjacent state transition probabilities,
is of size N2. To avoid the Markovian limitation, the models can account for larger context
windows by creating a new state space equal to the cross product of the possible states at
each time in the window. The new state space becomes a combination of the current and
previous states, resulting in each transition being dependent on more than one previous
state. However, Markov models are rendered computationally impractical for modelling
long-range dependencies, because the state space grows exponentially with the size of the
larger context windows [Graves et al., 2014]. In RNNs, each hidden state at any time step
can contain information from a nearly arbitrarily long context window, because the number
of distinct states that can be represented by a hidden layer of nodes grows exponentially with
the number of nodes in the layer.

RNNs have been known to be difficult to train because the errors are backpropagated
across many time steps. The derivative of the error with respect to the inputs, can be
decomposed into terms that involve the product of Jacobians, which tend to vanish or explode
[Bengio et al., 2013, 1994; Lipton, 2015; Ongenae et al., 2013; Yao et al., 2015]. As shown
in Figure 2.7, RNNs allow connections from one neuron in a hidden layer, to all the neurons
in the hidden layer of the next time step. Echo state networks (ESN) is a recently developed

Fig. 2.7 A recurrent neural network unfolded across time steps. Adapted from: [Lipton,
2015]

method that is optimised to handle time series data and improve the training of RNNs. Figure
2.8 illustrates the general layout of an ESN, consisting of l output nodes, k input nodes and n
reservoir nodes. Each node is a perceptron with a sigmoid activation function. At a given
time, the state of a node is the weighted sum of the last fed inputs, namely

x[t +1] = (1−µ)x[t]+µ f (Wx[t]+Winu[t]) (2.17)
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where u is the input matrix and x[t] denotes the network state at time t. The k×n matrix Win

contains the weights between input and reservoir nodes and the n×n matrix W contains the
recurrent weights between the reservoir nodes. µ ∈ (0,1] is the leaking rate, which can be
regarded as the speed of the reservoir update dynamics discretized in time, and f is a sigmoid
wrapper.

Fig. 2.8 Echo state network general layout. Input, reservoir and output nodes are represented
by circles. Optional connections are denoted by dotted arrows. Arrows represent non-zero
weighted connections. (Adapted from: Ongenae et al. [2013])

A caveat for the use of deep learning techniques such as RNNs is the computational
expense. Sutskever et al. [2014] made use of 8 GPUs to train a language translation model,
which took 10 days to train. Four GPUs were used to train each of the 4 hidden layers
containing 1,000 nodes. The other GPUs were used to calculate the softmax, and the
implementation was coded in C++. The input vocabulary contained 160,000 words and the
output vocabulary contained 80,000 words. This dataset has more samples than the dataset in
our study, but the sequences are an order of magnitude shorter, which implies that our study
might require even more computation.

A study by Graves [2013] demonstrated that RNNs can be used to generate complex
sequences with long-range structure, simply by predicting one data point at a time, and
using the new output as input for the next prediction. The study made use of a ‘deep’ RNN,
composed of stacked LSTM layers. The problem, common to most conditional generative
models, is that the models have little opportunity to recover from past mistakes if predictions
are based on few inputs, which have themselves been predicted by the model. A stabilising
effect is created by a longer memory. This is where the long short-term memory (LSTM)
architecture is introduced.
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Long Short-Term Memory

RNNs based on Long Short-Term Memory (LSTM) units were originally introduced in
[Hochreiter and Schmidhuber, 1997] and have since yielded state-of-the-art results for prob-
lems in genomic analysis, image captioning, natural language processing, and handwriting
recognition [Auli et al., 2013; Graves et al., 2009; Sutskever et al., 2014; Vinyals et al., 2015;
Xu et al., 2007]. The key benefit being that LSTMs can capture nonlinear dynamics and
long-range dependencies. Kalman filters, CRFs, and Markov models are sequential models
that are ill-equipped to learn long-range dependencies. Results from speech recognition
have shown that LSTMs outperform other models using raw features, which minimises the
need for preprocessing and feature engineering [Lipton et al., 2015]. A similar variant of
RNNs is the gated recurrent unit (GRU) proposed by Cho et al. [2014], where each recurrent
unit adaptively captures dependencies of different time scales. The performance of GRUs
was found to be comparable to LSTMs in an empirical evaluation of RNNs on sequence
modelling [Chung et al., 2014].

We introduce the LSTM architecture based on the description in Graves [2013]. Each
j-th LSTM unit maintains a memory c j

t at time t, unlike the recurrent unit, which simply
computes a weighted sum of the input signals and applies a nonlinear function. Both the
LSTM unit and GRU have gating units, that modulate the flow of information inside the unit.
It is a gate in the sense that when the value is zero, the flow from the source node is cut off.
Moreover, both share additive components of their update from t to t −1, which is missing
in the traditional recurrent unit. The jth-layer activation h j

t , or the output of the LSTM unit is
then

h j
t = o j

t tanh(c j
t ), (2.18)

where o j
t is an output gate that modulates the amount of memory content exposure. The

output gate is computed by

o j
t = σ(Woxt +Uoht−1 +Voct)

j, (2.19)

where W and U are the input weight matrices and hidden weight matrices respectively, and V
are diagonal matrices. σ is a logistic function and the memory cell c j

t is updated by partially
forgetting the existing memory and adding a new memory content c̃ j

t :

c j
t = f j

t c j
t−1 + i j

t c̃ j
t , (2.20)
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where the new memory content is

c̃ j
t = tanh(Wcxt +Ucht−1)

j. (2.21)

A forget gate f j
t modulates the extent to which existing memory is forgotten, and an input

gate i j
t modulates the degree to which new memory content is added to the memory cell. If

the forget gate is set to allow almost zero decay, the learning of long-range dependencies is
enhanced. Gates are computed by

f j
t = σ(Wf xt +Uf ht−1 +Vf ct−1)

j, (2.22)

i j
t = σ(Wixt +Uiht−1 +Vict−1)

j. (2.23)

An LSTM unit is able to decide whether or not to keep the existing memory via the
introduced gates, unlike the traditional recurrent unit, which overwrites its content at each
time-step. Intuitively, the LSTM unit detects important features from an input sequence
during early time steps and is able to carry the existence of the feature over the entire sequence,
hence, capturing potential long-term dependencies. Figure 2.9 illustrates schematics of the
LSTM and GRU. A feature of the LSTM that is missing from the GRU is the controlled
exposure of the memory content (output gate). The GRU exposes its full content without any
control, and it is this increased control of the LSTM that motivated our investigation of their
application to the often noisy medical data.

Gers and Schmidhuber [2000] proposed peephole connections that pass from the internal
state directly to the input and output gates of the same nodes, without having to first be
modulated by the output gate. These connections have been found to improve performance
on timing tasks where the network is required to learn to measure precise intervals between
events. This could be important in medicine when for example, attempting to determine
the time between onset of physiological symptoms and the underlying change in vital signs.
Lipton [2015] uses the following example to describe the peephole connection: consider a
network which must learn to count objects and emit a desired output when n objects have
been seen. The network might learn to increase the internal state by some fixed amount of
activation after seeing each object. When the nth object is seen, the network needs to know
to let out content from the internal state so that it can affect the output. The peephole allows
the output gate oc to know the content of the internal state sc, which in this scenario acts as
an input to oc.
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(a) (b)

Fig. 2.9 Illustration of (a) LSTM and (b) Gated Recurrent units. (a) c and c̃ denote the
memory cell and the new memory cell content. i, f and o are the input, forget and output
gates, respectively. (b) z and r are the update and reset gates, h̃ and h are the candidate
activation and the activation. (Adapted from: Chung et al. [2014])

Another variant, Bidirectional RNNs, have yielded good results in language processing,
but it is not an appropriate algorithm for online applications because it requires sequence
elements after the sequence element being predicted or classified. A bidirectional LSTM
model (0.82 accuracy) has outperformed an HMM model (0.7 accuracy) in the task of
handwriting recognition [Lipton, 2015].

LSTMs and GRUs were compared in [Chung et al., 2014] by means of a polyphonic
music dataset from Boulanger-Lewandowski et al. [2012] and a speech modelling dataset
from Ubisoft1. Similar to our study, RMSprop was used to optimise the model. The norm of
the gradient was clipped after each update, to remain smaller or equal to one and prevent
exploding gradients. The validation dataset was used for early stopping during training. The
study demonstrated the clear advantage of using gated units in RNNs, but the results for the
comparison of LSTMs and RNNs remained inconclusive. The study indicates that the type
of gated recurrent unit may greatly depend on the dataset and the corresponding task.

A study by Lee et al. [2015] compared the performance of rectified linear units [Le
et al., 2015], LSTM units, and GRUs in RNNs to model DNA sequences and to detect splice
junctions thereon. The GRU and LSTM models had a 4-60-30-3 structure and an increase in
the number of layers or neurons did not improve performance. The LSTM model yielded the
best performance with an F1-score of 0.94, and all the RNN models outperformed SVM and
dynamic Bayesian network methods.

1http://www.ubi.com/
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Yao et al. [2015] introduced the use of a depth gate, which connects the memory cells of
adjacent layers in an LSTM RNN. The result is a linear dependence between lower and upper
layer recurrent units. The depth gate is a function of the memory cell in the lower layer, the
input and the previous memory cell of the current layer. The depth-gated LSTM, standard
LSTM, and the GRU architectures were compared in machine translation applications. All
the models made use of 200 nodes in each hidden layer, and experimentation was done with
depths of 3, 5, and 10. The depth-gated LSTM is considered a simple variant of Grid LSTM
[Kalchbrenner et al., 2015], that has a gate function, depending on depth and time, only on
memory cells. For machine translation, the depth-gated LSTM outperformed the GRU and
standard LSTM architectures, with the GRU performing the best with 3 layers, and LSTM
performing the best with 5 and 10 layers.

The largest study to date (5,400 experiment simulations) on LSTMs was conducted by
Greff et al. [2015]. The models were trained using stochastic gradient descent with Nesterov-
style momentum [Sutskever et al., 2013], with updates after each sequence. The learning rate
was rescaled by a factor (1-momentum). Training was stopped after 150 epochs or after 15
epochs of no improvement in the validation set. The variants of the standard LSTM were:

1. No Input Gate (NIG)
2. No Forget Gate (NFG)
3. No Output Gate (NOG)
4. No Input Activation Function (NIAF)
5. No Output Activation Function (NOAF)
6. No Peepholes (NP)
7. Coupled Input and Forget Gate (CIFG)
8. Full Gate Recurrence (FGR)

The first five variants are self-explanatory. The CIFG variant uses one gate for both the
input and the cell recurrent self-connection (GRU variant). The FGR variant adds recurrent
connections between all the gates as in the original formulation of the LSTM [Hochre-
iter and Schmidhuber, 1997]. This significantly increases the number of parameters and
computational expense, due to 9 additional recurrent weight matrices.

Interestingly, this study found that clipping gradients to a range of [-1,1] reduced model
performance. The results indicate that none of the LSTM variants significantly improve the
standard model. This is important to our study, both as a guideline for our own modifications
to the LSTM and in omitting experiments with variants in our study. Without peepholes (NP),
the model complexity is reduced, but the study by Greff et al. [2015] found no significant
change in performance, which meant our architecture would omit peephole connections.
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There also exists a broader range of RNN variants, such as ESNs, clockwork RNNs, and
variational RNNs, which would make for an interesting comparison.

The functional Analysis of Variance (fANOVA) method [Hooker, 2012] was used to
determine which hyperparameters have the largest influence on model performance. The
principal hyperparameter was found to be the learning rate, responsible for more than two-
thirds of the variance in model performance. The second most important hyperparameter
was the number of units in the hidden layer (more is better), followed by the input noise and
leaving momentum with less than 1% of the variance. It should be noted that momentum may
play a more important role in batch training, where the gradients are less noisy. Additionally,
the analysis suggests that finding the optimal learning rate depends on the dataset, and could,
therefore, be optimised using a smaller network before training a large model.

Clockwork Recurrent Neural Network

Koutnik et al. [2014] introduced a simpler variation of the standard RNN architecture,
the Clockwork RNN (CW-RNN). The hidden layer is partitioned into separate modules,
each processing inputs at its own temporal granularity, in turn, making computations at its
prescribed clock rate. The long-term dependency issue is solved by having different parts
of the hidden layer process at different clock speeds. Consequently, a smaller number of
weights is needed, because slower modules are not connected to faster ones, and the networks
are executed faster because not all the modules are executed at every time step. Intuitively,
this architecture seems optimal, but fewer parameters could lead to less flexibility.

The clock period for each module is arbitrarily chosen. For example, the study by Koutnik
et al. [2014] made use of an exponential series of periods; module i has clock period Ti = 2i−1.
The key differentiator is that during each CW-RNN time step t, only the output of modules
i that satisfy (t mod Ti) = 0 are executed. The result is that the low-clock-rate modules
process, retain and output the long-term information, where the high-speed modules focus
on local information, having context provided by the low-speed modules available.

CW-RNNs, RNNs, and LSTM networks were compared with one hidden layer in each and
the same amount of parameters (clock-periods of the CW-RNN were included as parameters)
[Koutnik et al., 2014]. The preliminary experiments, with spoken word classification and
audio signal generation, demonstrate that the model outperforms RNNs and LSTMs. The
results should be considered with caution because it is difficult to compare different models
on equal grounds. For example, experimentation was done with 100, 250, 500, and 1000
parameters, but at 1000 parameters, the LSTM had only 15 hidden units where the CW-RNN
had 40. Additionally, the SGD with Nesterov-style momentum [Sutskever et al., 2013] was
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used to train the models, and it could be argued that the RMSprop optimiser would be better
suited to the more complicated LSTM architecture.

Neural Turing Machines

It is known that RNNs are Turing-complete [Siegelmann and Sontag, 1995] and thus have the
capacity to simulate arbitrary procedures, if wired properly. In work by Graves et al. [2014],
the RNN architecture was enriched by a large, addressable memory, which by analogy to
Turing’s enrichment of finite-state machines by an infinite memory, was called a Neural
Turing Machine (NTM). NTMs are differentiable and can, therefore, be trained using gradient
descent. Figure 2.10 illustrates a high-level representation of the NTM architecture.

The read and write operations are ‘blurry’, in that they interact in a greater or lesser
extent with all elements in memory, rather than a single element. The degree of blurriness is
determined by an attentional mechanism constricting each read and write operation to interact
with a small portion of the memory. Similar to LSTMs, each write in the NTM has two
parts, an erase followed by an add. The erase and write vectors are accompanied by a weight
vector, indicating which areas in the memory bank receive attention for the given operation.
The addressing weights are generated by two methods used concurrently. The first method
is content-based addressing [Hopfield, 1982], which focusses attention on content that is
similar. The second, which improved generalisation, is location-based addressing, where
data is addressed based on its location in the memory bank. All elements in the memory
matrix lie in the range (0,1). An important free parameter to be chosen for the NTM is the
type of NN used as the controller. A recurrent controller such as LSTM has its own internal
memory, which can complement the larger memory in the matrix [Graves et al., 2014]. Using
a feedforward NN as the controller results in the NTM acting similar to an RNN, with the
benefit of increased transparency compared to RNNs. A limitation of the NN controller is
that the number of read and write heads imposes a bottleneck on the type of computation the
NTM can perform.

Compared to NTMs, LSTMs without external memory do not generalise well to longer
inputs. Graves et al. [2014] compared the performance of LSTMs, NTMs with an LSTM
controller, and NTMs with a feedforward controller. The experiment required the networks
to copy sequences of 8-bit random vectors, where the sequence lengths were randomised
between 1 and 20. RMSprop with a momentum of 0.9 and a learning rate of 10−4 or 3×10−5

was used to train the models. The LSTM model had 3 stacked hidden layers and the number
of parameters to be trained far exceeded the number required for the NTMs. This is due to
the number of LSTM parameters growing quadratically with the number of hidden units,
because of the recurrent connections in the hidden layers. The NTMs made use of a memory



2.3 Machine Learning for Sequential Data 43

Fig. 2.10 Neural Turing Machine Architecture. The controller network receives inputs from
an external environment and emits outputs in response, during each update cycle. The
controller also writes and reads from a memory matrix via a set of read and write heads. All
components within the dashed line are part of the NTM circuit. (Adapted from: Graves et al.
[2014])

bank with size 128x20, and the controllers had one hidden layer. During the backward pass
of the implemented models, the gradient components were clipped to a range (-10,10). The
training curves are shown in Figure 2.11. The NTMs were found to significantly outperform
LSTMs, learning much quicker, retaining longer memory segments, and converging to much
lower costs. The ability to retain longer memory segments could be an invaluable benefit
in modelling high-resolution physiological signals, where sequences often have many time
steps (3,000 or more).

Fig. 2.11 Copy Learning Curves. (Adapted from: Graves et al. [2014])
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