Lossless Data Compression with Side Information: Nonasymptotics and Dispersion

Lampros Gavalakis Ioannis Kontoyiannis

University of Cambridge

ISIT, 21-26 June 2020
Outline

1 Introduction
 - Reference-based Compression
 - Pair-based Compression

2 Fundamental Limits

3 Coding Theorems for Arbitrary Sources

4 Normal Approximation
 - $R^*(n, \epsilon)$
 - $R^*(n, \epsilon | y_1^n)$

5 Dispersion
Introduction

Compression of the source X with side information Y:

- **Reference-based** compression
 - Application: Compression of genomic data
 The same reference genome Y is used as side information to compress many source sequences $X^{(1)}, X^{(2)}, \ldots$

- **Pair-based** compression
 - Application: Image or video compression
 A new side information sequence Y (previous version/frame) is used every time to compress a new source sequence X
Introduction: Related work

- Generalizations of results from [Kontoyiannis, Verdú, ’14]
- Relationship with Slepian-Wolf:
 - Any SW code is a pair-based code
 - Several results in the SW literature, for example
 [Tan, Kosut, ’12], [Jose, Kulkarni, ’19], [Chen, Effros, Kostina, ’19]
 - Usually random coding in SW
 - Here: deterministic approach, based on the characterization of the optimal compressor with side information
Notation

- X_1^n, Y_1^n: blocks of RVs X_1, \ldots, X_n and Y_1, \ldots, Y_n
- $X_i \sim P_{X_i}$ and $Y_i \sim P_{Y_i}$ take values in \mathcal{X} and \mathcal{Y}
- x_1^n, y_1^n: blocks of symbols from \mathcal{X}^n and \mathcal{Y}^n
- Source-side information pair $(\mathbf{X}, \mathbf{Y}) = \{(X_n, Y_n); n \geq 1\}$ (joint process)
Fixed-to-variable one-to-one compressor with side information of blocklength n:

\[f_n(\cdot | \cdot) : \mathcal{X}^n \times \mathcal{Y}^n \to \{0, 1\}^* \]

with $f_n(\cdot | y_1^n) : \mathcal{X}^n \to \{0, 1\}^*$ one-to-one for each $y_1^n \in \mathcal{Y}^n$

Description length:

\[\ell(f_n(x_1^n | y_1^n)) = \text{length of } f_n(x_1^n | y_1^n) \text{ bits} \]
Definition (Reference-based optimal rate $R^*(n, \epsilon|y_1^n)$)

$R^*(n, \epsilon|y_1^n)$ is the smallest $R > 0$ such that

$$\min_{f_n(\cdot|y_1^n)} \mathbb{P} [\ell(f_n(X_1^n|y_1^n)) > nR|Y_1^n = y_1^n] \leq \epsilon$$

where the minimum is over all one-to-one compressors $f_n(\cdot|y_1^n)$.

Definition (Pair-based optimal rate $R^*(n, \epsilon)$)

$R^*(n, \epsilon)$ is the smallest $R > 0$ such that

$$\min_{f_n} \mathbb{P} [\ell(f_n(X_1^n|Y_1^n)) > nR] \leq \epsilon$$

where the minimum is over all one-to-one compressors f_n with side information.
The optimal compressor f^*_n:

- For each side information string y^n_1, $f^*_n(\cdot|y^n_1)$ is the optimal compressor for $\mathbb{P}(X^n_1 = \cdot|Y^n_1 = y^n_1)$
- orders the strings x^n_1 in order of decreasing probability $\mathbb{P}(X^n_1 = x^n_1|Y^n_1 = y^n_1)$ and
- assigns to them codewords from $\{0,1\}^*$ in lexicographic order
- f^*_n achieves the minimum in both definitions
Let $X, Y \sim P_{X,Y}$ be arbitrary discrete random variables taking values in \mathcal{X} and \mathcal{Y}

Theorem (One-shot converse)

For any compressor with side information f and any integer $k \geq 0$

$$\mathbb{P}[\ell(f(X|Y)) \geq k] \geq \sup_{\tau > 0} \left\{ \mathbb{P}[-\log P_{X|Y}(X|Y) \geq k + \tau] - 2^{-\tau} \right\}$$
Theorem (One-shot achievability)

There is a compressor f^* such that for all x, y:

$$\ell(f^*(x|y)) \leq - \log P_{X|Y}(x|y)$$

In fact

$$\ell(f^*(x|y)) \leq \log \left(\mathbb{E} \left[\frac{1}{P_{X|Y}(X|y)} \mathbb{I}\{P_{X|Y}(X|y) \geq P_{X|Y}(x|y)\} \Big| Y = y \right] \right)$$

- Both results relate the description lengths $\ell(f(x|y))$ to the conditional information density $- \log P_{X|Y}(x|y)$
Normal Approximation: Preliminaries

Definition (Conditional entropy rate)

\[
H(X|Y) := \limsup_{n \to \infty} \frac{1}{n} H(X^n_1|Y^n_1) = \limsup_{n \to \infty} \frac{1}{n} \mathbb{E} \left(- \log P(X^n_1|Y^n_1) \right)
\]

- If \((X, Y)\) are jointly stationary, then the above lim sup is in fact a limit

Definition (Conditional varentropy rate)

\[
\sigma^2(X|Y) := \limsup_{n \to \infty} \frac{1}{n} \text{Var} \left(- \log P(X^n_1|Y^n_1) \right)
\]

Lemma

For a broad class of jointly stationary and ergodic source-side information pairs \((X, Y)\) the above lim sup is in fact the limit
Theorem (Pair-based converse and achievability)

Suppose \((X, Y)\) is a i.i.d. source-side information pair with \(\sigma^2(X|Y) > 0\). For any \(0 < \epsilon < \frac{1}{2}\) there are explicit \(n_1\) and \(C > 0\) s.t.

\[
-\frac{1}{n} C \leq R^*(n, \epsilon) - \left[H(X|Y) + \frac{\sigma(X|Y)}{\sqrt{n}} Q^{-1}(\epsilon) - \frac{\log n}{2n} \right] \leq \frac{1}{n} C
\]

for all \(n > n_1\)

- \(H(X|Y) = H(X|Y)\) is the conditional entropy
- \(\sigma^2(X|Y) = \text{Var}(-\log P(X|Y)) = \sigma^2(X|Y)\) is the conditional varentropy
- \(n_1\) and \(C\) depend on the second and third moments of the conditional information density \(-\log P_{X|Y}(X|Y)\), the first and second moments of the random variable \(\text{Var}[-\log P_{X|Y}(X|Y)|Y]\) and \(\epsilon\)
(X, Y) is a \textit{conditionally-i.i.d. source-side information pair}:

Y \text{ arbitrary and}

\begin{align*}
\mathbb{P}(X_1^n = x_1^n | Y_1^n = y_1^n) &= \prod_{i=1}^{n} P_{X|Y}(x_i|y_i)
\end{align*}
Normal Approximation: $R^*(n, \epsilon|y_1^n)$

Theorem (Reference-based converse and achievability)

Suppose (X, Y) is a conditionally-i.i.d. source-side information pair. For any $0 < \epsilon < \frac{1}{2}$ there are explicit $n_0 = n_0(y_1^n)$ and $\zeta_n = \zeta_n(y_1^n) > 0$ s.t.

$$-\frac{1}{n} \zeta_n(y_1^n) \leq R^*(n, \epsilon|y_1^n) - \left[H_n(X|y_1^n) + \frac{\sigma_n(y_1^n)}{\sqrt{n}} Q^{-1}(\epsilon) - \frac{\log n}{2n} \right] \leq \frac{1}{n} \zeta_n(y_1^n)$$

for all $n > n_0$ and any side information string y_1^n such that $\sigma_n^2(y_1^n) > 0$

- $H_n(X|y_1^n) = \frac{1}{n} \sum_{i=1}^{n} H(X|Y = y_i)$
- $\sigma_n^2(y_1^n) = \frac{1}{n} \sum_{i=1}^{n} \text{Var}\left(-\log P(X|y_i)|Y = y_i\right)$
- n_0, η and ζ_n depend on the second and third moments of the information densities of the conditional distributions $\{-\log P_{X|Y}(X|y_i)\}_{i=1}^{n}$ and ϵ
First-order term:
In general

\[H_n(X|y_1^n) \neq H(X|Y) \]

although for almost all \(y_1^\infty \)

\[H_n(X|y_1^n) \to H(X|Y) \]

Second-order term:
Write

\[\hat{H}_X(y) = -\sum_{x \in \mathcal{X}} P_{X|Y}(x|y) \log P_{X|Y}(x|y) \]

and

\[V(y) = \text{Var}[-\log P_{X|Y}(X|y) | Y = y] \]
Reference vs Pair-based Variance

Proposition

\[\sigma^2(X|Y) = \mathbb{E}[V(Y)] + \text{Var}[\hat{H}_X(Y)] \]

In particular, if \((X, Y)\) is i.i.d. with \((X_n, Y_n) \sim (X, Y)\) and since for almost all \(y_1^\infty\)

\[\sigma^2_n(y_1^n) = \frac{1}{n} \sum_{i=1}^n \text{Var}(- \log P(X|y_i)|Y = y_i) \rightarrow \mathbb{E}[V(Y)] \]

we have in general

\[\sigma^2_n(y_1^n) < \sigma^2(X|Y) \]

for typical \(y\)'s and large \(n\)
Normal Approximation: $R^*(n, \epsilon|y^n_1)$

Figure: $\{Y_n\} \sim \text{Bern}(\frac{1}{3})$ i.i.d.
$X|Y = 0 \sim \text{Bern}(0.1)$
$X|Y = 1 \sim \text{Bern}(0.6)$

$H(X|Y) \approx 0.636$
$H(X) \approx 0.837$

$y^n_1 = 001001001 \cdots$
$\epsilon = 0.1$
Pair-based Dispersion

Definition (Pair-based Dispersion)

\[D(X|Y) := \limsup_{n \to \infty} \frac{1}{n} \text{Var} \left[\ell(f_n^*(X_1^n|Y_1^n)) \right] \]

Theorem

Suppose that both the pair \((X, Y)\) and \(Y\) itself are irreducible and aperiodic Markov chains, with conditional entropy rate \(H(X|Y)\) and conditional variance entropy rate \(\sigma^2(X|Y)\). Then,

\[D(X|Y) = \sigma^2(X|Y) \]

If, moreover, \(\sigma^2(X|Y)\) is nonzero, then:

\[D(X|Y) = \lim_{\epsilon \to 0} \lim_{n \to \infty} n \left(\frac{R^*(n, \epsilon) - H(X|Y)}{Q^{-1}(\epsilon)} \right)^2 \]
Reference-based Dispersion

Let $y = y_1^\infty \in Y^\infty$

Definition (Reference-based Dispersion)

$$D(X|y) := \limsup_{n \to \infty} \frac{1}{n} \text{Var} \left[\ell(f_n^*(X_1^n|y_1^n)) \right]$$

Theorem

Suppose the side information process Y is stationary and ergodic, and that the pair (X, Y) is conditionally i.i.d. Then, for almost any y,

$$D(X|y) = \lim_{n \to \infty} \sigma_n^2(y_1^n)$$

If, moreover, $\mathbb{E}[V(Y_1)]$ is nonzero, then, for almost any y:

$$D(X|y) = \lim_{\epsilon \to 0} \lim_{n \to \infty} n \left(\frac{R^*(n, \epsilon|y_1^n) - H_n(X|y_1^n)}{Q^{-1}(\epsilon)} \right)^2$$
Conclusions and Further Work

- We gave nonasymptotic normal approximation results in the
 1. Reference-based setting for conditionally i.i.d. source-side information pairs
 2. Pair-based setting for i.i.d. source-side information pairs

- These results remain true if we restrict to prefix-free compressors

- The Pair-based results generalize for Markov source-side information pairs but with a third-order gap

- We gave a characterization of the dispersion in both scenarios
 - For i.i.d. source-side information pairs the reference-based dispersion is in general smaller
 - Does the same hold under more general conditions?

- We have further results, e.g. characterization of the case
 \(\sigma^2(X|Y) = 0 \) under Markov assumptions

- Further generalizations?

- Is it possible to drop assumptions on the side-information process \(Y \)?

- More general conditions under which the lim sup is the limit in the definition of the conditional varentropy rate?
Appendix: Reference-based converse

Theorem

For any $0 < \epsilon < \frac{1}{2}$

$$R^*(n, \epsilon|y_1^n) \geq H_n(X|y_1^n) + \frac{\sigma_n(y_1^n)}{\sqrt{n}} Q^{-1}(\epsilon) - \frac{\log n}{2n} - \frac{1}{n} \eta(y_1^n)$$

for all

$$n > \frac{(1 + 6m_3\sigma_n^{-3}(y_1^n))^2}{4(Q^{-1}(\epsilon)\phi(Q^{-1}(\epsilon)))^2}$$

where

$$m_3 = \max_{y \in \mathcal{Y}} \mathbb{E}[| - \log P(X|y) - H(X|y)|^3]$$

and

$$\eta(y_1^n) = \frac{\sigma_n^3(y_1^n) + 6m_3}{\phi(Q^{-1}(\epsilon))\sigma_n^2(y_1^n)}$$
Appendix: Reference-based achievability

Theorem

For any $0 < \epsilon \leq \frac{1}{2}$

$$R^*(n, \epsilon | y_1^n) \leq H_n(X | y_1^n) + \frac{\sigma_n(y_1^n)}{\sqrt{n}} Q^{-1}(\epsilon) - \frac{\log n}{2n} + \frac{1}{n} \zeta_n(y_1^n)$$

for all

$$n > \frac{36 m_3^2}{[\epsilon^2 \sigma_n^6(y_1^n)]}$$

and

$$\zeta_n(y_1^n) = \frac{6 m_3}{\sigma_n^3(y_1^n) \phi \left(\Phi^{-1} \left(\Phi(Q^{-1}(\epsilon)) + \frac{6 m_3}{\sqrt{n} \sigma_n^3(y_1^n)} \right) \right)} + \log \left(\frac{\log e}{\sqrt{2 \pi} \sigma_n^2(y_1^n)} + \frac{12 m_3}{\sigma_n^3(y_1^n)} \right)$$
Appendix: Pair-based converse

Theorem

For any $0 < \epsilon < \frac{1}{2}$

$$R^*(n, \epsilon) \geq H(X|Y) + \frac{\sigma(X|Y)}{\sqrt{n}} Q^{-1}(\epsilon) - \frac{\log n}{2n} - \frac{C_1}{n}$$

for all

$$n > \frac{C_1^2}{[4(Q^{-1}(\epsilon))^2 \sigma^2]}$$

where

$$C_1 = \frac{\mathbb{E}[(| - \log P(X|Y) - H(X|Y)|)^3] + 2\sigma^3}{2\sigma^2 \phi(Q^{-1}(\epsilon))}$$
Theorem

For any $0 < \epsilon \leq \frac{1}{2}$

$$R^*(n, \epsilon) \leq H(X|Y) + \frac{\sigma(X|Y)}{\sqrt{n}} Q^{-1}(\epsilon) - \frac{\log n}{2n} + \frac{C_2}{n}$$

for all

$$n > \frac{4\sigma^2}{B^2 \phi(Q^{-1}(\epsilon))^2} \times \left[\frac{B^2}{2\sqrt{2\pi}e\sigma^2} + \frac{\psi^2}{(1 - \frac{1}{2\pi})^2 \bar{v}^2} \right]^2$$

where $\bar{v} = \mathbb{E}[V(Y)]$, $\psi^2 = \text{Var}(V(Y))$, $B = \frac{\mathbb{E}\left[\left|-\log P(X|Y) - H(X|Y)\right|^3\right]}{\sigma^2 \phi(Q^{-1}(\epsilon))}$ and

$$C_2 = \log \left(\frac{2}{\bar{v}^{1/2}} + \frac{24m_3(2\pi)^{3/2}}{\bar{v}^{3/2}} \right) + B$$