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Introduction

Compression of the source X with side information Y:

Reference-based compression

I Application: Compression of genomic data
The same reference genome Y is used as side information to compress
many source sequences X (1),X (2), . . .

Pair-based compression
I Application: Image or video compression

A new side information sequence Y (previous version/frame) is used
every time to compress a new source sequence X
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Introduction: Related work

Generalizations of results from [Kontoyiannis, Verdú, ’14]

Relationship with Slepian-Wolf:

I Any SW code is a pair-based code
I Several results in the SW literature, for example

[Tan, Kosut, ’12], [Jose, Kulkarni, ’19], [Chen, Effros, Kostina, ’19]
I Usually random coding in SW
I Here: deterministic approach, based on the characterization of the

optimal compressor with side information
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Notation

I X n
1 ,Y

n
1 : blocks of RVs X1, . . . ,Xn and Y1, . . . ,Yn

I Xi ∼ PXi
and Yi ∼ PYi

take values in X and Y
I xn1 , y

n
1 : blocks of symbols from X n and Yn

I Source-side information pair (X,Y) = {(Xn,Yn); n ≥ 1} (joint
process)
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Fundamental Limits

Fixed-to-variable one-to-one compressor with side information of
blocklength n:

fn(·|·) : X n × Yn → {0, 1}∗

with fn(·|yn1 ) : X n → {0, 1}∗ one-to-one for each yn1 ∈ Yn

Description length:

`(fn(xn1 |yn1 )) = length of fn(xn1 |yn1 ) bits
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Fundamental Limits

Definition (Reference-based optimal rate R∗(n, ε|yn
1 ))

R∗(n, ε|yn1 ) is the smallest R > 0 such that

min
fn(·|yn

1 )
P [`(fn(X n

1 |yn1 )) > nR|Y n
1 = yn1 ] ≤ ε

where the minimum is over all one-to-one compressors fn(·|yn1 )

Definition (Pair-based optimal rate R∗(n, ε))

R∗(n, ε) is the smallest R > 0 such that

min
fn

P [`(fn(X n
1 |Y n

1 )) > nR] ≤ ε

where the minimum is over all one-to-one compressors fn with side
information
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Fundamental Limits

The optimal compressor f ∗n :

I For each side information string yn1 , f ∗n (·|yn1 ) is the optimal
compressor for P(X n

1 = ·|Y n
1 = yn1 )

I orders the strings xn1 in order of decreasing probability
P(X n

1 = xn1 |Y n
1 = yn1 ) and

I assigns to them codewords from {0, 1}∗ in lexicographic order

I f ∗n achieves the minimum in both definitions
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Coding Theorems for Arbitrary Sources

Let X ,Y ∼ PX ,Y be arbitrary discrete random variables taking values in X
and Y

Theorem (One-shot converse)

For any compressor with side information f and any integer k ≥ 0

P [`(f (X |Y )) ≥ k]

≥ sup
τ>0

{
P
[
− logPX |Y (X |Y ) ≥ k + τ

]
− 2−τ

}
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Coding Theorems for Arbitrary Sources

Theorem (One-shot achievability)

There is a compressor f ∗ such that for all x , y :

`(f ∗(x |y)) ≤ − logPX |Y (x |y)

In fact

`(f ∗(x |y)) ≤ log

(
E
[

1

PX |Y (X |y)
I{PX |Y (X |y)≥PX |Y (x |y)}

∣∣∣∣Y = y

])

I Both results relate the description lengths `(f (x |y)) to the
conditional information density − logPX |Y (x |y)
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Normal Approximation: Preliminaries

Definition (Conditional entropy rate)

H(X|Y) := lim sup
n→∞

1

n
H(X n

1 |Y n
1 ) = lim sup

n→∞

1

n
E (− logP(X n

1 |Y n
1 ))

I If (X,Y) are jointly stationary, then the above lim sup is in fact a limit

Definition (Conditional varentropy rate)

σ2(X|Y) := lim sup
n→∞

1

n
Var(− logP(X n

1 |Y n
1 ))

Lemma

For a broad class of jointly stationary and ergodic source-side information
pairs (X,Y) the above lim sup is in fact the limit
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Normal Approximation: R∗(n, ε)

Theorem (Pair-based converse and achievability)

Suppose (X,Y) is a i.i.d. source-side information pair with σ2(X |Y ) > 0.
For any 0 < ε < 1

2 there are explicit n1 and C > 0 s.t.

−1

n
C ≤ R∗(n, ε)−

[
H(X |Y ) +

σ(X |Y )√
n

Q−1(ε)− log n

2n

]
≤ 1

n
C

for all n > n1

I H(X |Y ) = H(X|Y) is the conditional entropy

I σ2(X |Y ) = Var
(
− logP(X |Y )

)
= σ2(X|Y) is the

conditional varentropy

I n1 and C depend on the second and third moments of the conditional
information density − logPX |Y (X |Y ), the first and second moments
of the random variable Var[− logPX |Y (X |Y )|Y ] and ε
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Normal Approximation: Reference-based preliminaries

(X,Y) is a conditionally-i.i.d. source-side information pair :
Y arbitrary and

P(X n
1 = xn1 |Y n

1 = yn1 ) =
n∏

i=1

PX |Y (xi |yi )
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Normal Approximation: R∗(n, ε|y n1 )

Theorem (Reference-based converse and achievability)

Suppose (X,Y) is a conditionally-i.i.d. source-side information pair. For
any 0 < ε < 1

2 there are explicit n0 = n0(yn1 ) and ζn = ζn(yn1 ) > 0 s.t.

−1

n
ζn(yn1 ) ≤ R∗(n, ε|yn1 )−

[
Hn(X |yn1 )+

σn(yn1 )√
n

Q−1(ε)− log n

2n

]
≤ 1

n
ζn(yn1 )

for all n > n0 and any side information string yn1 such that σ2n(yn1 ) > 0

I Hn(X |yn1 ) = 1
n

∑n
i=1H(X |Y = yi )

I σ2n(yn1 ) = 1
n

∑n
i=1Var

(
− logP(X |yi )

∣∣Y = yi
)

I n0, η and ζn depend on the second and third moments of the
information densities of the conditional distributions
{− logPX |Y (X |yi )}ni=1 and ε
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Reference vs Pair-based Rate

First-order term:
In general

Hn(X |yn1 ) 6= H(X |Y )

although for almost all y∞1

Hn(X |yn1 )→ H(X |Y )

Second-order term:
Write

ĤX (y) = −
∑
x∈X

PX |Y (x |y) logPX |Y (x |y)

and
V (y) = Var[− logPX |Y (X |y)|Y = y ]
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Reference vs Pair-based Variance

Proposition

σ2(X |Y ) = E[V (Y )] + Var[ĤX (Y )]

In particular, if (X,Y) is i.i.d. with (Xn,Yn) ∼ (X ,Y ) and since for almost
all y∞1

σ2n(yn1 ) =
1

n

n∑
i=1

Var
(
− logP(X |yi )

∣∣Y = yi
)
→ E[V (Y )]

we have in general
σ2n(yn1 ) < σ2(X |Y )

for typical y ’s and large n
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Normal Approximation: R∗(n, ε|y n1 )

Figure: {Yn} ∼ Bern( 1
3 ) i.i.d. X |Y = 0 ∼ Bern(0.1) X |Y = 1 ∼ Bern(0.6)

H(X |Y ) ≈ 0.636 H(X ) ≈ 0.837
yn
1 = 001001001 · · · ε = 0.1
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Pair-based Dispersion

Definition (Pair-based Dispersion)

D(X|Y) := lim sup
n→∞

1

n
Var
[
`(f ∗n (X n

1 |Y n
1 ))
]

Theorem

Suppose that both the pair (X,Y) and Y itself are irreducible and
aperiodic Markov chains, with conditional entropy rate H(X|Y) and
conditional varentropy rate σ2(X|Y). Then,

D(X|Y) = σ2(X|Y)

If, moreover, σ2(X|Y) is nonzero, then:

D(X|Y) = lim
ε→0

lim
n→∞

n

(
R∗(n, ε)− H(X|Y)

Q−1(ε)

)2
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Reference-based Dispersion

Let y = y∞1 ∈ Y∞

Definition (Reference-based Dispersion)

D(X|y) := lim sup
n→∞

1

n
Var
[
`(f ∗n (X n

1 |yn1 ))
]

Theorem

Suppose the side information process Y is stationary and ergodic, and that
the pair (X,Y) is conditionally i.i.d. Then, for almost any y,

D(X|y) = lim
n→∞

σ2n(yn1 )

If, moreover, E[V (Y1)] is nonzero, then, for almost any y :

D(X|y) = lim
ε→0

lim
n→∞

n
(R∗(n, ε|yn1 )− Hn(X |yn1 )

Q−1(ε)

)2
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Conclusions and Further Work

We gave nonasymptotic normal approximation results in the
1 Reference-based setting for conditionally i.i.d. source-side information

pairs
2 Pair-based setting for i.i.d. source-side information pairs

These results remain true if we restrict to prefix-free compressors

The Pair-based results generalize for Markov source-side information
pairs but with a third-order gap
We gave a characterization of the dispersion in both scenarios

For i.i.d. source-side information pairs the reference-based dispersion is
in general smaller
Does the same hold under more general conditions?

We have further results, e.g. characterization of the case
σ2(X|Y) = 0 under Markov assumptions

Further generalizations?

Is it possible to drop assumptions on the side-infromation process Y?

More general conditions under which the lim sup is the limit in the
definition of the conditional varentropy rate?
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Appendix: Reference-based converse

Theorem

For any 0 < ε < 1
2

R∗(n, ε|yn1 ) ≥ Hn(X |yn1 ) +
σn(yn1 )√

n
Q−1(ε)− log n

2n
− 1

n
η(yn1 )

for all

n >
(1 + 6m3σ

−3
n (yn1 ))2

4
(
Q−1(ε)φ(Q−1(ε))

)2
where

m3 = max
y∈Y

E[| − logP(X |y)− H(X |y)|3]

and η(yn1 ) =
σ3n(yn1 ) + 6m3

φ(Q−1(ε))σ2n(yn1 )
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Appendix: Reference-based achievability

Theorem

For any 0 < ε ≤ 1
2

R∗(n, ε|yn1 ) ≤ Hn(X |yn1 ) +
σn(yn1 )√

n
Q−1(ε)− log n

2n
+

1

n
ζn(yn1 )

for all

n >
36m2

3

[ε2σ6n(yn1 )]

and

ζn(yn1 ) =
6m3

σ3n(yn1 )φ
(

Φ−1
(

Φ(Q−1(ε)) + 6m3√
nσ3

n(y
n
1 )

))
+ log

( log e√
2πσ2n(yn1 )

+
12m3

σ3n(yn1 )

)
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Appendix: Pair-based converse

Theorem

For any 0 < ε < 1
2

R∗(n, ε) ≥ H(X |Y ) +
σ(X |Y )√

n
Q−1(ε)− log n

2n
− C1

n

for all

n >
C 2
1

[4(Q−1(ε))2σ2]

where

C1 =
E[| − logP(X |Y )− H(X |Y )|3] + 2σ3

2σ2φ(Q−1(ε))
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Appendix: Pair-based achievability

Theorem

For any 0 < ε ≤ 1
2

R∗(n, ε) ≤ H(X |Y ) +
σ(X |Y )√

n
Q−1(ε)− log n

2n
+

C2

n

for all

n >
4σ2

B2φ(Q−1(ε))2
×

[
B2

2
√

2πeσ2
+

ψ2

(1− 1
2π )2v̄2

]2

where v̄ = E[V (Y )], ψ2 = Var(V (Y )), B =
E
[
|−logP(X |Y )−H(X |Y )

∣∣3]
σ2φ(Q−1(ε))

and

C2 = log
( 2

v̄1/2
+

24m3(2π)3/2

v̄3/2

)
+ B
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