The Entropic Central Limit Theorem for Discrete Random Variables

Lampros Gavalakis Ioannis Kontoyiannis

University of Cambridge

ISIT, 27 June 2022
Outline

1. Information Theoretic CLTs
 - The Entropic CLT

2. Discrete Random Variables

3. On Monotonicity

4. Proof
 - Bernoulli Smoothing
Let X_1, \ldots, X_n be i.i.d. random variables with mean 0 and finite variance σ^2 and let $\hat{S}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$ denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history starting with [Linnik '59], [Shimizu '75] and [Brown '82].
Let X_1, \ldots, X_n be i.i.d. random variables with mean 0 and finite variance σ^2 and let $\hat{S}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$ denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history starting with [Linnik '59], [Shimizu '75] and [Brown '82].

The *Fisher information* of X with density f is $I(X) = \int f \left(\frac{f'}{f} \right)^2$. For X, Y independent

$$I(X + Y) \leq I(X) \quad \text{(convolution inequality)}$$
The differential entropy of X is $h(X) = - \int f \log f$
and the relative entropy between X and Y with densities f and g is
$D(X||Y) = D(f||g) = \int f \log \frac{f}{g}$

Let Z be a 0 mean Gaussian with variance σ^2. Then

$$D(X) := D(X||Z) = h(Z) - h(X)$$
$$= \frac{1}{2} \log (2\pi e\sigma^2) - h(X)$$

and by positivity of relative entropy

$$h(X) \leq h(Z) \quad \text{(Gaussian maximum entropy)}$$
Theorem (Entropic CLT [Barron, ’86])

Let \(\hat{S}_n \) denote the standardised sum of i.i.d. \(X_1, \ldots, X_n \)

\[
D(\hat{S}_n) \to 0 \quad \text{if and only if} \quad D(\hat{S}_n) \text{ is finite for some } n
\]

Equivalently, writing \(S_n = \sum_{i=1}^{n} X_i \),

\[
h(\hat{S}_n) = h(S_n) - \log \sqrt{n} \to \frac{1}{2} \log (2\pi e \sigma^2)
\]

By Pinsker’s inequality

\[
\|\hat{S}_n - Z\|_{TV} \to 0
\]
Theorem (Entropic CLT [Barron, ’86])

Let \hat{S}_n denote the standardised sum of i.i.d. X_1, \ldots, X_n

$$D(\hat{S}_n) \to 0 \text{ if and only if } D(\hat{S}_n) \text{ is finite for some } n$$

Equivalently, writing $S_n = \sum_{i=1}^n X_i$,

$$h(\hat{S}_n) = h(S_n) - \log \sqrt{n} \to \frac{1}{2} \log (2\pi e\sigma^2)$$

By Pinsker’s inequality

$$\|\hat{S}_n - Z\|_{TV} \to 0$$

What about discrete?
The \textit{entropy} of a discrete random variable Y with PMF p on A is

$$H(Y) = - \sum_{y \in A} p(y) \log p(y)$$

Y has a lattice distribution with span $h > 0$ if its support is a subset of

$$\{ a + kh : k \in \mathbb{Z} \}$$

for some $a \in \mathbb{R}$.

h is \textit{maximal} if it is the largest such h.

Let $\{X_n\}$ be i.i.d. lattice with variance σ^2 and maximal span h.

Let $S_n = \sum_{i=1}^{n} X_i$

Unlike the differential entropy

$$H\left(\frac{1}{\sqrt{n}} S_n\right) = H(S_n) \to \infty$$
Discrete Random Variables

Theorem (Entropy convergence)

\[
\lim_{n \to \infty} \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] = \frac{1}{2} \log(2\pi e \sigma^2)
\]

This expansion has been derived in [Takano '87], [Verdú & Han '97], but using strong forms of the CLT.

In fact, this theorem implies the CLT!
Theorem (Entropy convergence)

\[
\lim_{n \to \infty} \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] = \frac{1}{2} \log(2\pi e\sigma^2)
\]

This expansion has been derived in [Takano ’87], [Verdú & Han ’97], ... But using strong forms of the CLT.
Theorem (Entropy convergence)

\[
\lim_{n \to \infty} \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] = \frac{1}{2} \log(2\pi e\sigma^2)
\]

This expansion has been derived in [Takano ’87], [Verdú & Han ’97], … But using strong forms of the CLT.

In fact, this theorem implies the CLT!
Suppose Y is lattice with PMF p, maximal span h, values in $A = \{a + kh : k \in \mathbb{Z}\}$, mean μ, and variance σ^2.

Definition (Discrete Gaussianity)

Define

$$D(Y) := D(p \| q) = \sum_{k \in \mathbb{Z}} p(a + kh) \log \frac{p(a + kh)}{q(a + kh)}$$

where q is the PMF of a Gaussian $Z \sim N(\mu, \sigma^2)$ quantised on A as,

$$q(a + kh) = \int_{a + kh}^{a + (k+1)h} \phi(x) \, dx, \quad k \in \mathbb{Z},$$

where ϕ is the $N(\mu, \sigma^2)$ density.

By definition, $D(Y + c) = D(Y)$ for any constant c.
Theorem (Discrete entropic CLT)

If \(X_1, X_2, \ldots \) are i.i.d. lattice and \(\hat{S}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \), then

\[
D(\hat{S}_n) \to 0, \quad \text{as } n \to \infty.
\]

Take WLOG \(\mu = 0 \), let \(Z \sim \mathcal{N}(0, \sigma^2) \) and let \(Z_n \) be the quantised Gaussian. Then, from Pinsker’s and the triangle inequality for the total variation norm

\[
\|\hat{S}_n - Z\|_{TV} \leq \sqrt{\frac{1}{2} D(\hat{S}_n)} + \|Z_n - Z\|_{TV} \to 0 \quad \text{(strong version of CLT)}
\]

Alternatively, \(\|\hat{S}_n - Z_n\|_{TV} \to 0 \)
Theorem (Entropy-relative entropy solidarity)

\[D(\hat{S}_n) = \frac{1}{2} \log (2\pi e\sigma^2) - \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] \\
+ O\left(\frac{1}{\sqrt{n}}\right) \]

By positivity of the relative entropy,

\[H(S_n) - \log \frac{\sqrt{n}}{h} \leq \frac{1}{2} \log (2\pi e\sigma^2) + O\left(\frac{1}{\sqrt{n}}\right), \]

so the standardised entropy converges to its maximum limit!
On Monotonicity

- **Continuous**

 Entropy Power Inequality (EPI):

 \[
 h(X_1 + X_2) \geq h(X_1) + \frac{1}{2} \log 2
 \]

 \[\Rightarrow h(\hat{S}_{2n}) \geq h(\hat{S}_n) \text{ for all } n\]

 In fact, \(h(\hat{S}_n) \uparrow \frac{1}{2} \log(2\pi e\sigma^2)\)
On Monotonicity

- **Continuous**
 Entropy Power Inequality (EPI):

 \[h(X_1 + X_2) \geq h(X_1) + \frac{1}{2} \log 2 \]

 \[\Rightarrow h(\hat{S}_{2n}) \geq h(\hat{S}_n) \text{ for all } n \]

 In fact, \(h(\hat{S}_n) \uparrow \frac{1}{2} \log(2\pi e\sigma^2) \)

- **Discrete**
 \(H(X_1 + X_2) \geq H(X_1) + \frac{1}{2} \log 2 \) fails in general.

 However, for i.i.d. \(X_1, X_2 \)

 \[H(X_1 + X_2) \geq H(X_1) + \frac{1}{2} \log 2 - o_{H(X_1)}(1), \quad [\text{Tao, '10}] \]
Proof

WLOG $h = 1$. Three steps:

1. **Binomial entropy**

 If $S_n \sim \text{Bin}(n, 1/2)$, then

 $$H(S_n) - \log \sqrt{n} \to 1/2 \log \frac{1}{2} \pi e$$

2. **Bernoulli smoothing**

 If $\{V_n\}$ are i.i.d. lattice and $\{B_n\}$ i.i.d. $\text{Bern}(1/2)$ independent,

 $$H_n = \sum_{i=1}^n (V_i + B_i) - \log \sqrt{n} \to 1/2 \log \frac{2}{\pi e} \sigma^2 + 1/4$$

3. **Bernoulli part decomposition**

 $S_n = \sum_{i=1}^n (V_i + W_i)$ for some lattice V_i and $W_i \sim \text{Bern}(q(n))$ with $q(n) \to 1$
Proof

WLOG $h = 1$. Three steps:

1. Binomial entropy
 If $S_n \sim \text{Bin}(n, 1/2)$,

 $$H(S_n) - \log \sqrt{n} \to \frac{1}{2} \log \left(\frac{1}{2} \pi e \right)$$
Proof

WLOG $h = 1$. Three steps:

1. **Binomial entropy**
 If $S_n \sim \text{Bin}(n, 1/2)$,
 \[
 H(S_n) - \log \sqrt{n} \to \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)
 \]

2. **“Bernoulli smoothing”**
 If $\{V_n\}$ are i.i.d. lattice and $\{B_n\}$ i.i.d. $\text{Bern}(1/2)$ independent,
 \[
 H\left(\sum_{i=1}^{n} [V_i + B_i]\right) - \log \sqrt{n} \to \frac{1}{2} \log \left(2\pi e \left(\sigma_V^2 + \frac{1}{4}\right)\right)
 \]
Proof

WLOG \(h = 1 \). Three steps:

1. **Binomial entropy**
 If \(S_n \sim \text{Bin}(n, 1/2) \),
 \[
 H(S_n) - \log \sqrt{n} \to \frac{1}{2} \log \left(\frac{1}{2} \pi e \right)
 \]

2. **“Bernoulli smoothing”**
 If \(\{V_n\} \) are i.i.d. lattice and \(\{B_n\} \) i.i.d. \(\text{Bern}(1/2) \) independent,
 \[
 H\left(\sum_{i=1}^{n} [V_i + B_i] \right) - \log \sqrt{n} \to \frac{1}{2} \log \left(2\pi e \left(\sigma_V^2 + \frac{1}{4} \right) \right)
 \]

3. **Bernoulli part decomposition**
 \[
 S_n \xrightarrow{D} V^{(n)} + W^{(n)} B,
 \]
 for some lattice \(V^{(n)} \), \(W^{(n)} \sim \text{Bern}(q^{(n)}) \) with \(q^{(n)} \to 1 \).
Proof: Bernoulli Smoothing

Lemma

Let U be an independent uniform on $(-1/2, 1/2)$. Then

$$D(\hat{S}_n) = D\left(\hat{S}_n + \frac{1}{\sqrt{n}} U\right) + O\left(\frac{1}{\sqrt{n}}\right)$$

as $n \to \infty$.
Proof: Bernoulli Smoothing

Standardised Fisher information: \(J(X) := \text{Var}(X) I(X) - 1 \)

de Bruijn’s identity: \(D(X) = \int_0^1 J(\sqrt{1 - tX} + \sqrt{tZ}) \frac{dt}{2(1-t)} \)

\(\hat{S}_n = \frac{1}{\sqrt{n}} [\sum_{i=1}^n V_i + B_i] \)
Proof: Bernoulli Smoothing

Standardised Fisher information: $J(X) := \text{Var}(X) I(X) - 1$

de Bruijn’s identity: $D(X) = \int_0^1 J(\sqrt{1-tX} + \sqrt{tZ}) \frac{dt}{2(1-t)}$

$\hat{S}_n = \frac{1}{\sqrt{n}} [\sum_{i=1}^n V_i + B_i]$

$$D \left(\frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \frac{1}{\sqrt{n}} U \right) = D \left(\frac{1}{\sqrt{2n}} [\hat{S}_n + U] + \frac{1}{\sqrt{2}} Z \right)$$

$$+ \int_0^{1/2} J \left(\sqrt{\frac{1-t}{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \sqrt{\frac{1-t}{n}} U + \sqrt{tZ} \right) \frac{dt}{2(1-t)},$$
Proof: Bernoulli Smoothing

Standardised Fisher information: \(J(X) := \text{Var}(X) I(X) - 1 \)

de Bruijn’s identity: \(D(X) = \int_0^1 J(\sqrt{1 - tX} + \sqrt{tZ}) \frac{dt}{2(1-t)} \)

\(\hat{S}_n = \frac{1}{\sqrt{n}} [\sum_{i=1}^n V_i + B_i] \)

\[
D \left(\frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \frac{1}{\sqrt{n}} U \right) =
D \left(\frac{1}{\sqrt{2n}} \left[\hat{S}_n + U \right] + \frac{1}{\sqrt{2}} Z \right)
+ \int_0^{1/2} J \left(\sqrt{\frac{1-t}{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \sqrt{\frac{1-t}{n}} U + \sqrt{t}Z \right) \frac{dt}{2(1-t)},
\]

- **First term** vanishes by the continuous entropic CLT
Proof: Bernoulli Smoothing

Standardised Fisher information: \(J(X) := \text{Var}(X) I(X) - 1 \)

de Bruijn’s identity: \(D(X) = \int_0^1 J(\sqrt{1-tX} + \sqrt{tZ}) \frac{dt}{2(1-t)} \)

\(\hat{S}_n = \frac{1}{\sqrt{n}} [\sum_{i=1}^n V_i + B_i] \)

\[
D \left(\frac{1}{\sqrt{n}} \left[\sum_{i=1}^n \sqrt{n} V_i + B_i \right] + \frac{1}{\sqrt{n}} U \right) = D \left(\frac{1}{\sqrt{2n}} \left[\hat{S}_n + U \right] + \frac{1}{\sqrt{2}} Z \right) + \int_0^{1/2} J \left(\sqrt{\frac{1-t}{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \sqrt{\frac{1-t}{n}} U + \sqrt{tZ} \right) \frac{dt}{2(1-t)} ,
\]

- First term vanishes by the continuous entropic CLT
- The integrand vanishes for each fixed \(t \in (0, 1) \) by the results of [Barron, ’86] and, by the convolution inequality, is

\[
\leq \left(1 + \frac{\sigma^2}{\sigma^2} \right) J \left(\sqrt{\frac{1-t}{n}} \sum_{i=1}^n B_i + \sqrt{\frac{1-t}{n}} U + \sqrt{tZ'} \right) + \frac{\sigma^2}{\sigma^2} ,
\]

whose integral vanishes by the binomial case (Step 1)!
Proof: Bernoulli Smoothing

Standardised Fisher information: \(J(X) := \text{Var}(X)I(X) - 1 \)

de Bruijn’s identity: \(D(X) = \int_0^1 J(\sqrt{1-t}X + \sqrt{t}Z) \frac{dt}{2(1-t)} \)

\(\hat{S}_n = \frac{1}{\sqrt{n}} [\sum_{i=1}^{n} V_i + B_i] \)

\[
D \left(\frac{1}{\sqrt{n}} \left[\sum_{i=1}^{n} V_i + B_i \right] + \frac{1}{\sqrt{n}} U \right) = D \left(\frac{1}{\sqrt{2n}} [\hat{S}_n + U] + \frac{1}{\sqrt{2}} Z \right) \\
+ \int_0^{1/2} J \left(\sqrt{\frac{1-t}{n}} \left[\sum_{i=1}^{n} V_i + B_i \right] + \sqrt{\frac{1-t}{n}} U + \sqrt{t}Z \right) \frac{dt}{2(1-t)},
\]

- **First term** vanishes by the continuous entropic CLT
- **The integrand** vanishes for each fixed \(t \in (0, 1) \) by the results of [Barron, ’86] and, by the convolution inequality, is

\[
\leq \left(1 + \frac{\sigma^2}{\sigma^2} \right) J \left(\sqrt{\frac{1-t}{n}} \sum_{i=1}^{n} B_i + \sqrt{\frac{1-t}{n}} U + \sqrt{t}Z' \right) + \frac{\sigma^2}{\sigma^2}, \text{ whose integral vanishes by the binomial case (Step 1)!}
\]

\[\Rightarrow \text{Uniform integrability} \]
Further Work

- Non-lattice
- Rates of convergence under additional moment assumptions
- (Approximate) Monotonicity (of any of the quantities appearing in the proof)
- Dependent random variables
- Random vectors
Thank you!