The Entropic Central Limit Theorem for Discrete Random Variables

Lampros Gavalakis loannis Kontoyiannis

University of Cambridge
ISIT, 27 June 2022

Outline

(1) Information Theoretic CLTs

- The Entropic CLT
(2) Discrete Random Variables
(3) On Monotonicity
(4) Proof
- Bernoulli Smoothing

Information Theoretic CLTs

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with mean 0 and finite variance σ^{2} and let $\hat{S}_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history starting with [Linnik '59], [Shimizu '75] and [Brown '82]

Information Theoretic CLTs

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with mean 0 and finite variance σ^{2} and let $\hat{S}_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history starting with [Linnik '59], [Shimizu '75] and [Brown '82]

The Fisher information of X with density f is $I(X)=\int f\left(\frac{f^{\prime}}{f}\right)^{2}$. For X, Y independent

$$
I(X+Y) \leq I(X) \quad(\text { convolution inequality })
$$

Information Theoretic CLTs: The Entropic CLT

The differential entropy of X is $h(X)=-\int f \log f$ and the relative entropy between X and Y with densities f and g is $D(X \| Y)=D(f \| g)=\int f \log \frac{f}{g}$

Let Z be a 0 mean Gaussian with variance σ^{2}. Then

$$
\begin{aligned}
D(X):=D(X \| Z) & =h(Z)-h(X) \\
& =\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)-h(X)
\end{aligned}
$$

and by positivity of relative entropy

$$
h(X) \leq h(Z) \quad \text { (Gaussian maximum entropy) }
$$

Information Theoretic CLTs: The Entropic CLT

Theorem (Entropic CLT [Barron, '86])

Let \hat{S}_{n} denote the standardised sum of i.i.d. X_{1}, \ldots, X_{n}

$$
D\left(\hat{S}_{n}\right) \rightarrow 0 \quad \text { if and only if } D\left(\hat{S}_{n}\right) \text { is finite for some } n
$$

Equivalently, writing $S_{n}=\sum_{i=1}^{n} X_{i}$,

$$
h\left(\hat{S}_{n}\right)=h\left(S_{n}\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

By Pinsker's inequality

$$
\left\|\hat{S}_{n}-Z\right\|_{\mathrm{TV}} \rightarrow 0
$$

Information Theoretic CLTs: The Entropic CLT

Theorem (Entropic CLT [Barron, '86])

Let \hat{S}_{n} denote the standardised sum of i.i.d. X_{1}, \ldots, X_{n}

$$
D\left(\hat{S}_{n}\right) \rightarrow 0 \quad \text { if and only if } D\left(\hat{S}_{n}\right) \text { is finite for some } n
$$

Equivalently, writing $S_{n}=\sum_{i=1}^{n} X_{i}$,

$$
h\left(\hat{S}_{n}\right)=h\left(S_{n}\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

By Pinsker's inequality

$$
\left\|\hat{S}_{n}-Z\right\|_{\mathrm{TV}} \rightarrow 0
$$

What about discrete?

Discrete Random Variables

The entropy of a discrete random variable Y with PMF p on A is $H(Y)=-\sum_{y \in A} p(y) \log p(y)$
Y has a lattice distribution with span $h>0$ if its support is a subset of $\{a+k h: k \in \mathbb{Z}\}$ for some $a \in \mathbb{R}$ h is maximal if it is the largest such h.

Let $\left\{X_{n}\right\}$ be i.i.d. lattice with variance σ^{2} and maximal span h. Let $S_{n}=\sum_{i=1}^{n} X_{i}$
Unlike the differential entropy

$$
H\left(\frac{1}{\sqrt{n}} S_{n}\right)=H\left(S_{n}\right) \rightarrow \infty
$$

Discrete Random Variables

Theorem (Entropy convergence)

$$
\lim _{n \rightarrow \infty}\left[H\left(S_{n}\right)-\log \frac{\sqrt{n}}{h}\right]=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

Discrete Random Variables

Theorem (Entropy convergence)

$$
\lim _{n \rightarrow \infty}\left[H\left(S_{n}\right)-\log \frac{\sqrt{n}}{h}\right]=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

This expansion has been derived in [Takano '87], [Verdú \& Han '97], ... But using strong forms of the CLT.

Discrete Random Variables

Theorem (Entropy convergence)

$$
\lim _{n \rightarrow \infty}\left[H\left(S_{n}\right)-\log \frac{\sqrt{n}}{h}\right]=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)
$$

This expansion has been derived in [Takano '87], [Verdú \& Han '97], ... But using strong forms of the CLT.

In fact, this theorem implies the CLT!

Discrete Random Variables

Suppose Y is lattice with PMF p, maximal span h, values in $A=\{a+k h: k \in \mathbb{Z}\}$, mean μ, and variance σ^{2}

Definition (Discrete Gaussianity)

Define

$$
D(Y):=D(p \| q)=\sum_{k \in \mathbb{Z}} p(a+k h) \log \frac{p(a+k h)}{q(a+k h)}
$$

where q is the PMF of a Gaussian $Z \sim N\left(\mu, \sigma^{2}\right)$ quantised on A as,

$$
q(a+k h)=\int_{a+k h}^{a+(k+1) h} \phi(x) d x, \quad k \in \mathbb{Z}
$$

where ϕ is the $N\left(\mu, \sigma^{2}\right)$ density.

By definition, $D(Y+c)=D(Y)$ for any constant c.

Discrete Random Variables

Theorem (Discrete entropic CLT)
If X_{1}, X_{2}, \ldots are i.i.d. lattice and $\hat{S}_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$, then

$$
D\left(\hat{S}_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

Take WLOG $\mu=0$, let $Z \sim N\left(0, \sigma^{2}\right)$ and let Z_{n} be the quantised Gaussian. Then, from Pinsker's and the triangle inequality for the total variation norm

$$
\left\|\hat{S}_{n}-Z\right\|_{\mathrm{TV}} \leq \sqrt{\frac{1}{2} D\left(\hat{S}_{n}\right)}+\left\|Z_{n}-Z\right\|_{\mathrm{TV}} \rightarrow 0 \quad \text { (strong version of CLT) }
$$

Alternatively, $\left\|\hat{S}_{n}-Z_{n}\right\|_{\text {TV }} \rightarrow 0$

Discrete Random Variables

Theorem (Entropy-relative entropy solidarity)

$$
\begin{aligned}
D\left(\hat{S}_{n}\right)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right) & -\left[H\left(S_{n}\right)-\log \frac{\sqrt{n}}{h}\right] \\
& +O\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

By positivity of the relative entropy,
$H\left(S_{n}\right)-\log \frac{\sqrt{n}}{h} \leq \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)+O\left(\frac{1}{\sqrt{n}}\right)$,
so the standardised entropy converges to its maximum limit!

On Monotonicity

- Continuous

Entropy Power Inequality (EPI):

$$
h\left(X_{1}+X_{2}\right) \geq h\left(X_{1}\right)+\frac{1}{2} \log 2
$$

$\Rightarrow h\left(\hat{S}_{2 n}\right) \geq h\left(\hat{S}_{n}\right)$ for all n
In fact, $h\left(\hat{S}_{n}\right) \uparrow \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$

On Monotonicity

- Continuous

Entropy Power Inequality (EPI):

$$
h\left(X_{1}+X_{2}\right) \geq h\left(X_{1}\right)+\frac{1}{2} \log 2
$$

$\Rightarrow h\left(\hat{S}_{2 n}\right) \geq h\left(\hat{S}_{n}\right)$ for all n
In fact, $h\left(\hat{S}_{n}\right) \uparrow \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$

- Discrete
$H\left(X_{1}+X_{2}\right) \geq H\left(X_{1}\right)+\frac{1}{2} \log 2$ fails in general. However, for i.i.d. X_{1}, X_{2}

$$
H\left(X_{1}+X_{2}\right) \geq H\left(X_{1}\right)+\frac{1}{2} \log 2-o_{H\left(X_{1}\right)}(1), \quad[\text { Tao, '10] }
$$

Proof

WLOG $h=1$. Three steps:

Proof

WLOG $h=1$. Three steps:

(1) Binomial entropy

If $S_{n} \sim \operatorname{Bin}(n, 1 / 2)$,

$$
H\left(S_{n}\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)
$$

Proof

WLOG $h=1$. Three steps:
(1) Binomial entropy

If $S_{n} \sim \operatorname{Bin}(n, 1 / 2)$,

$$
H\left(S_{n}\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)
$$

(2) "Bernoulli smoothing"

If $\left\{V_{n}\right\}$ are i.i.d. lattice and $\left\{B_{n}\right\}$ i.i.d. $\operatorname{Bern}(1 / 2)$ independent,

$$
H\left(\sum_{i=1}^{n}\left[V_{i}+B_{i}\right]\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(2 \pi e\left(\sigma_{V}^{2}+\frac{1}{4}\right)\right)
$$

Proof

WLOG $h=1$. Three steps:
(1) Binomial entropy

If $S_{n} \sim \operatorname{Bin}(n, 1 / 2)$,

$$
H\left(S_{n}\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)
$$

(2) "Bernoulli smoothing"

If $\left\{V_{n}\right\}$ are i.i.d. lattice and $\left\{B_{n}\right\}$ i.i.d. $\operatorname{Bern}(1 / 2)$ independent,

$$
H\left(\sum_{i=1}^{n}\left[V_{i}+B_{i}\right]\right)-\log \sqrt{n} \rightarrow \frac{1}{2} \log \left(2 \pi e\left(\sigma_{V}^{2}+\frac{1}{4}\right)\right)
$$

(3) Bernoulli part decomposition

$$
S_{n} \stackrel{\mathcal{D}}{=} V^{(n)}+W^{(n)} B
$$

for some lattice $V^{(n)}, W^{(n)} \sim \operatorname{Bern}\left(q^{(n)}\right)$ with $q^{(n)} \rightarrow 1$

Proof: Bernoulli Smoothing

Lemma

Let U be an independent uniform on ($-1 / 2,1 / 2$). Then

$$
D\left(\hat{S}_{n}\right)=D\left(\hat{S}_{n}+\frac{1}{\sqrt{n}} U\right)+O\left(\frac{1}{\sqrt{n}}\right)
$$

as $n \rightarrow \infty$.

Proof: Bernoulli Smoothing

Standardised Fisher information: $J(X):=\operatorname{Var}(X) I(X)-1$ de Bruijn's identity: $\quad D(X)=\int_{0}^{1} J(\sqrt{1-t} X+\sqrt{t} Z) \frac{d t}{2(1-t)}$ $\hat{S}_{n}=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]$

Proof: Bernoulli Smoothing

Standardised Fisher information: $J(X):=\operatorname{Var}(X) I(X)-1$ de Bruijn's identity: $\quad D(X)=\int_{0}^{1} J(\sqrt{1-t} X+\sqrt{t} Z) \frac{d t}{2(1-t)}$ $\hat{S}_{n}=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]$

$$
\begin{aligned}
& D\left(\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\frac{1}{\sqrt{n}} U\right)=D\left(\frac{1}{\sqrt{2 n}}\left[\hat{S}_{n}+U\right]+\frac{1}{\sqrt{2}} Z\right) \\
& +\int_{0}^{1 / 2} J\left(\sqrt{\frac{1-t}{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\sqrt{\frac{1-t}{n}} U+\sqrt{t} Z\right) \frac{d t}{2(1-t)}
\end{aligned}
$$

Proof: Bernoulli Smoothing

Standardised Fisher information: $J(X):=\operatorname{Var}(X) I(X)-1$ de Bruijn's identity: $\quad D(X)=\int_{0}^{1} J(\sqrt{1-t} X+\sqrt{t} Z) \frac{d t}{2(1-t)}$ $\hat{S}_{n}=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]$

$$
\begin{aligned}
& D\left(\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\frac{1}{\sqrt{n}} U\right)=D\left(\frac{1}{\sqrt{2 n}}\left[\hat{S}_{n}+U\right]+\frac{1}{\sqrt{2}} Z\right) \\
& +\int_{0}^{1 / 2} J\left(\sqrt{\frac{1-t}{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\sqrt{\frac{1-t}{n}} U+\sqrt{t} Z\right) \frac{d t}{2(1-t)}
\end{aligned}
$$

- First term vanishes by the continuous entropic CLT

Proof: Bernoulli Smoothing

Standardised Fisher information: $J(X):=\operatorname{Var}(X) I(X)-1$ de Bruijn's identity: $\quad D(X)=\int_{0}^{1} J(\sqrt{1-t} X+\sqrt{t} Z) \frac{d t}{2(1-t)}$ $\hat{S}_{n}=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]$

$$
\begin{aligned}
& D\left(\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\frac{1}{\sqrt{n}} U\right)=D\left(\frac{1}{\sqrt{2 n}}\left[\hat{S}_{n}+U\right]+\frac{1}{\sqrt{2}} Z\right) \\
& +\int_{0}^{1 / 2} J\left(\sqrt{\frac{1-t}{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\sqrt{\frac{1-t}{n}} U+\sqrt{t} Z\right) \frac{d t}{2(1-t)}
\end{aligned}
$$

- First term vanishes by the continuous entropic CLT
- The integrand vanishes for each fixed $t \in(0,1)$ by the results of [Barron, '86] and, by the convolution inequality, is $\leq\left(1+\frac{\sigma_{V}^{2}}{\sigma^{\prime 2}}\right) J\left(\sqrt{\frac{1-t}{n}} \sum_{i=1}^{n} B_{i}+\sqrt{\frac{1-t}{n}} U+\sqrt{t} Z^{\prime}\right)+\frac{\sigma_{V}^{2}}{\sigma^{\prime 2}}$, whose integral vanishes by the binomial case (Step 1)!

Proof: Bernoulli Smoothing

Standardised Fisher information: $J(X):=\operatorname{Var}(X) I(X)-1$ de Bruijn's identity: $\quad D(X)=\int_{0}^{1} J(\sqrt{1-t} X+\sqrt{t} Z) \frac{d t}{2(1-t)}$ $\hat{S}_{n}=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]$

$$
\begin{aligned}
& D\left(\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\frac{1}{\sqrt{n}} U\right)=D\left(\frac{1}{\sqrt{2 n}}\left[\hat{S}_{n}+U\right]+\frac{1}{\sqrt{2}} Z\right) \\
& +\int_{0}^{1 / 2} J\left(\sqrt{\frac{1-t}{n}}\left[\sum_{i=1}^{n} V_{i}+B_{i}\right]+\sqrt{\frac{1-t}{n}} U+\sqrt{t} Z\right) \frac{d t}{2(1-t)}
\end{aligned}
$$

- First term vanishes by the continuous entropic CLT
- The integrand vanishes for each fixed $t \in(0,1)$ by the results of [Barron, '86] and, by the convolution inequality, is $\leq\left(1+\frac{\sigma_{V}^{2}}{\sigma^{\prime 2}}\right) J\left(\sqrt{\frac{1-t}{n}} \sum_{i=1}^{n} B_{i}+\sqrt{\frac{1-t}{n}} U+\sqrt{t} Z^{\prime}\right)+\frac{\sigma_{V}^{2}}{\sigma^{\prime 2}}$, whose integral vanishes by the binomial case (Step 1)!
\Rightarrow Uniform integrability

Further Work

- Non-lattice
- Rates of convergence under additional moment assumptions
- (Approximate) Monotonicity (of any of the quantities appearing in the proof)
- Dependent random variables
- Random vectors

