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Information Theoretic CLTs

Let Xi,..., X, bei.i.d. random variables with mean 0 and finite variance
0? and let S, = \% 27:1 X; denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history
starting with [Linnik '59], [Shimizu '75] and [Brown '82]
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Information Theoretic CLTs

Let Xi,..., X, bei.i.d. random variables with mean 0 and finite variance
0? and let S, = \% 27:1 X; denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history
starting with [Linnik '59], [Shimizu '75] and [Brown '82]

The Fisher information of X with density f is /(X) = [ f('%)2.
For X, Y independent

I(X 4+ Y)<I(X) (convolution inequality)
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Information Theoretic CLTs: The Entropic CLT

The differential entropy of X is h(X) = — [ flog f

and the relative entropy between X and Y with densities f and g is
D(X||Y) = D(fllg) = [ flog

Let Z be a 0 mean Gaussian with variance 0. Then
D(X) == D(X|1Z) = h(Z) — h(X)
= % log (2mea?) — h(X)
and by positivity of relative entropy
h(X) < h(Z) (Gaussian maximum entropy)
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Information Theoretic CLTs: The Entropic CLT

Theorem (Entropic CLT [Barron, '86])

Let S, denote the standardised sum of i.i.d. X1,..., Xy

D(S,) — 0 if and only if D(5,) is finite for some n

Equivalently, writing S, = > Xj,

h(5,) = h(S,) — log /71 — % log (27e0?)

By Pinsker's inequality
150 = Z|[rv — 0
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Information Theoretic CLTs: The Entropic CLT

Theorem (Entropic CLT [Barron, '86])

Let S, denote the standardised sum of i.i.d. X1,..., Xy

D(S,) — 0 if and only if D(5,) is finite for some n

Equivalently, writing S, = > Xj,

h(5,) = h(S,) — log /71 — % log (27e0?)

By Pinsker's inequality
150 = Z|[rv — 0

What about discrete?

Lampros Gavalakis loannis Kontoyiannis Discrete Entropic CLT ISIT, 27 June 2022 5/16



Discrete Random Variables

The entropy of a discrete random variable Y with PMF p on A is
H(Y) = =3, cap(y)logp(y)

Y has a lattice distribution with span h > 0 if its support is a subset of
{a+ kh : k € Z} for some a € R
h is maximal if it is the largest such h.

Let {X,} be i.i.d. lattice with variance o® and maximal span h.

Let Sn = 27:1 X,'
Unlike the differential entropy

H(\;Sn> = H(S,) — 00
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Discrete Random Variables

Theorem (Entropy convergence)

lim [H(S,,) — log 4} = % log(2mea?)

n—oo0
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Discrete Random Variables

Theorem (Entropy convergence)

lim [H(S,,) — log 4} = % log(2mea?)

n—oo0

This expansion has been derived in [Takano '87], [Verdi & Han '97], ...
But using strong forms of the CLT.
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Discrete Random Variables

Theorem (Entropy convergence)

lim [H(S,,) — log 4} = % log(2mea?)

n—oo0

This expansion has been derived in [Takano '87], [Verdi & Han '97], ...
But using strong forms of the CLT.

In fact, this theorem implies the CLT!
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Discrete Random Variables

Suppose Y is lattice with PMF p, maximal span h,
values in A= {a+ kh : k € Z}, mean p, and variance o2

Definition (Discrete Gaussianity)

Define

DY) i= D(plla) = 3 pla-+ kh)log 52—

kEZ &
where g is the PMF of a Gaussian Z ~ N(u,0?) quantised on A as,

a+(k+1)h

q(a+ kh) = /+kh o(x)dx, k € Z,

where ¢ is the N(u, 02) density.

By definition, D(Y + ¢) = D(Y') for any constant c.
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Discrete Random Variables

Theorem (Discrete entropic CLT)
If X1, Xz, ... are i.id. lattice and S, = 2= 371, X;, then

D(5,) — 0, asn— oo.

Take WLOG p =0, let Z ~ N(0,0?) and let Z, be the quantised
Gaussian. Then, from Pinsker’'s and the triangle inequality for the total
variation norm

A 1 A
1Sn — Z||Tv < HED(S") + ||Zn — Z||rv — 0 (strong version of CLT)

Alternatively, ||S, — Z|lTv — 0
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Discrete Random Variables

Theorem (Entropy-relative entropy solidarity)

D(5,) = %Iog(ZTreaz) — [H(s,) ~tog ‘/Tﬁ]

+ O(%)

By positivity of the relative entropy,

H(S,) — log % < % log (2mea?) + O(%)
so the standardised entropy converges to its maximum limit!
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On Monotonicity

e Continuous
Entropy Power Inequality (EPI):

1
h(Xl + X2) > h(Xl) + 5 log 2
= h(52,) > h(S,) for all n

In fact, h(S,) + L log(2mec?)
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On Monotonicity

e Continuous
Entropy Power Inequality (EPI):

1
h(Xl + X2) > h(Xl) + 5 log 2

= h(52,) > h(S,) for all n

In fact, h(S,) + L log(2mec?)

@ Discrete
H(X1 + X2) > H(X1) + % log 2 fails in general.
However, for i.i.d. X1, X5

1
H(X1 + X2) > H(Xl) + E log2 — OH(Xl)(1)7 [Tao, '10]
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Proof

WLOG h = 1. Three steps:

Lampros Gavalakis  loannis Kontoyiannis Discrete Entropic CLT ISIT, 27 June 2022 12/16



WLOG h = 1. Three steps:
@ Binomial entropy
If S, ~ Bin(n,1/2),

1 1
H(S,) — logv/n — 5 log <§7re)
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WLOG h = 1. Three steps:
@ Binomial entropy
If S, ~ Bin(n,1/2),

1 1
H(S,) — logv/n — 5 log <§7re)

© "Bernoulli smoothing”
If {V,} arei.i.d. lattice and {B,} i.i.d. Bern(1/2) independent,

H<ZH: [Vi t Bi]) —log v/n — %Iog <27re<0%/ + %))

i=1
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WLOG h = 1. Three steps:
@ Binomial entropy
If S, ~ Bin(n,1/2),

1 1
H(S,) — logv/n — 5 log <§7re)

© "Bernoulli smoothing”
If {V,} arei.i.d. lattice and {B,} i.i.d. Bern(1/2) independent,

o 1 , 1
H(; [V, + B,]) —log+/n — 5 log <27re<0v + Z))
© Bernoulli part decomposition

S, 2 v 4 winpg,

for some lattice V(" W(") ~ Bern(q(") with (" — 1
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Proof: Bernoulli Smoothing

Lemma

Let U be an independent uniform on (—1/2,1/2). Then

D) = (5, + %U) + o(%)

as n — oQ.
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Proof: Bernoulli Smoothing

Standardised Fisher information:  J(X) := Var(X)I(X) — 1
de Bruijn's identity: D(X) = fo (V1I—tX + \fZ)2(1 o)
S = LIS, Vi+ B
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Proof: Bernoulli Smoothing

Standardised Fisher information:  J(X) := Var(X)I(X) — 1
de Bruijn's identity: D(X) = fo (V1I—tX + \fZ)2(1 o)
S = LIS, Vi+ B

(\f ZV+B

S

+WU>:D<\/127[ ]+ﬁ2>

Z\/+B +\/1 ) 1dit)
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Proof: Bernoulli Smoothing

Standardised Fisher information:  J(X) := Var(X)I(X) — 1
de Bruijn's identity: D(X) = fo (V1I—tX + \fZ)2(1 o)
S = LIS, Vi+ B

D(\% i\/;+5; +\;EU>: D<\/12in[§n+u]+\22>

+/01/2 <F ZV+B

@ First term vanishes by the continuous entropic CLT
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Proof: Bernoulli Smoothing

Standardised Fisher information:  J(X) := Var(X)I(X) — 1
de Bruijn's identity: D(X) = fo (V1I—tX + \fZ)2(1 o)
S = LIS, Vi+ B

D(\% Zn:\/,-+5,- +\;U>: D<\/12in[§n+u]+\22>

+/01/2 <F ZV+B \/7u+\ﬁ2>2(1dit),

@ First term vanishes by the continuous entropic CLT

@ The integrand vanishes for each fixed t € (0, 1) by the results of
[Barron, '86] and, by the convolution inequality, is

2
§(1+jy) (,/ £ B+ 1fu+\fz'> %y, whose

integral vanishes by the binomial case (Step 1)!
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Proof: Bernoulli Smoothing

Standardised Fisher information:  J(X) := Var(X)I(X) — 1
de Bruijn's identity: D(X) = fo (V1I—tX + \fZ)2(1 o)
S = LIS, Vi+ B

D(\% Zn:\/,-+5,- +\;U>: D<\/127n[§n+U}+\22>

+/01/2 <\/ﬁ ZV+B \/7u+ﬂ2>2(1dit),

@ First term vanishes by the continuous entropic CLT

@ The integrand vanishes for each fixed t € (0, 1) by the results of
[Barron, '86] and, by the convolution inequality, is

2
§(1+jy) (,/ £ B+ 1fu+\fz'> %y, whose

integral vanishes by the binomial case (Step 1)!

= Uniform integrability
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Further Work

Non-lattice

Rates of convergence under additional moment assumptions

(Approximate) Monotonicity (of any of the quantities appearing in
the proof)

Dependent random variables

Random vectors
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Thank you!
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