The Entropic Central Limit Theorem for Discrete Random Variables

Lampros Gavalakis Ioannis Kontoyiannis

University of Cambridge

ISIT, 27 June 2022

Outline

- Information Theoretic CLTs
 - The Entropic CLT
- Discrete Random Variables
- On Monotonicity
- Proof
 - Bernoulli Smoothing

Information Theoretic CLTs

Let X_1, \ldots, X_n be i.i.d. random variables with mean 0 and finite variance σ^2 and let $\hat{S}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$ denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history starting with [Linnik '59], [Shimizu '75] and [Brown '82]

Information Theoretic CLTs

Let X_1, \ldots, X_n be i.i.d. random variables with mean 0 and finite variance σ^2 and let $\hat{S}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$ denote their standardised sum.

Information theory and the central limit theorem (CLT) have a long history starting with [Linnik '59], [Shimizu '75] and [Brown '82]

The Fisher information of X with density f is $I(X) = \int f(\frac{f'}{f})^2$. For X, Y independent

$$I(X + Y) \le I(X)$$
 (convolution inequality)

Information Theoretic CLTs: The Entropic CLT

The differential entropy of X is $h(X) = -\int f \log f$ and the relative entropy between X and Y with densities f and g is $D(X||Y) = D(f||g) = \int f \log \frac{f}{g}$

Let Z be a 0 mean Gaussian with variance σ^2 . Then

$$D(X) := D(X||Z) = h(Z) - h(X)$$

= $\frac{1}{2} \log (2\pi e \sigma^2) - h(X)$

and by positivity of relative entropy

 $h(X) \le h(Z)$ (Gaussian maximum entropy)

Information Theoretic CLTs: The Entropic CLT

Theorem (Entropic CLT [Barron, '86])

Let \hat{S}_n denote the standardised sum of i.i.d. X_1, \ldots, X_n

 $D(\hat{S}_n) \to 0$ if and only if $D(\hat{S}_n)$ is finite for some n

Equivalently, writing $S_n = \sum_{i=1}^n X_i$,

$$h(\hat{S}_n) = h(S_n) - \log \sqrt{n} \to \frac{1}{2} \log (2\pi e \sigma^2)$$

By Pinsker's inequality

$$\|\hat{S}_n - Z\|_{\mathrm{TV}} \to 0$$

Information Theoretic CLTs: The Entropic CLT

Theorem (Entropic CLT [Barron, '86])

Let \hat{S}_n denote the standardised sum of i.i.d. X_1, \ldots, X_n

 $D(\hat{S}_n) \to 0$ if and only if $D(\hat{S}_n)$ is finite for some n

Equivalently, writing $S_n = \sum_{i=1}^n X_i$,

$$h(\hat{S}_n) = h(S_n) - \log \sqrt{n} \to \frac{1}{2} \log (2\pi e \sigma^2)$$

By Pinsker's inequality

$$\|\hat{S}_n - Z\|_{\mathrm{TV}} \to 0$$

What about discrete?

The entropy of a discrete random variable Y with PMF p on A is $H(Y) = -\sum_{y \in A} p(y) \log p(y)$

Y has a lattice distribution with span h>0 if its support is a subset of $\{a+kh:k\in\mathbb{Z}\}$ for some $a\in\mathbb{R}$ h is maximal if it is the largest such h.

Let $\{X_n\}$ be i.i.d. lattice with variance σ^2 and maximal span h. Let $S_n = \sum_{i=1}^n X_i$ Unlike the differential entropy

$$H\left(\frac{1}{\sqrt{n}}S_n\right)=H(S_n)\to\infty$$

Theorem (Entropy convergence)

$$\lim_{n\to\infty} \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] = \frac{1}{2} \log(2\pi e \sigma^2)$$

Theorem (Entropy convergence)

$$\lim_{n\to\infty} \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] = \frac{1}{2} \log(2\pi e \sigma^2)$$

This expansion has been derived in [Takano '87], [Verdú & Han '97], \dots But using strong forms of the CLT.

Theorem (Entropy convergence)

$$\lim_{n\to\infty} \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] = \frac{1}{2} \log(2\pi e \sigma^2)$$

This expansion has been derived in [Takano '87], [Verdú & Han '97], ... But using strong forms of the CLT.

In fact, this theorem implies the CLT!

Suppose Y is lattice with PMF p, maximal span h, values in $A = \{a + kh : k \in \mathbb{Z}\}$, mean μ , and variance σ^2

Definition (Discrete Gaussianity)

Define

$$D(Y) := D(p||q) = \sum_{k \in \mathbb{Z}} p(a+kh) \log \frac{p(a+kh)}{q(a+kh)}$$

where q is the PMF of a Gaussian $Z \sim N(\mu, \sigma^2)$ quantised on A as,

$$q(a+kh)=\int_{a+kh}^{a+(k+1)h}\phi(x)dx, \qquad k\in\mathbb{Z},$$

where ϕ is the $N(\mu, \sigma^2)$ density.

By definition, D(Y + c) = D(Y) for any constant c.

Lampros Gavalakis Ioannis Kontoviannis Discrete Entropic CLT ISIT, 27 June 2022 8 / 16

Theorem (Discrete entropic CLT)

If
$$X_1, X_2, \ldots$$
 are i.i.d. lattice and $\hat{S}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$, then

$$D(\hat{S}_n) \to 0$$
, as $n \to \infty$.

Take WLOG $\mu=0$, let $Z\sim N(0,\sigma^2)$ and let Z_n be the quantised Gaussian. Then, from Pinsker's and the triangle inequality for the total variation norm

$$\|\hat{S}_n - Z\|_{\mathrm{TV}} \le \sqrt{\frac{1}{2}D(\hat{S}_n)} + \|Z_n - Z\|_{\mathrm{TV}} \to 0$$
 (strong version of CLT)

Alternatively, $\|\hat{\mathcal{S}}_n - \mathcal{Z}_n\|_{\mathrm{TV}} o 0$

Theorem (Entropy-relative entropy solidarity)

$$D(\hat{S}_n) = \frac{1}{2} \log (2\pi e \sigma^2) - \left[H(S_n) - \log \frac{\sqrt{n}}{h} \right] + O\left(\frac{1}{\sqrt{n}}\right)$$

By positivity of the relative entropy,

$$H(S_n) - \log \frac{\sqrt{n}}{h} \le \frac{1}{2} \log (2\pi e \sigma^2) + O\left(\frac{1}{\sqrt{n}}\right)$$
, so the standardized entropy converges to its ma

so the standardised entropy converges to its maximum limit!

On Monotonicity

Continuous

Entropy Power Inequality (EPI):

$$h(X_1 + X_2) \ge h(X_1) + \frac{1}{2} \log 2$$

$$\Rightarrow h(\hat{S}_{2n}) \geq h(\hat{S}_n)$$
 for all n

In fact,
$$h(\hat{S}_n) \uparrow \frac{1}{2} \log(2\pi e \sigma^2)$$

On Monotonicity

Continuous

Entropy Power Inequality (EPI):

$$h(X_1 + X_2) \ge h(X_1) + \frac{1}{2} \log 2$$

$$\Rightarrow h(\hat{S}_{2n}) \geq h(\hat{S}_n)$$
 for all n

In fact,
$$h(\hat{S}_n) \uparrow \frac{1}{2} \log(2\pi e \sigma^2)$$

Discrete

 $H(X_1 + X_2) \ge H(X_1) + \frac{1}{2} \log 2$ fails in general. However, for i.i.d. X_1, X_2

$$H(X_1 + X_2) \ge H(X_1) + \frac{1}{2} \log 2 - o_{H(X_1)}(1),$$
 [Tao, '10]

WLOG h = 1. Three steps:

WLOG h = 1. Three steps:

1 Binomial entropy If $S_n \sim \text{Bin}(n, 1/2)$,

$$H(S_n) - \log \sqrt{n} \to \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)$$

WLOG h = 1. Three steps:

• Binomial entropy If $S_n \sim \text{Bin}(n, 1/2)$,

$$H(S_n) - \log \sqrt{n} \rightarrow \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)$$

2 "Bernoulli smoothing" If $\{V_n\}$ are i.i.d. lattice and $\{B_n\}$ i.i.d. Bern(1/2) independent,

$$H\left(\sum_{i=1}^{n}\left[V_{i}+B_{i}\right]\right)-\log\sqrt{n}\rightarrow\frac{1}{2}\log\left(2\pi e\left(\sigma_{V}^{2}+\frac{1}{4}\right)\right)$$

WLOG h = 1. Three steps:

Binomial entropy If $S_n \sim \text{Bin}(n, 1/2)$,

$$H(S_n) - \log \sqrt{n} \rightarrow \frac{1}{2} \log \left(\frac{1}{2} \pi e\right)$$

2 "Bernoulli smoothing" If $\{V_n\}$ are i.i.d. lattice and $\{B_n\}$ i.i.d. Bern(1/2) independent,

$$H\left(\sum_{i=1}^{n}\left[V_{i}+B_{i}\right]\right)-\log\sqrt{n}\rightarrow\frac{1}{2}\log\left(2\pi e\left(\sigma_{V}^{2}+\frac{1}{4}\right)\right)$$

Bernoulli part decomposition

$$S_n \stackrel{\mathcal{D}}{=} V^{(n)} + W^{(n)}B,$$

for some lattice $V^{(n)}$, $W^{(n)} \sim \mathrm{Bern}(q^{(n)})$ with $q^{(n)} \to 1$

Lemma

Let U be an independent uniform on (-1/2, 1/2). Then

$$D(\hat{S}_n) = D\left(\hat{S}_n + \frac{1}{\sqrt{n}}U\right) + O\left(\frac{1}{\sqrt{n}}\right)$$

as $n \to \infty$.

Standardised Fisher information: J(X) := Var(X)I(X) - 1 de Bruijn's identity: $D(X) = \int_0^1 J(\sqrt{1-t}X + \sqrt{t}Z)\frac{dt}{2(1-t)}$ $\hat{S}_n = \frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right]$

Standardised Fisher information:
$$J(X) := \operatorname{Var}(X)I(X) - 1$$
de Bruijn's identity:
$$D(X) = \int_0^1 J(\sqrt{1 - t}X + \sqrt{t}Z) \frac{dt}{2(1 - t)}$$

$$\hat{S}_n = \frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right]$$

$$D\left(\frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \frac{1}{\sqrt{n}} U \right) = D\left(\frac{1}{\sqrt{2n}} \left[\hat{S}_n + U \right] + \frac{1}{\sqrt{2}} Z \right)$$

$$+ \int_0^{1/2} J\left(\sqrt{\frac{1 - t}{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \sqrt{\frac{1 - t}{n}} U + \sqrt{t} Z \right) \frac{dt}{2(1 - t)},$$

Standardised Fisher information:
$$J(X) := \operatorname{Var}(X)I(X) - 1$$
de Bruijn's identity:
$$D(X) = \int_0^1 J(\sqrt{1 - t}X + \sqrt{t}Z) \frac{dt}{2(1 - t)}$$

$$\hat{S}_n = \frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right]$$

$$D\left(\frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \frac{1}{\sqrt{n}}U \right) = D\left(\frac{1}{\sqrt{2n}} \left[\hat{S}_n + U \right] + \frac{1}{\sqrt{2}}Z \right)$$

$$+ \int_0^{1/2} J\left(\sqrt{\frac{1 - t}{n}} \left[\sum_{i=1}^n V_i + B_i \right] + \sqrt{\frac{1 - t}{n}}U + \sqrt{t}Z \right) \frac{dt}{2(1 - t)},$$

First term vanishes by the continuous entropic CLT

Standardised Fisher information: J(X) := Var(X)I(X) - 1de Bruijn's identity: $D(X) = \int_0^1 J(\sqrt{1-t}X + \sqrt{t}Z) \frac{dt}{2(1-t)}$ $\hat{S}_n = \frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right]$

$$\begin{split} &D\left(\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n}V_{i}+B_{i}\right]+\frac{1}{\sqrt{n}}U\right)=&D\left(\frac{1}{\sqrt{2n}}\left[\hat{S}_{n}+U\right]+\frac{1}{\sqrt{2}}Z\right)\\ &+\int_{0}^{1/2}J\left(\sqrt{\frac{1-t}{n}}\left[\sum_{i=1}^{n}V_{i}+B_{i}\right]+\sqrt{\frac{1-t}{n}}U+\sqrt{t}Z\right)\frac{dt}{2(1-t)}, \end{split}$$

- First term vanishes by the continuous entropic CLT
- The integrand vanishes for each fixed $t \in (0,1)$ by the results of [Barron, '86] and, by the convolution inequality, is $\leq \left(1+rac{\sigma_V^2}{\sigma'^2}\right)J\left(\sqrt{rac{1-t}{n}}\sum_{i=1}^n B_i+\sqrt{rac{1-t}{n}}U+\sqrt{t}Z'
 ight)+rac{\sigma_V^2}{\sigma'^2},$ whose integral vanishes by the binomial case (Step 1)!

Standardised Fisher information: $J(X) := \operatorname{Var}(X)I(X) - 1$ de Bruijn's identity: $D(X) = \int_0^1 J(\sqrt{1-t}X + \sqrt{t}Z)\frac{dt}{2(1-t)}$ $\hat{S}_n = \frac{1}{\sqrt{n}} \left[\sum_{i=1}^n V_i + B_i \right]$

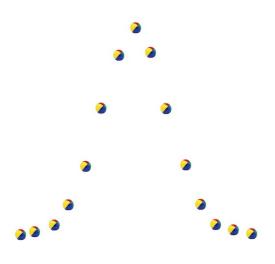
$$D\left(\frac{1}{\sqrt{n}}\left[\sum_{i=1}^{n}V_{i}+B_{i}\right]+\frac{1}{\sqrt{n}}U\right)=D\left(\frac{1}{\sqrt{2n}}\left[\hat{S}_{n}+U\right]+\frac{1}{\sqrt{2}}Z\right)$$
$$+\int_{0}^{1/2}J\left(\sqrt{\frac{1-t}{n}}\left[\sum_{i=1}^{n}V_{i}+B_{i}\right]+\sqrt{\frac{1-t}{n}}U+\sqrt{t}Z\right)\frac{dt}{2(1-t)},$$

- First term vanishes by the continuous entropic CLT
- The integrand vanishes for each fixed $t \in (0,1)$ by the results of [Barron, '86] and, by the convolution inequality, is $\leq \left(1+\frac{\sigma_V^2}{\sigma'^2}\right)J\left(\sqrt{\frac{1-t}{n}}\sum_{i=1}^n B_i + \sqrt{\frac{1-t}{n}}\,U + \sqrt{t}Z'\right) + \frac{\sigma_V^2}{\sigma'^2}, \text{ whose integral vanishes by the binomial case (Step 1)!}$

 \Rightarrow Uniform integrability

Further Work

- Non-lattice
- Rates of convergence under additional moment assumptions
- (Approximate) Monotonicity (of any of the quantities appearing in the proof)
- Dependent random variables
- Random vectors



Thank you!