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1 Modulation, Phasors and Bandlimited Noise

1.1 Types of Modulation - AM, FM, PM

We define a general sinusoidal wave as:

s(t) = a cos(ωCt+ ϕ)
�

�
�
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@
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Fig 1.1 shows these three forms of modulation. The triangular wave at the top is the information
signal, and below it is the carrier wave. Then the three modulated waves are shown.

If the information signal = x(t), then:

For Ampl. Mod. (AM):

a = a0 +KAx(t)

For Phase Mod. (PM):

ϕ = ϕ0 +KPx(t)

For Frequency Mod. (FM):
dϕ

dt
= KFx(t)

Why use Modulation?

1. To transmit information via a bandlimited channel.
e.g. Computer data via a 300 to 3000 Hz telephone circuit.

2. To pass many information channels via a common medium simultaneously.
e.g. Radio and TV signals use different carrier frequencies to avoid interference.

For continuous analogue signals (e.g. TV, speech or music) AM or FM are most common.

For digital signals AM and PM are used and are often combined.
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Information signal

Carrier wave

AM wave

PM wave

FM wave

Fig 1.1: Main forms of analogue modulation

1.2 Important Features of Modulation Schemes:

There are 3 main criteria for assessing modulation schemes:

1. Bandwidth required – affects how close adjacent carriers can be without interference
occuring.

2. Demodulator / receiver complexity – affects the cost of a system.

3. Noise rejection properties – affect the transmitter power needed and the maximum
range.
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1.3 Phasor Representation of Modulated Signals

It is useful to handle AM, PM and FM in a unified way.

Let the modulated wave be:

s(t) = a(t) cos(ωCt+ ϕ(t)) (1.1)

Note a(t) and ϕ(t) are difficult to combine.

So we consider the cosine term as the real part of a complex exponential:

s(t) = Re[a(t) ej(ωCt+ϕ(t))]

= Re[a(t) ejϕ(t) ejωCt]

= Re[ p(t)
|

modulation
phasor

ejωCt

|
carrier
wave

] (1.2)

where p(t) = a(t)
|

ampl.
of p(t)

ejϕ(t)

|
phase
of p(t)

(1.3)

Now the modulation is completely separated from the carrier wave, and a and ϕ have been
combined into a single phasor waveform, p(t).

Phasors are very useful for defining any form of modulation that is to be applied to a carrier
wave, without involving the carrier itself. Phasors vary much more slowly than the modulated
wave, s(t), and are easier to analyse.

See figs 1.2, 1.3 and 1.4 (3D plots of AM, PM and FM).

Significance of the Real and Imaginary Parts of Phasors:

If p(t) has real and imaginary parts, i(t) and q(t), then:

Let p(t) = i(t) + jq(t) (1.4)

.
.
. from (1.3) i(t) = a(t) cosϕ(t) (1.5)

and q(t) = a(t) sinϕ(t) (1.6)

We may obtain s(t) in terms of i and q by substituting (1.4) into (1.2):

s(t) = Re[{i(t) + jq(t)} ejωCt] = i(t) cos(ωCt)− q(t) sin(ωCt) (1.7)

Hence i(t) is the inphase component of s(t) and −q(t) is the quadrature component.
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Fig 1.2: 3-D plot of AM phasor and input signal
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Fig 1.3: 3-D plot of PM phasor and input signal



3F4 Digital Modulation Course – Section 1 (supervisor copy) 7

 i

 q

 x

 t

 t

Fig 1.4: 3-D plot of FM phasor and input signal
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Fig 1.5: Quadrature Demodulator.

1.4 Quadrature Demodulation:

Given s(t), how do we obtain i(t) and q(t) for the phasor waveform which generated s?

Fig 1.5 shows the quadrature demodulator which achieves this.

From multiplier 1:

i′(t) = s(t)× 2 cos(ωCt)

= [i(t) cos(ωCt)− q(t) sin(ωCt)]× 2 cos(ωCt)

= 2i(t) cos2(ωCt)− 2q(t) sin(ωCt) cos(ωCt)

= i(t) + i(t) cos(2ωCt)− q(t) sin(2ωCt)

Hence the output of lowpass filter 1 is i(t), since the two terms modulated onto carriers at 2ωC

are rejected by the filter.

Similarly from multiplier 2:

q′(t) = s(t)× [−2 sin(ωCt)]

= [i(t) cos(ωCt)− q(t) sin(ωCt)]× [−2 sin(ωCt)]

= −2i(t) cos(ωCt) sin(ωCt) + 2q(t) sin2(ωCt)

= q(t)− q(t) cos(2ωCt)− i(t) sin(2ωCt)

and the output of lowpass filter 2 is q(t).

The quadrature demodulator is the basis for demodulating many types of modulation, although
often only one output component is required, so only half of the demodulator is needed.
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Fig 1.6: Phasor spectrum, P, and the corresponding signal spectrum, S.

1.5 Spectra of Phasors

To assess bandwidth, we relate the spectrum of any modulated signal s(t) to the spectrum of
its phasor waveform p(t).

Expanding (1.2):

s(t) = Re[p(t) ejωCt] = 1
2 [p(t) e

jωCt + p∗(t) e−jωCt] (1.8)

If p(t) ⇀↽ P (ω) then p∗(t) ⇀↽ P ∗(−ω)

By frequency shift: p(t) ejωCt ⇀↽
∫ ∞

−∞
p(t) e−j(ω−ωC)tdt = P (ω − ωC)

and p∗(t) e−jωCt ⇀↽
∫ ∞

−∞
p∗(t) e−j(ω+ωC)tdt = P ∗(−(ω + ωC))

.
.
. taking transforms: S(ω) = 1

2 [P (ω − ωC) + P ∗(−(ω + ωC))] (1.9)
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Fig 1.6 shows how an arbitrarily shaped phasor spectrum, P (ω), is transformed into the spec-
trum, S(ω), of the real modulated signal, s(t). Note that:

1. Spectra are normally plotted in terms of frequency f = ω/(2π) rather than angular
frequency ω, since it is usually more convenient to think of bandwidth in Hz rather
than radians per second.

2. If P (ω) is narrowband compared with ωC , then S(ω) comprises two components centred
on ωC and −ωC , such that P (ω) is shifted to ωC and P ∗(−ω) is shifted to −ωC .

3. S(ω) is a linear function of P (ω ± ωC); i.e. if P (ω) comprises a linear sum of certain
components, then S(ω) will comprise the same linear combination of components, shifted
up and down by ωC . Hence we can easily determine the spectrum of any modulated
signal once we have calculated P (ω).

4. Since p(t) is a complex waveform, P (ω) need not possess any symmetries between
positive and negative frequencies. Hence the upper sidebands of S(ω) need not be related
to its lower sidebands.

5. P (ω) depends only on the modulation method and the input signal – it is independent
of the carrier frequency ωC .
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1.6 One-sided and Two-sided Spectra:

• Two-sided spectra include negative as well as positive frequencies and are used for
complex waveforms (and optionally for real waveforms).

• One-sided spectra consider frequencies as being purely positive quantities and may
only be used for real waveforms whose 2-sided spectra are symmetrical about zero.

Note on Negative Frequencies

A real cosine wave can be written: cos(ωt) = 1
2
(ejωt + e−jωt)

If ω > 0, then ejωt is the positive frequency component of the cosine wave, and e−jωt is the
negative frequency component. These two components form two contra-rotating unit phasors
which, when summed together, produce the purely real cosine wave.

A purely imaginary sine wave is produced if the phasors are subtracted, instead of added.

Lowpass Noise

A real lowpass noise signal containing frequencies from 0 to B Hz has a 1-sided spectrum
from 0 to B Hz (fig 1.7a) and a 2-sided spectrum from −B to +B Hz (fig 1.7b).

Hence its 1-sided bandwidth = B Hz, and its 2-sided bandwidth = 2B Hz.

If it is a noise signal with a flat power spectrum and its power is P watt, then its 1-sided
power spectral density (PSD) = P/B watt/Hz, and its 2-sided PSD = P/2B watt/Hz. (Tuned
voltmeters or spectrum analysers measure 1-sided PSD, since they respond to positive and
negative frequency components, summed together.)

Bandpass Noise

A real bandpass noise signal is shown in figs 1.7c and 1.7d. Its spectrum extends from
fC − B to fC + B Hz (and equivalent negative frequencies) and has zero energy elsewhere, so
it has a 1-sided bandwidth of 2B Hz.

If the total noise power is P watt, the 1-sided PSD of the noise near fC is P/2B watt/Hz and
the 2-sided PSD near ±fC is P/4B watt/Hz.

This bandlimited noise sN(t) may be represented by a carrier of frequency fC , modulated by
a complex noise phasor pN(t):

sN(t) = Re[pN(t) e
jωCt] (1.10)

Fig 1.7e shows the 2-sided spectrum E{|PN(ω)|2} of the phasor pN(t) which represents the
bandlimited noise sN(t).

pN(t) has a flat spectrum from −B to +B Hz, and therefore a 2-sided bandwidth of 2B Hz.
Since it is a complex phasor waveform, we only use 2-sided descriptions for its spectrum and
bandwidth.
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Fig 1.7: Power spectra of bandlimited noise and noise phasors.
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Fig 1.9: Complex baseband equivalent system.

1.7 Noise Phasors:

Figs 1.8 and 1.9 show a simplified comms. system and its baseband equivalent.

Just as the signal s can be represented by the phasor p, a bandlimited noise waveform sN in
the region of fC can be represented by the noise phasor pN .

Let:

pN(t) = [n1(t) + jn2(t)] e
jϕN (1.11)

where n1(t) and n2(t) are two real noise waveforms, and ϕN is an arbitrary constant phase
offset. This process is illustrated in figures 1.10 to 1.15 . Figures 1.10 and 1.11 show two
uncorrelated noise waveforms in real and imaginary directions, and figures 1.12 and 1.13 show
the sum of these two waveforms in 2-D and 3-D respectively. Note the absence of any dominant
direction to the sum, providing visual justification of the use of an arbitrary phase offset ϕN .
Figures 1.14 and 1.15 show the effects of adding noise phasors to a constant phasor and the
AM phasor of fig 1.2 .

We shall now show that if n1(t) and n2(t) are uncorrelated Gaussian processes with identical 1-
sided power spectra, then pN(t) accurately represents bandlimited gaussian noise sN(t).

Let n1(t) and n2(t) each have a 2-sided noise PSD of N0/2 watt/Hz from −B to +B Hz and
zero elsewhere (see figs 1.7f and 1.7g).

This is expressed using expectations E{}, since noise is random, as:

E{|N1(ω)|2} = E{|N2(ω)|2} =


N0

2
for |ω| ≤ 2πB

0 for |ω| > 2πB
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Taking Fourier transforms of (1.11):

PN(ω) = [N1(ω) + jN2(ω)] e
jϕN

Since n1(t) and n2(t) are uncorrelated and Gaussian, the phases of N1(ω) and N2(ω) are

uncorrelated and their powers add, so the PSD of pN (fig 1.7e) is given by:

E{|PN(ω)|2} = E{|N1(ω)|2}+ E{|N2(ω)|2}

=


N0

2
+

N0

2
= N0 for |ω| ≤ 2πB

0 for |ω| > 2πB

Using (1.9) to get the spectrum of sN :

SN(ω) =
1
2 [PN(ω − ωC) + P ∗

N(−(ω + ωC))]

If B < fC , so that PN(ω − ωC) does not overlap with P ∗
N(−(ω + ωC)):

E{|SN(ω)|2} = 1
4E{|PN(ω − ωC)|2}+ 1

4E{|PN(−(ω + ωC))|2}

=



N0

4
for ωC − 2πB ≤ ω ≤ ωC + 2πB

or −ωC − 2πB ≤ ω ≤ −ωC + 2πB

0 otherwise

This gives the 2-sided PSD of sN (fig 1.7d).

Thus its 1-sided PSD is N0/2 watt/Hz from fC −B to fC +B Hz (fig 1.7c).

The need for pN(t) to be complex:

For SN(ω) to be the spectrum of true bandlimited noise, SN(ωC −∆ω) must be uncorrelated
with SN(ωC +∆ω) at any ∆ω.

Note the standard Fourier Transform result that, if x(t) is purely real, its negative frequency

components are the complex conjugates of its positive frequency components:

X(−ω) =
∫ ∞

−∞
x(t) ejωt dt =

(∫ ∞

−∞
x(t) e−jωt dt

)∗
= X∗(ω)

Hence if pN(t) were purely real:

PN(−∆ω) = P ∗
N(∆ω) and so SN(ωC −∆ω) = S∗

N(ωC +∆ω)

showing undesirable strong correlation between SN(ωC −∆ω) and SN(ωC +∆ω).
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Similarly there would be strong correlation if pN(t) were purely imaginary:

PN(−∆ω) = −P ∗
N(∆ω) and so SN(ωC −∆ω) = −S∗

N(ωC +∆ω).

However if pN(t) = n1(t) + jn2(t) as proposed,

PN(∆ω) = N1(∆ω) + jN2(∆ω)

and PN(−∆ω) = N1(−∆ω) + jN2(−∆ω)

= N ∗
1 (∆ω) + jN ∗

2 (∆ω)

The cross-correlation between PN(∆ω) and P ∗
N(−∆ω) is proportional to

E{PN(∆ω)PN(−∆ω)}

Now:

PN(∆ω)PN(−∆ω) = N1(∆ω)N ∗
1 (∆ω)−N2(∆ω)N ∗

2 (∆ω)

+j[N1(∆ω)N ∗
2 (∆ω) +N∗

1 (∆ω)N2(∆ω)]

= |N1(∆ω)|2 − |N2(∆ω)|2 + 2j Re[N1(∆ω)N ∗
2 (∆ω)]

The expected (or mean) value of each of the first 2 terms is N0/2 and of the 3rd term is 0 since

n1 and n2 are uncorrelated.

.
.
. E{PN(∆ω)PN(−∆ω)} =

N0

2
− N0

2
+ 0 = 0

Hence there is no correlation between PN(∆ω) and P ∗
N(−∆ω), as desired.

Summary:

A real noise waveform sN(t), bandlimited from (fC − B) to (fC + B) Hz and with a 1-sided

PSD of N0/2 watt/Hz, may be represented by the noise phasor:

pN(t) = [n1(t) + jn2(t)] e
jϕN

where n1(t) and n2(t) are real uncorrelated Gaussian noise waveforms of equal 2-sided PSD of
N0/2 watt/Hz, bandlimited from −B to +B Hz, and pN(t) has a 2-sided PSD of N0 watt/Hz
over the same bandwidth. The phase offset ϕN may be an arbitrary constant.
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Fig 1.10: Real component of noise phasor.
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Fig 1.11: Imaginary component of noise phasor.
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Fig 1.12: Complex noise phasor in 2−D.

 i

 q

 t

Fig 1.13: Complex noise phasor in 3−D.
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Fig 1.14: Constant signal phasor + (0.3 * Noise phasor).
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Fig 1.15: AM signal phasor + (0.3 * Noise phasor).
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1.8 Signal/Noise Ratios for Signals and Phasors:

• How do the signal power PS and 1-sided noise PSD NS of the real signals s(t) and sN(t)
in fig 1.8 relate to the phasor power P0 and 2-sided noise PSD N0 for the phasors p(t)
and pN(t) of fig 1.9 ?

Let PS be the power of s(t).

.
.
. PS = (Re[p(t) ejωCt])2 = [i cos(ωCt)− q sin(ωCt)]2 if p = i + jq

= [i cos(ωCt)]2 + [q sin(ωCt)]2 =
1
2i

2 + 1
2q

2 = 1
2 |p|2 =

1
2P0

Let NS be the 1-sided PSD of noise waveform sN(t).

From the above summary and figs 1.7c to 1.7e:

NS = 1
2N0

.
.
.

P0

N0
=

2PS

2NS
=

PS

NS

Hence SNR is unaffected by conversion from real signals to phasors.

Real receiver amplifiers are characterised by their noise figure F , which is the ratio of the actual
output noise PSD (due to amplifier noise and input resistance noise, but not noise from the
antenna) to the ideal output noise PSD (assuming the amplifier is ideal and the only source
of noise is the input resistance). The noise PSD from a resistor (of any value) at absolute
temperature T is kT (where k is Boltzmann’s constant), so the 1-sided noise PSD out of a real
receiver amplifier (ignoring antenna noise which is usually small) is given by:

NS = GNin = GkTF (joule or watt/Hz)

where G is the amplifier power gain and Nin is the effective noise PSD at the amplifier input.
Note that here F should be expressed as a power ratio, and not be in dB.

The signal power out of the amplifier is:

PS = GPin (watt)

where Pin is the receiver input signal power.

.
.
.

P0

N0
=

PS

NS
=

GPin

GkTF
=

Pin

kTF
(Hz)

These formulae apply even when there is frequency translation and bandlimiting in the receiver,
as long as the bandlimiting does not remove any of the wanted signal components.
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2 Digital Modulation Summary

2.1 Why Digital (and not Analogue) ?

Main reasons:

• Less susceptible to cumulative degradations.
Effects of additive noise can be eliminated at regular intervals in a digital comms link by
threshold detection and error correction coding.

• Ultimate noise levels are determined by the analogue/digital conversions and not by the
channel, giving much better dynamic range (e.g. audio CDs vs tape cassettes).

• Can be made more secure (encryption) and less detectable (spread spectrum).

• Can be multiplexed using frequency-division, time-division or spread-spectrum multiple
access (FDMA, TDMA or SSMA); whereas FDMA is the only sensible method for
analogue signals.

• Digital links can handle a wide range of source material (multi-media):
E.g. audio, video, still images and data, when used with appropriate source coding /
compression techniques.
(Note the variety of material now available on CDs and DVDs.)

Disadvantages:

• More bandwidth is needed unless source compression is used.

• More complex processing is required (OK with today’s chips).
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2.2 Some digital communications systems:

• Telegraph Communications, Morse code (1830s onwards).
(Bell did not invent the analogue telephone until the 1870s!)

• Telex and teleprinters, 50 to 110 b/s (1930s?).

• Computer Modems, up to 2.4 kb/s over telephone network (1960s).

• Encrypted digital speech at 2.4 kb/s for military / strategic use (1960s).

• Satellite trunk telephone circuits, at 56 or 64 kb/s (1970s).

• Fax machines, binary images at 2.4 to 9.6 kb/s (1980s).

• Teletext, digital text on analogue TV transmissions (1980s).

• Digital Telephone Exchanges (system X in UK) (1980s).

• Nicam stereo digital sound on analogue TV (late 1980s).

• Fibre-optic internet links (e.g. Granta Backbone Network) (late 1980s)

• Internet modems, up to 56 kbit/s over telephone network (1990s).

• Digital cellular phones - GSM (Groupe Speciale Mobile) (1990s).

• Video phones / video conferencing (1990s).

• Digital Audio Broadcasting - DAB (late 1990s).
See section 6 of this course.

• Digital TV (late 1990s).
See section 6 of this course.

• Asymmetric internet modems (asymmetric digital subscriber loop, ADSL),
∼ 2 – 8 Mbit/s one-way (early 2000s).

• Internet (WAP and 3rd Generation) mobile phones (early 2000s).

• WiFi comms for laptops etc (early 2000s).

• Digital High Definition TV (HDTV) (mid 2000s).

• Analogue TV switch-off in UK, to release more bandwidth / capacity for digital TV and
radio services (2008 onwards, depending on region)

(See Couch Chapter 1 for a more complete list.)
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2.3 The Major Digital Modulation Techniques

Figure 2.1 shows the modulated waveforms for various simple forms of digital modulation,
with the input data and the carrier wave shown at the top. We shall now look at how these
modulation methods are defined, and how they are represented by phasor waveforms.

Binary Modulation:

• Binary Amplitude Shift Keying (ASK) – fig 2.2
2 amplitude levels (usually 0 and a0).
Phase constant (= ϕ0).

• Binary Phase-Shift Keying (BPSK) – fig 2.3
Amplitude constant (= a0).
2 phase values (usually ϕ0 and ϕ0 + π).

• Binary Frequency-Shift Keying (BFSK) – fig 2.4
Amplitude constant (= a0).
2 frequency values (∆ω = ±ωD, the frequency deviation).

Multi-level (M-ary) Modulation:

Involves grouping data bits into m-bit symbols, and each symbol is transmitted using one of
M = 2m modulation levels.

• 4-level Amplitude Shift Keying (4ASK) – fig 2.5
4 amplitude levels (usually −3a0, −a0, +a0 and +3a0).
Phase constant (= ϕ0).
m = 2 bits per symbol.

• Quadrature Phase-Shift Keying (QPSK) – fig 2.6
Amplitude constant (= a0).
4 phase values (usually ϕ0 ± π/4 and ϕ0 ± 3π/4).
Equivalent to BPSK on two quadrature carriers at ϕ0 and ϕ0 + π/2.
m = 2 bits per symbol.

• M-ary PSK –
Amplitude constant (= a0).

M phase values (usually ϕ0 +
2πk

M
, k = 0 → M − 1).

• Quadrature Amplitude Modulation (QAM) –
M -level ASK on each of two quadrature carriers.
This gives M2 states, representing 2m bits.

• M-ary FSK –
Amplitude constant (= a0).
M frequency values (usually ∆ω = (k − M−1

2
)ωS,

where k = 0 → M − 1 and ωS = 2π(symbol rate) =
2π(bit rate)

m
).
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Fig 2.1: Basic digital modulation schemes
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Fig 2.2: Binary amplitude shift keying (ASK) phasor waveform
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Fig 2.3: Binary phase shift keying (BPSK) phasor waveform
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Fig 2.4: Binary frequency shift keying (BFSK) phasor waveform
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Fig 2.5: 4-level ASK - suppressed carrier (4ASK-SC) phasor waveform
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Fig 2.6: Quadrature phase shift keying (QPSK) phasor waveform
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3 Binary Phase-Shift Keying (BPSK)

BPSK is perhaps the simplest modulation scheme in common use and we shall
analyse it in some detail. The results for other schemes can often be derived from
those for BPSK.

3.1 Definition of BPSK:

Let kth data bit bk = +1 or −1 and bit period = Tb.

The modulated phasor during the kth bit period is:

pk(t) = bk a0 e
jϕ0 for kTb ≤ t < (k + 1)Tb

To apply this for all t, we introduce a time limited pulse:

g(t) =

 a0 for 0 ≤ t < Tb

0 elsewhere.

.
.
. p(t) = ejϕ0

∑
k

bk g(t− kTb) (3.1)

Note that g(t) is normally a rectangular pulse, but modified forms of BPSK can use other
shapes such as half-sine or raised cosine.

3.2 Power Spectrum for Random Data:

We observe that p(t) is just a constant phasor ejϕ0 multiplied by a polar binary data stream,
in which the data impulses have been filtered (convolved) with an impulse response g(t).

Hence we use techniques similar to those introduced in the 3F4 Baseband Transmission course
for power spectra for line codes.

The discrete autocorrelation function (ACF) of the random data stream bk, in which bk is

uncorrelated with bk−L for any integer L ̸= 0, is:

Rbb(L) = E{bk bk−L} =

 1 for L = 0
0 for L ̸= 0

The power spectrum (power spectral density) of the stream of random data impulses,

b(t) =
∑
k

bkδ(t− kTb), is then given by:

E{|B(ω)|2} = lim
T→∞

E{|BT (ω)|2}
T

=
1

Tb

∑
L

Rbb(L) e
jLωTb =

1

Tb

where BT (ω) is the Fourier transform of b(t) limited to a time interval of T .
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Since the stream of data impulses b(t) =
∑
k

bkδ(t − kTb) are convolved with g(t) and phase-

rotated by ϕ0 in equation (3.1), the Fourier transform of p(t) is given by:

P (ω) = ejϕ0B(ω) G(ω)

So the power spectrum of p(t) is:

E{|P (ω)|2} = |ejϕ0|2 E{|B(ω)|2} |G(ω)|2 = 1

Tb
|G(ω)|2

If g(t) is a rectangular pulse of amplitude a0 and duration Tb:

|G(ω)|2 =
[
a0 Tb sinc

(
ωTb

2

)]2
and so E{|P (ω)|2} = a20 Tb sinc

2
(
ωTb

2

)
For alternative g(t) pulse shapes, the power spectrum will be proportional to |G(ω)|2, so this
gives a good way of controlling the spectrum of the modulated signal.

The power spectrum of the modulated signal |S(ω)|2 is just a frequency shifted version of

|P (ω)|2 as derived in equation (1.9):

S(ω) = 1
2 [P (ω − ωC) + P ∗(−(ω + ωC))]

Hence, assuming no overlap between P (ω − ωC) and P (−(ω + ωC)):

E{|S(ω)|2} = 1
4 [ E{|P (ω − ωC)|2}+ E{|P (−(ω + ωC))|2} ]

Fig 3.1 shows these spectra for rectangular data pulses.

Fig 3.1: Power spectra of random BPSK phasor and modulated signal.
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Fig 3.2: Matched correlator demodulator for BPSK.

3.3 Optimum Demodulator:

An optimum demodulator for equiprobable signals in gaussian noise is one which selects the
data value that results in the minimum mean squared error (MSE) between the received
signal plus noise and the signal corresponding to that data value. (Bayesian analysis can be
used to prove this.)

If the received signal+noise phasor is

r(t) = p(t) + pN(t)

the optimum demodulator for binary data during the kth bit period measures the MSEs:∫ (k+1)Tb

kTb

|r(t)− g(t− kTb)e
jϕ0︸ ︷︷ ︸

+1 phasor

|2dt and
∫ (k+1)Tb

kTb

|r(t)− (−g(t− kTb)e
jϕ0)︸ ︷︷ ︸

−1 phasor

|2dt

and selects whichever gives the smaller result.

But we can simplify this.

|r − g|2 = (r − g)(r∗ − g∗) = |r|2 − 2Re[rg∗] + |g|2

If g = ±g(t − kTb)e
jϕ0 , |r|2 and |g|2 are the same for both integrals, so we may ignore these

terms and simply calculate

y(b, k) =
∫ (k+1)Tb

kTb

Re[r(t) b g(t− kTb)e
−jϕ0]dt

for b = +1 and −1, and select the value of b according to which b gives the larger result.

Since b can be taken out of the integral, we find that y(−1, k) = −y(1, k); and so, detecting
the larger of y(1, k) and y(−1, k) is equivalent to detecting the polarity of just y(1, k).
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Thus bk = polarity of y(k), where

y(k) = G
∫ (k+1)Tb

kTb

Re[r(t) g(t− kTb)e
−jϕ0]dt (3.2)

and G is an arbitrary positive gain constant.

This is known as a matched correlation demodulator, because it correlates r(t) with a
waveform g(t− kTb)e

jϕ0 that is matched to the data pulse being detected.

To work correctly, the demodulator must know the reference phase ϕ0 of the received phasors.
This is normally extracted by a phase-locked loop (see section 3.6).

A demodulator using phasors for the input and reference signals is shown in fig 3.2. It
implements equation 3.2. The correct limits for the integration are achieved by discharging the
capacitor at the start of each bit period (at t = kTb using a short pulse from the monostable),
and by sampling the polarity of the integrator output at the end of each bit period (at t =
(k + 1)Tb) just before the monostable discharges the integrator for the next bit.

Note that if the data pulses g(t) are rectangular and constant over the period of integration,
we may replace g(t − kTb) by a0 in equation 3.2, and the input multiplier in fig 3.2 simply
produces a phase shift ϕ0 and an arbitrary gain Ga0.

A more practical implementation of an optimum demodulator, using real bandpass
signals rather than phasors, is described in section 3.6.
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3.4 Bit Error Performance in Noise:

The signal+noise phasor received during the kth bit period is

r(t) = p(t) + pN(t) = bk g(t− kTb) e
jϕ0 + [n1(t) + jn2(t)] e

jϕN

where n1(t) and n2(t) are real uncorrelated noise waveforms of equal PSDs.

If we choose the arbitrary noise reference phase ϕN to equal ϕ0 (as discussed in section 1.7),

the output of the matched correlator is:

y(k) = G
∫ (k+1)Tb

kTb

Re[{bkg(t− kTb) + n1(t) + jn2(t)} ejϕ0 g(t− kTb) e
−jϕ0] dt

= Gbk
∫ Tb

0
g2(t) dt︸ ︷︷ ︸

signal

+ G
∫ (k+1)Tb

kTb

n1(t) g(t− kTb) dt︸ ︷︷ ︸
noise

Now the noise integral is equivalent to convolving the noise with a filter whose impulse response
h(t) equals g(Tb − t) from 0 to Tb and is zero elsewhere. This is in fact the matched filter for
the data.

i.e. ∫ (k+1)Tb

kTb

n1(t) g(t− kTb) dt =
∫ ∞

−∞
n1(t) h((k + 1)Tb − t) dt

Let the 2-sided PSD of pN(t) be N0 watt/Hz.

Hence n1 and n2 will need to be real uncorrelated white noise waveforms with 2-sided PSDs of
N0/2 watt/Hz = N0/(4π) watt s/rad (see section 1.7).

If h(t) ⇀↽ H(ω):

Mean noise power from filter = G2
∫ ∞

−∞
E{|N1(ω) H(ω)|2} dω

= G2
∫ ∞

−∞

N0

4π
|H(ω)|2 dω =

G2N0

2

∫ ∞

−∞
|h(t)|2 dt (by Parseval’s Theorem)

=
G2N0

2

∫ Tb

0
g(t)2 dt =

G2N0Eb

2

where Eb= P0Tb is the energy of the g(t) pulse, or the energy per bit of the signal phasor.

Hence rms noise voltage σ in y(k) = G

√√√√N0Eb

2

Signal voltage amplitude vs in y(k) = |Gbk
∫ Tb

0
g2(t) dt| = GEb

The detector threshold = 0 since the signal voltage = ±GEb, which is symmetric about zero.

.
.
. Voltage SNR at threshold detector =

vs − 0

σ
=

GEb

G
√
N0Eb/2

=

√√√√2Eb

N0



32 3F4 Digital Modulation Course – Section 3 (supervisor copy)

-1 Signal Voltage +1 Signal Voltage

Threshold

-

Fig 3.3: Probability density functions of detected signal+noise.

vs vs0

Gaussian PDF
Std. dev. = σ

Probability of error = Q(vs / σ)

We can now calculate the probability of bit error – see fig 3.3. We assume the noise PDF is

gaussian, since it is heavily bandlimited and assume equal probability of 1 and −1 in bk.

PDF of noise with rms voltage σ =
1

σ
f

(
v

σ

)

where f(x) =
e−x2/2

√
2π

is the PDF of a unit variance zero mean gaussian process and x =
v

σ
.

Probability of error =
∫ ∞

0

1

σ
f

(
v + vs
σ

)
dv =

∫ ∞

vs

1

σ
f

(
v

σ

)
dv

=
∫ ∞

vs/σ
f(x) dx = Q

(
vs
σ

)

where Q
(
vs
σ

)
is the gaussian integral function (see section 3.7 on Approximation Formulae for

Q(x)) and
vs
σ

is the voltage SNR at the threshold detector.

.
.
. Probability of a bit error PE = Q


√√√√2Eb

N0


This function is plotted in fig 3.5, as the BPSK (and QPSK) curve.

Note that this result is independent of the shape of the signal pulse g(t). Only the energy Eb

of the pulse and the PSD N0 of the noise are important.

For a rectangular pulse of amplitude a0 and duration Tb, Eb = a20 Tb .
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Fig 3.4: Differential encoding and decoding.

3.5 Differential Coding:

A real BPSK receiver cannot detect which of the two received carrier phases is 0◦ and which
is 180◦, since there is nothing to distinguish them in the presence of an arbitrary phase offset
ϕ0 (see fig 2.3). Hence the receiver can lock to the wrong signal phase, and thus generate
inverted data.

.
.
. Differential Coding is used (see fig. 3.4).

At the Diff. Encoder:

bk = bk−1 b
′
k

Hence bk changes state if b′k = −1, and remains in its previous state if b′k = 1.

At the Diff. Decoder:

b′k = bk/bk−1 = bk bk−1 since bk−1 = ±1

Hence b′k = −1 if bk and bk−1 differ, and b′k = 1 if they are the same.

If bk and bk−1 are both inverted, b′k will still be decoded correctly.

.
.
. 180◦ phase ambiguity does not matter.

BUT differential coding increases the output bit error rate.

If the probability of error in bk is PE for all k, then b′k will be in error if:

bk is in error and bk−1 is correct,

or

bk−1 is in error and bk is correct.

Each event has probability PE(1− PE) and they are mutually exclusive,

.
.
. Probability of error in b′k = 2PE(1− PE) ≈ 2PE if PE is small.

Hence the error rate is approximately doubled by differential coding and errors tend to occur
in pairs. However only a small increase in SNR (∼ 0.5dB) is needed to compensate for this –
see fig 3.5, curves for BPSK with and without differential coding.



34 3F4 Digital Modulation Course – Section 3 (supervisor copy)

0 2 4 6 8 10 12 14 16 18 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BPSK
and QPSK

BPSK with
differential

coding

16-QAM 64-QAM

Bit
error
rate

Energy per bit / Noise PSD, Eb / No (dB)

Fig 3.5: Bit error rate curves for PSK and QAM.



3F4 Digital Modulation Course – Section 3 (supervisor copy) 35

����

HHHH−

Matched Filter
(Integrate-and-Dump)

R

C

XXs s?

r
r

r
r

����

HHHH -−
+r

0v

Comparator

D

Clk

Q

-

-

Output
Data
bk

Sampling
Register

r
Data Clock

Mono-
stable

�

Matched
Correlator

Demodulator

Quadrature
Detector

-

Input
Signal
s(t) -

-

r Dual
Lowpass
Filter

-

i

q
����

HHHH
Raw
Data
sgn(i)

−
+r

0v

Comparator

��
��
×
?

r

Loop
Filter

��
Loop Error, q sgn(i)

Carrier
VCO

6 6cos(ωct+ ϕ0) sin(ωct+ ϕ0)
Carrier

Phase-Locked Loop

Transition
Detector

- - Early/Late
Detector

-

?

Loop
Filter

-Data Clock
VCO

Delay � r
Data Clock

Phase-Locked Loop
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3.6 Practical Implementation of an Optimum BPSK Demodulator:

Fig 3.6 shows the block diagram of a practical demodulator.

The received bandpass signal s(t) is demodulated into real and imag parts by the quadrature
detector and is bandlimited by the dual lowpass filters to a bandwidth approximately equal to
the bit rate. This generates the signals i(t) and q(t).

The carrier phase-locked loop (PLL) error signal is q sgn(i) (see fig 3.7), in order to produce a
characteristic which repeats at multiples of π. This allows the loop to lock up at the positive
zero-crossings of the error characteristic such that the phase error between s(t) and the Carrier
VCO (voltage controlled oscillator) is either 0 or π. Thus the Carrier VCO will either be in
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phase or in antiphase with the carrier of s(t), and the i(t) signal will be a smoothed version
of the original data or its complement. Differential decoding (not shown) must be used to
eliminate this ambiguity.

The dual lowpass filters provide continuous outputs to allow the Carrier and Data Clock PLLs
to operate correctly, but it is difficult to obtain the ideal rectangular impulse response (required
for optimum matched-correlation detection) from real continuous filters. Therefore the data is
detected via an alternative discrete-time filter which is an Integrate-and-Dump circuit. This
circuit takes its input from the inphase (real) component of the quadrature detector, and
provides optimum matched-correlation filtering for data detection.

The clock for the sampling register and the reset pulse for the Integrate-and-Dump is provided
from the Data Clock PLL. This loop is controlled by an Early/Late detector, which generates
a positive pulse if a data transition occurs early with respect to the nearest delayed clock edge,
and a negative pulse if a transition occurs late. These pulses are integrated by the loop filter
and used to increase or decrease the clock rate very slightly, so as gradually to lock the delayed
clock edges to the data transitions.

The Dual LPF introduces delay to the timing of the transitions, so a compensating delay is
included between the Data Clock VCO and the Early/Late detector. The clock timing will
then be correct for the Integrate-and-Dump and sampling register. The Monostable generates
pulses which are short compared with Tb, but long enough to discharge the integrator capacitor
fully at the start of each bit period.

Phase error between s(t) and Carrier VCO

i

Fig 3.7: Phase detector characteristic of the Carrier Phase-Locked Loop.

q

sgn(i)

q sgn(i)

0 π 2π 3π 4π
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3.7 Approximation Formulae for the Gaussian Error Integral, Q(x)

A Gaussian probability density function (PDF) with unit variance is given by:

f(x) =
1√
2π

e−x2/2

The probability that a signal with a PDF given by f(x) lies above a given threshold x is given
by the Gaussian Error Integral or Q function:

Q(x) =
∫ ∞

x
f(u) du

There is no analytical solution to this integral, but it has a simple relationship to the error
function, erf(x), or its complement, erfc(x), which are tabulated in many books of mathematical
tables. Q(x) is tabulated in Appendix A-10 of Couch, ”Digital and Analog Communication
Systems”, 3rd edition, and in Appendix D of Shanmugam, same title.

erf(x) =
2√
π

∫ x

0
e−u2

du and erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x
e−u2

du

.
.
. Q(x) = 1

2
erfc

(
x√
2

)
= 1

2

[
1− erf

(
x√
2

)]
Note that erf(0) = 0 and erf(∞) = 1, and therefore Q(0) = 0.5 and Q(x) → 0 very rapidly as
x becomes large.

It is useful to derive simple approximations to Q(x) which can be used on a calculator and
avoid the need for tables.

Let v = u− x:

.
.
. Q(x) =

∫ ∞

0
f(v + x) dv =

1√
2π

∫ ∞

0
e−(v2+2vx+x2)/2 dv =

e−x2/2

√
2π

∫ ∞

0
e−vx e−v2/2 dv

Now if x ≫ 1, we may obtain an approximate solution by replacing the e−v2/2 term in the
integral by unity, since it will initially decay much slower than the e−vx term.

.
.
. Q(x) <

e−x2/2

√
2π

∫ ∞

0
e−vx dv =

e−x2/2

√
2π x

This approximation is an upper bound, and its ratio to the true value of Q(x) becomes less
than 1.1 only when x > 3, as shown in fig 3.8. We may obtain a much better approximation
to Q(x) by altering the denominator above from (

√
2π x) to (1.64x+

√
0.76x2 + 4) to give:

Q(x) ≈ e−x2/2

1.64x+
√
0.76x2 + 4

This improved approximation (developed originally by Borjesson and Sundberg, IEEE Trans.
on Communications, March 1979, p 639) gives a curve indistinguishable from Q(x) in fig 3.8
and its ratio to the true Q(x) is now within ±0.3% of unity for all x ≥ 0 as shown in fig 3.9.
This accuracy is sufficient for nearly all practical problems.
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4 Other Binary Schemes

4.1 Quadrature PSK (QPSK):

QPSK is equivalent to BPSK on two quadrature carriers.

Even bits b2k modulate the inphase carrier.

Odd bits b2k+1 modulate the quadrature carrier.

.
.
. pk(t) = [ b2k + j b2k+1 ] g(t− kTs) e

jϕ0

where g(t) is as for BPSK except that it is now non-zero from t = 0 to Ts, the 2-bit symbol
period (Ts = 2Tb).

Hence p(t) can have one of 4 values:

(±1± j) g(t− kTs) e
jϕ0

See fig 4.1 for QPSK phasor diagram.

QPSK can be regarded as 4-level modulation, but it is usually easier to treat it as two inde-
pendent 2-level (binary) processes.

See Fig. 4.3 for symbol timing.
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Fig 4.2: Power spectra of BPSK, QPSK, 16-QAM and 64-QAM for a given bit rate.

Power Spectrum of QPSK:

If each quadrature carrier of amplitude a0 is BPSK modulated by rectangular data pulses at a

symbol rate of 1/Ts, then, using the BPSK result, the spectrum of each carrier is given by:

E{|PI(ω)|2} = E{|PQ(ω)|2} = a20 Ts sinc
2(ωTs/2)

The data on the two carriers are uncorrelated, so the power spectra add to give a total spectrum

of:

E{|P (ω)|2} = 2 a20 Ts sinc
2(ωTs/2) = 4 a20 Tb sinc

2(ωTb) since Tb = Ts/2

.
.
. the QPSK spectrum is half as wide as the BPSK spectrum for a given data rate - a big

advantage!

See fig 4.2 for spectra.
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Bit Error Performance of QPSK:

Since the two carriers are in quadrature, they may be demodulated independently as two BPSK
phasor components.

Power in each component = 1
2
total power.

Bit rate for each component = 1
2
total bit rate.

But Eb = (signal power)× (bit period) =
signal power

bit rate

so Eb is the same for each component as it is for the total QPSK signal.

N0 is unaffected by the modulation method.

.
.
. applying the BPSK result of section 3.4 to each component:

Probability of bit error PE = Q

√√√√2Eb

N0

 – the same as BPSK.

Differential Coding is normally used with QPSK to overcome carrier phase ambiguity, as for
BPSK, again approx. doubling PE.

Offset QPSK (OQPSK) is a variant of QPSK (see fig 4.3):

1. The keying of the two carriers is staggered by Tb = Ts/2.

2. The performance and spectrum are the same as QPSK.

3. OQPSK has less amplitude fluctuation after bandlimiting than QPSK. It is therefore
better suited to non-linear bandlimited channels, such as those involving satellite on-
board transmitters.

QPSK Demodulator Design:

This may be based on the BPSK design of fig 3.6 with the following additions:

• Data is determined from the polarities of both the i and q outputs of the Quadrature
Detector, using two Matched Correlator Demodulators to give the odd and even data
bits respectively.

• The Carrier PLL error signal is

q sgn(i)− i sgn(q)

in order to give a phase error characteristic which repeats at multiples of π/2 and has
lock points at odd multiples of π/4.
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4.2 Binary Frequency-Shift Keying (BFSK):

Data causes a shift between 2 frequencies, −ωD and +ωD w.r.t. the carrier.

fD = ωD/2π is the frequency deviation (in Hz).

Hence the phasor during the kth bit period is:

pk(t) = a0 e
j(bk ωD(t−kTb) + ϕk)

ϕk is the initial phase value at the start of each bit period, and it is updated at each bit
boundary so as to prevent abrupt phase changes in p(t). This has the advantage of reducing
spectral sidelobes and it can also improve performance against noise.

FSK with this constraint is known as Continuous Phase FSK (CPFSK). See fig 2.4.

The FSK mod. index is given by

mFSK =
difference between the 2 transmit freqs.

bit rate
= 2fDTb

As with Analogue FM, FSK is difficult to analyse in general. Its bandwidth is equal to the

peak-to-peak frequency deviation, 2fD, plus an amount that is approximately equal to the rate

of signalling (ie the symbol rate), 1/Tb. Hence

Bandwidth required ≈ 2fD +
1

Tb
=

mFSK + 1

Tb

(similar to Carson’s rule for FM).

Minimum (Freq.) Shift Keying (MSK) – a special case:

mFSK = 0.5 .
.
. fD =

mFSK

2Tb
=

1

4Tb

so the phase of p increases or decreases by 90◦ in each bit period, as in fig 2.4.

This is the minimum mF which gives an error performance that is optimum in some sense and
is the reason for the name MSK.

Fig 4.4 shows the phase plot (phase trellis) for MSK and below this are the i and q components
of the phasor waveform. Note the similarity to to OQPSK except that the g(t) pulses for MSK
are half-sine pulses instead of rectangles. The broad line shows a typical phase trajectory and
its components.

The power spectrum of MSK is proportional to the square of the Fourier transform of the
half-sine pulse shape, rather the than the rectangular pulse shape of QPSK. The righthand
halves of these two spectra are shown in fig. 4.5 and labelled MSK and QPSK respectively.
Note that MSK has a 50% wider main lobe than QPSK, but this is compensated for by
MSK’s significantly lower sidelobe levels (due to MSK being a continuous phase process).
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If the data determines the slope of the phase trajectory, then the polarities of the half-sine pulses
are obtained by differentially encoding the data, after inverting alternate bits. Hence the error
performance for MSK is equivalent to OQPSK, QPSK and BPSK, each with differential coding.

Gaussian-filtered MSK (GMSK)

In many practical systems, such as in the mobile phone system GSM, substantially lower levels
of spectral sidelobes are required than even MSK is able to give. In these cases it is common
to apply smoothing to the binary data pulses before they are applied to the MSK modulator.

For GMSK, the smoothing lowpass filter has a Gaussian frequency response, whose −3 dB
bandwidth is typically 0.3 times the bit rate. This filter bandwidth is chosen to give a good
tradeoff between narrow transmitted bandwidth and low intersymbol interference. This scheme
is known as 0.3R GMSK.

Figures 4.5 and 4.6 illustrate this tradeoff. Fig. 4.5 shows one side of the power spectrum of a
QPSK signal, a pure MSK signal, and three GMSK signals with gaussian filter bandwidths of
0.5Rb, 0.3Rb and 0.2Rb respectively. Fig. 4.5 shows the eye diagrams at the threshold detector
of an ideal MSK demodulator for the three filter bandwidths. We can see that the 0.3Rb filter
represents a good tradeoff between a well contained spectrum and a good eye opening. In
practise an equaliser would probably be used to improve the eye opening further.
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Fig 4.5: Power spectra of QPSK, MSK, 0.5R GMSK, 0.3R GMSK and 0.2R GMSK.
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Fig 5.1: 16-level PSK phasor diagram
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5 Multi-level Modulation

M-ary modulation uses one of M signals during each symbol interval Ts, thereby transmitting
m = log2M bits of information per Ts (M = 2m). By varying M we may trade bandwidth
for performance in noise.

5.1 M-ary PSK (MPSK):

Transmits one of M phases, usually 2πi/M for i = 0 . . .M − 1. For example:

BPSK uses 2 phases (m = 1)

QPSK uses 4 phases (m = 2)

8-PSK uses 8 phases (m = 3) etc.

Bandwidth ∝ 1

Ts
=

1

mTb

Noise immunity ∝ distance between adjacent points = 2a0 sin(π/M), if amplitude = a0.

.
.
. Increasing m reduces bandwidth;

But it rapidly worsens the performance in noise.

Fig 5.1 shows the phasor diagram of 16-PSK.
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Fig 5.2: 16-QAM phasor diagram
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5.2 Quadrature Amplitude Modulation (QAM):

QAM achieves a greater distance between adjacent points by filling the p-plane more uni-
formly than MPSK. However the constant amplitude property is then lost.

QAM is the basic modulation method of choice for almost all bandwidth critical systems of
today, such as internet modems and digital TV broadcasting.

QAM is similar to QPSK except that it uses multilevel ASK-SC (with zero mean) on the two
quadrature carriers. See figs 5.2 and 5.3 for 16-QAM and 64-QAM.

8-QAM and 32-QAM are possible, but are more complicated due to the problem of dividing
an odd number of bits between the two carriers.

Generalising the QPSK case, the QAM phasor during the kth symbol period is:

pk(t) = [s2k + j s2k+1] g(t− kTs) e
jϕ0 (5.1)

where s2k or s2k+1 = 2i + 1 −M , and the state i is chosen from 0 . . .M − 1 according to the
data.

To analyse QAM noise performance, we consider each carrier separately. We shall analyse the
s2k component and then assume the same performance for the other component.

For M2-QAM, the number of levels for each carrier M = 2m, conveying m bits per symbol on
each carrier. Hence the total capacity is 2m bits per symbol.
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Fig 5.3: 64-QAM phasor diagram
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Noise performance of QAM

Let the signal level expected at the receiver inphase threshold detector for the kth symbol be

s2kvs where:

s2k = (2i+ 1−M) for i = 0 . . .M − 1.

e.g. if M = 8, s2k = −7,−5,−3,−1, 1, 3, 5, or 7.

Hence the signal levels are separated by 2vs and the optimum threshold levels are vs above and
below each expected signal level, assuming equiprobable data symbols.

Let the rms noise volts at the threshold detector be σ.

Consider a signal component in state i, where 0 < i < M − 1 (so i is not an outer state):

Probability of state i becoming i+ 1 = Q(
vs
σ
)

Probability of state i becoming i− 1 = Q(
vs
σ
)

.
.
. Probability of error from state i = 2Q(

vs
σ
)

There are M − 2 states in this category.

For the two outer states, where i = 0 or M − 1, there is only one error direction:
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.
.
. Probability of error from state 0 or M − 1 = Q(

vs
σ
)

There are 2 states in this category. Hence the mean probability of symbol error is

PSE =
M − 2

M
2Q(

vs
σ
) +

2

M
Q(

vs
σ
) = 2(1− 1

M
) Q(

vs
σ
) (5.2)

If we use m-bit Gray (unit distance) coding for the M levels, each symbol error to an adjacent

state will only cause a single bit error in each m-bit word. We ignore errors to non-adjacent

states (unlikely except at poor SNR). Since there are m bits for every symbol:

.
.
. Mean probability of bit error, PBE =

PSE

m
=

2

m
(1− 1

M
) Q(

vs
σ
) (5.3)

Now we evaluate vs/σ in terms of Eb/N0.

The optimum receiver is as for BPSK (i.e. it correlates the input with g(t− kTs)e
−jϕ0), except

that M − 1 threshold detectors are used to detect the M levels of each quadrature component.

Modifying the BPSK result from section 3.4 to get the waveform at the inphase threshold

detectors gives:

y(k) = Gs2k
∫ Ts

0
g2(t) dt+G

∫ (k+1)Ts

kTs

n1(t) g(t− kTs) dt

= Gs2kEg +

noise of mean power
G2N0Eg

2

 (5.4)

where the energy of the g(t) pulse is:

Eg =
∫ Ts

0
g2(t) dt

The signal levels Gs2kEg are the same as those we assumed above to be s2kvs.

.
.
. vs = GEg

The rms noise volts were assumed to be σ, so from (5.4):

σ = G

√√√√N0Eg

2

.
.
.
vs
σ

=
GEg

G
√
N0Eg/2

=

√√√√2Eg

N0
(5.5)

Finally we need to express Eg in terms of the energy per bit Eb (these are no longer the same
with multilevel modulation).
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Using (5.1), the average symbol energy on the s2k carrier is:

Es =
1

M

M−1∑
i=0

(2i+ 1−M)2
∫ Ts

0
g2(t) dt

But
M−1∑
i=0

(2i+ 1−M)2 =
M(M 2 − 1)

3
(Prove by induction)

.
.
. Es =

M 2 − 1

3
Eg

Since there are m bits per symbol, Es = mEb.

.
.
. Eb =

Es

m
=

M 2 − 1

3m
Eg (5.6)

Substituting (5.6) into (5.5):

vs
σ

=

√√√√ 3m

M 2 − 1

2Eb

N0

.
.
. from (5.3) the mean probability of bit error is given by:

PBE =
2

m
(1− 1

M
) Q


√√√√ 3m

M 2 − 1

2Eb

N0

 (5.7)

Fig 3.5 (repeated on next page) shows the error performance curves of 16-QAM and 64-QAM,
compared with BPSK & QPSK. We see that 16-QAM is approximately 4 dB worse than
BPSK and QPSK, and that 64-QAM is another 4 dB worse than 16-QAM.

This difference in performance is almost entirely due to the factor

√
3m

M2 − 1
in the argument

of the Q function in the above equation, because Q is so steep on a log scale in the region of
interest that the scaling of Q by 2

m
(1− 1

M
) has minimal effect. The values of the former factor,

as a voltage ratio (and in dBs), are given below for various m and M = 2m:

m 1 2 3 4
M 2 (BPSK/QPSK) 4 (16-QAM) 8 (64-QAM) 16 (256-QAM)

√
3m

M2 − 1
1 (0dB)

√
6

15
(−3.98dB)

√
9

63
(−8.45dB)

√
12

255
(−13.27dB)

We see that the predicted degradations by 3.98 dB and 8.45 dB agree very closely with the
spacing of the curves in fig 3.5.

Fig 5.4 shows this result graphically for QPSK, 16-QAM and 64-QAM, whose constellations
are all plotted to the same scale of Eb (energy per bit). This is achieved by scaling the units

of the axes in proportion to
√
Eg in eq(5.6), as Eb is held constant. In fig 5.4, the separation

of the constellation points directly shows the resilience of each modulation scheme to noise.
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Power spectrum of QAM

The power spectrum of QAM is given by the squared magnitude of the Fourier transform of the
basic signal pulse g(t), since the pulses for consecutive symbols are still uncorrelated with each
other and have zero mean. Hence the autocorrelation function (ACF) of the QAM phasors is
still proportional to the ACF of g(t).

Therefore for rectangular pulses of rms ampl a0 and duration Ts = 2mTb (there are 2m bits

per symbol when both carriers are included):

E{|P (ω)|2} = 2 a20 Ts sinc
2(ωTs/2) = 4ma20 Tb sinc

2(mωTb)

Hence the bandwidth is reduced by 2m relative to BPSK (or m relative to QPSK)
– this is the main advantage of QAM over QPSK (see fig 4.2).

BUT the error performance is worse due mainly to the

√
3m

M2 − 1
term in the expression for

PBE becoming small as m increases (M2 = 22m and increases much faster than m).

5.3 M-ary FSK (MFSK):

MFSK can provide better error performance than QPSK at the expense of wider band-
width.

MFSK is similar to BFSK except that M different frequencies are used instead of just two.
These are usually spaced by 1/Ts = 1/mTb to give an orthogonal set of waveforms (similar to
an FFT) for optimum performance.

The bandwidth required for MFSK with a spacing of 1/Ts is approximately:

(M − 1) (tone spacing) + (tone bandwidth) =
M − 1

Ts
+

2

Ts
=

M + 1

mTb

Hence increasing M above 4 tends to increase the bandwidth.

It is difficult to derive exact expressions for the performance of MFSK demodulators, and the
performance depends on whether detection is coherent (relying on locking to the carrier phase
over many symbol periods) or non-coherent (allowing arbitrary initial carrier phase for each
symbol period). MFSK is most frequently used when non-coherent detection is necessary, such
as when frequency hopping (a form of spread spectrum) is employed.
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Fig 5.5: Approximate bit error rate curves for MFSK.

In the non-coherent case, it can be shown that the approximate bit error probability of MFSK

at good SNR is given by:

PBE ≈ M

4
e(−mEb/2N0) = 1

4(2e
(−Eb/2N0))m

This is plotted in fig 5.5 and the differentially decoded BPSK curve from fig 3.5 is included for
comparison. We see that MFSK gives improved performance with increasing M and tends to
outperform BPSK (which uses coherent detection) when M ≥ 8.

Comparing fig 5.5 with fig 3.5 (shown 2 pages back), we see the very different tradeoffs available
with MFSK compared with QAM schemes. With MFSK, performance improves with increasing
M while bandwidth worsens, whereas with QAM, performance degrades with increasing M
while bandwidth improves! This is because MFSK increases the number of modulation states
by occupying more bandwidth and without reducing the spacing between states, whereas QAM
reduces the signalling rate (and hence bandwidth) but also substantially reduces the spacing
between states.
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6 Digital Audio and TV Broadcasting

In this final section of the course, we shall show that many of the ideas and techniques, de-
scribed so far, are used in two very important modern communications applications that have
revolutionised broadcasting over the last 10 years – Digital Audio Broadcasting (digital radio),
and Digital Video Broadcasting (digital TV) over terrestrial channels (freeview).

6.1 Digital Audio Broadcasting (DAB)

DAB has been designed to meet the following requirements:

• Audio quality comparable with CD

• Solid reliable reception (even in cars)

• Simple selection and identification of stations

• Avoidance of frequent retuning

However to do this, a designer encounters the following problems:

• CD audio needs 1.5 Mb/s. Transmitting this would either occupy too much bandwidth for
a single programme or would require QAM with many levels and hence be very sensitive
to noise and interference.

• Good reception in cars and on personal radios requires immunity to multipath effects,
typical of dense urban surroundings. This requires a low rate of modulation so that
different multipath delays do not cause excessive ISI. Typical delay differences can be up
to 10µs (approx 3 km path difference) but will usually be much less than this.

• Multipath with a delay difference between paths of ∆t tends to cause frequency selective
fading at intervals of 1/∆t across the frequency band, so that a small (but unpredictable)
proportion of the frequency band may be unusable.

In order to overcome these problems, the following techniques have been developed:

• Audio compression (MUSICAM = MPEG layer 2, similar to MP3). 20 kHz audio is
converted to 128 kb/s (stereo = 192, 224, or 256 kb/s). Masking properties of the human
hearing system are used to achieve this.

• Orthogonal frequency-division multiplexing (OFDM) modulation uses many carriers in
parallel to reduce the signaling rate on each carrier. Guard intervals provide minimal
degradation due to multipath delay differences.

• QPSK or QAM is used on each carrier to achieve good tradeoffs between spectral efficiency
and noise resilience.

• Error Correction Coding is used to add some redundancy so that carriers which are
subject to frequency selective fading may be ignored and all the data can still be correctly
recovered.
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Fig 6.1: Block diagram of a basic Coded Orthogonal Frequency
Division Multiplexing (COFDM) system.

6.2 Coded Orthogonal Frequency Division Multiplexing (COFDM)

COFDM comprises two parts, the error correction coding (C) and the modulation (OFDM).
Fig. 6.1 shows a system block diagram.

Coding

Error Correction Coding (ECC) is provided for DAB by a convolutional code. This is similar
to a block code, except that the data is passed through a shift register, and new parity bits
are calculated from the contents of the register after each new bit is shifted in. Hence one or
more parity polynomials are convolved with the input data, to produce a continuous stream of
parity bits (similar to one or more FIR digital filters, except that modulo-2 arithmetic is used).

The most powerful convolutional codes are non-systematic, which means that the raw data
bits are not transmitted; only the various parity bit streams are transmitted. DAB specifies a
basic code that is rate 1/4; i.e. 4 parity bits are generated after each input bit is shifted into
the encoder shift register. However a range of code rates may be obtained by a technique,
known as puncturing, which simply removes parity bits at predefined regular intervals from
the encoder output bit stream. By deleting (puncturing) alternate bits from the rate 1/4 code,
we obtain a rate 1/2 code, which is the code rate used by current DAB signals in the UK.
Different code rates can provide a range of tradeoffs between error correction performance,
bandwidth and user data rates.
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Fig 6.2: Orthogonal Frequency Division Multiplexing (OFDM) with N carriers.

Orthogonal Frequency Division Multiplexing

The aim of OFDM is to demultiplex the high-speed bit stream into N streams, each at 1/N
of the original rate, which are then modulated onto N separate carrier waves, as shown in
fig. 6.2. These have much improved resilience to typical multipath delays because of their
lower modulation rates. Typically N ≈ 1000 to 2000.

The inverse FFT may be used to put QPSK (or QAM) data on each of N carriers, spaced by
1/T Hz, where T is the IFFT block period. Each carrier is an IFFT basis function which is
multiplied by the modulation phasor (±1±j in the case of QPSK). In this way the carriers are
orthogonal to each other and may be demodulated by an equivalent FFT process without
mutual interference at the receiver. The mutual orthogonality of the IFFT basis functions,
means that there should be no interference between each modulated carrier and its neighbours.
Orthogonality is not affected by the modulation process, because the modulation rate is no
faster than once per FFT block period, so each modulated carrier is a pure tone for the duration
of the block period T .

Figures 6.3 to 6.10 show the 2 input data bits and the modulated IFFT basis functions for
QPSK modulation of frequency slots 1 to 8. Figure 6.11 shows the result of combining all 8
slots together into an OFDM signal. Since all the 8 slots are at positive frequencies, there is an
overall positive bias to the rotation of the composite phasor waveform in fig 6.11 . In practise
negative frequency slots would be used as well, and fig 6.12 shows the result for 32 carriers
occupying slots −16 to +15. The resulting phasor waveform looks much more random and
noiselike.

Multipath delays tend to vary across the band of N carriers, and this could upset the or-
thogonality property because some modulation transitions would need to occur during the
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demodulator FFT analysis block if each block followed its predecessor immediately. To avoid
this problem, a guard period ∆T is inserted between consecutive blocks in the modulator and
demodulator. For optimum demodulator performance, the modulator should extend (by peri-
odic extension) the inverse FFT output waveform into the guard period before each block, so
that the transmitted waveform is continuous from the point where the modulation transitions
occur at the start of each guard period. The FFT demodulator analyses the interval from ∆T
to T +∆T . In this way multipath delays varying from 0 to ∆T can be tolerated without any
modulation transitions intruding into the FFT analysis interval and spoiling the orthogonality
of the carrier waves. Unfortunately the guard periods either reduce the throughput of the
system or increase its bandwidth in the ratio T : (T +∆T ).

The outputs of the FFT demodulator are N complex Fourier coefficients, each of which is a
phasor representing the demodulated amplitude and phase of the carrier in that FFT slot. For
each carrier, conventional demodulation methods may then be used to recover the binary data
from the sequence of phasors from consecutive FFT analysis intervals.

Finally the data from the N QPSK decoders is multiplexed back into a single serial data stream
which is passed on to the error correction decoder. This can correct errors which typically occur
when multipath causes selective fading of some carriers. Improved error correction performance
can often be achieved if soft decision information is passed to the error decoder from each QPSK
decoder.
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Fig 6.3: OFDM slot 1
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Fig 6.4: OFDM slot 2



3F4 Digital Modulation Course – Section 6 (supervisor copy) 59

 i

 q

 x

 t

 t

Fig 6.5: OFDM slot 3
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Fig 6.6: OFDM slot 4
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Fig 6.7: OFDM slot 5
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Fig 6.8: OFDM slot 6
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Fig 6.9: OFDM slot 7
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Fig 6.10: OFDM slot 8
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Fig 6.11: OFDM slots 1 to 8 combined
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Fig 6.12: OFDM slots −16 to 15 combined
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Format of DAB broadcasts in the UK:

• Input data rate of 1 DAB block = 1.23 Mb/s. (Up to 6 audio channels per block, 1
stereo channel = 256, 224 or 192 kb/s; 1 mono channel = 128 or 64 kb/s.)

• Error correction code rate = 1/2, yielding coded data at 2.46 Mb/s.

• Number of carriers, N = 1536.

• FFT block period, T = 1 ms. (Hence the carrier frequency spacing is 1 kHz.)

• Guard period, ∆T = 0.246 ms. This allows path delays to differ by up to 73 km before
any ISI occurs. Hence single frequency operation is possible across the entire UK, if
transmitters are spaced less than 73 km apart.

• Modulation method = QPSK at a rate of 1/(T + ∆T ) = 1/0.001246 = 802.5 symbol/s
= 1605 bit/s on each carrier. (Hence 1536 carriers give a total bit rate of 1536× 1605 =
2.465 Mb/s.) Data is coded as the change in phase of each FFT carrier from one block
to the next, so that phase uncertainties due to unknown path delays can be cancelled out
by differential decoding.

• Bandwidth required = (1536 + 1)/T = 1.537 MHz. (1 FFT slot is left vacant at the
centre of the band to aid frequency acquisition.) In practise the sinc(x) sidelobes decay
rather slowly so an additional gap of 200 kHz is left between DAB blocks and filtering
of the transmitter output is used to suppress sidelobes beyond this gap. The allocated
band is 217.5 to 230 MHz.

Spectral efficiency of DAB vs analogue FM

Compare the 1.537 MHz + 200 kHz = 1.737 MHz for a DAB block of 6 stereo signals, with 6
analogue FM stereo channels at 300 kHz spacing = 1.8 MHz (each channel is 180 kHz bandwidth
plus a 120 kHz guard region) and we see they have approximately the same efficiency.

BUT single frequency operation across the UK allows national radio on DAB to consume
a tiny fraction of the total bandwidth needed by analogue FM. This is because, for analogue
FM, each station needs separate frequency allocations for each adjacent local region, since
analogue FM cannot tolerate two transmissions from adjacent regions being received on the
same frequency at a receiver which is close to the boundary between two regions. This would
cause unpleasant distortion and echo effects on the demodulated audio signal. On the other
hand, DAB using OFDM can tolerate multipath delays that include the worst case delays from
transmitters in adjacent cells to a user near the boundary of the cells, and so the adjacent cells
may use the same frequency for all cells. This saves bandwidth by a factor nf equal to
the frequency re-use factor of the analogue system.
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Fig 6.13: Frequency re-use patterns for multiple cells on an approximately hexagonal (close-packed)
grid of cells: (a) nf = 3 frequency re-use, D =

√
3X; (b) nf = 4 frequency re-use, D = 2X; (c)

nf = 7 frequency re-use, D =
√
7X. X is the spacing between cell centres, and D is the distance

between the centres of cells using the same frequencies.

Fig 6.13 shows frequency re-use patterns for systems with nf = 3, 4 and 7 frequency slots
per channel. We see that as nf is increased, the distance between pairs of cells with the same
frequency allocation increases in proportion to

√
nf . Typical analogue FM systems, such as

that in the UK, need a reuse pattern with nf = 7 in order to keep mutual interference down to
acceptable levels. Hence the bandwidth saving, by adopting DAB instead of FM for national
radio stations such as BBC R1, R2, R3 and R4, is at least 7:1.

Local radio is different, because we need separate content for different local regions. To accom-
modate this, local DAB needs nf = 4 DAB blocks of 1.737 MHz each for the whole UK so that
adjacent regions can use different frequencies for transmissions with differing content. Digital
transmissions are much more tolerant than analogue ones to low level interference from other
stations sharing the same frequency, so a frequency reuse pattern with nf = 4 is acceptable
for digital local radio. This is significantly better than the nf = 7 pattern needed for analogue
FM and still results in a useful saving of bandwidth by ’going digital’.
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6.3 Digital TV

Digital video broadcasting (DVB) uses different modulation techniques for the 3 main trans-
mission methods: cable, satellite, and terrestrial radio waves. We shall concentrate on the
terrestrial radio-wave system (FreeView in the UK) because it is more interesting.

For all 3 transmission methods, capacity is a key parameter so MPEG-2 or MPEG-4 com-
pression is used, and achieves a bit rate for the composite video and audio of approximately 3
Mbit/s for a single normal definition broadcast programme, and of around 6 to 8 Mbit/s for a
high-definition (HD) programme. (Video compression methods are discussed at the end of the
4F8 Image Coding course and audio ones are similar to those for DAB.) Like DAB, typically
6 or more programmes are time-division multiplexed into a composite bit stream, but in DVB
the composite bit rate is set at 24.13 Mbit/s.

The main problem then becomes:

How best to transmit 24.13 Mb/s over terrestrial radio links ?

(Satellite and cable are much less of a problem because there are no multipath effects and the
channels are much better defined.)

Once again COFDM is the chosen technique. However bandwidth efficiency is much more
of an issue than for DAB because of the higher bit rates, so shorter frames and a much shorter
guard period are used. The fact that most DVB receivers will use fixed antennas with strongly
directional beams, means that the multipath delay spread is likely to be very much less than for
DAB, so short guard periods are acceptable. To achieve good bandwidth efficiency, 64-QAM
is used instead of QPSK. This works for DVB, whereas it would not work for DAB, because
the path of a DVB signal, from fixed base station to fixed antennas, is relatively stable. Hence
we can tolerate the 8dB loss of performance with 64-QAM and also not be concerned about
the fact that QAM receivers, with their amplitude-sensitive comparators, have difficulties with
rapidly fluctuating path losses when the path is unstable (such as a DAB path to a moving
vehicle).

The key parameters for DVB in the UK have therefore been selected to be:

• Input data rate of 1 DVB block = 24.13 Mb/s, with currently 6 or more video channels
per block at typical rates from 2 to 8 Mb/s each. Higher bit rates are allowed on selected
channels if required; e.g. for fast-moving sports programmes in HD. The channel bit rates
can be adaptively reallocated within the 24.13 Mb/s total as the programme content
changes if the broadcasters are clever.

• Error correction coding: (204,188) Reed-Solomon outer code with rate = 188/204; and
a convolutional inner code with rate = 2/3, yielding coded data at (204/188)× (3/2)×
24.13 = 39.27 Mb/s.

• Number of carriers, N = 1705; but 193 of these carriers are used as pilot tones, so the
number of data carrying carriers is 1705 − 193 = 1512. 45 of the 193 pilot tones are
fixed at regular intervals across the band, and 131 are moved around in a pseudo-random
way. These are designed to provide phase and amplitude references to aid the receiver in
decoding the data tones. A further 17 pilot tones carry transmitter parameter signalling
information.
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• FFT block period, T = 0.224 ms. (Hence the carrier frequency spacing is 4.464 kHz.)

• Guard period, ∆T = T/32 = 0.007 ms. This allows path delay differences of up to
2.1 km before any ISI occurs, and copes with likely multipath spreads to fixed antennas.
Single frequency operation is not possible in this case, but a four-frequency reuse pattern
for the whole UK is feasible and allows for local as well as national stations.

• Modulation method = 64-QAM at a rate of 1/(T +∆T ) = 1/0.000231 = 4329 symbol/s.
This provides 6 × 4329 = 25974 bit/s on each carrier. Hence 1512 carriers give a total
bit rate of 1512 × 25974 = 39.27 Mb/s. The pilot tones provide phase and amplitude
references, so differential coding (and its associated performance penalty) can be avoided.

• Bandwidth required = 1705/T = 7.612 MHz. This is very similar to a single programme
of analogue TV with an FM audio sub-carrier. However there are now 6 or more
programmes in this bandwidth, and a more efficient frequency reuse pattern
is feasible (nf = 4 instead of nf = 7).

A full description of the DAB options are given in the European Telecommunications Standards
Institute (ETSI) standard ETS 300 401, and of the DVB options in ETS 300 744, both available
from

http://www.etsi.org/

but these are not light reading. In the DVB standard, there are over 1000 possible different
combinations of parameters that can be used!


