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Introduction

Introduction

The L0 minimisation problem

Find x which gives min ‖x‖0 subject to ‖y − Φx‖2 ≤ ξ (1)

where Φ is known and of size M × N with M < N

L0: NP-hard combinatorial search for exact solution

L1: convex problem, but poor computation speed for large problems;

greedy algorithms can be used, e.g. CoSaMP, NESTA.

Lp: iterative reweighted techniques, e.g. IRL1, IRLS

L0: greedy algorithms usually used, e.g. IHT, `0-AP, SL0

We propose a highly efficient form of IRLS which approximates L0

minimisation, allows N ∼ 107 or 108, and has good reconstruction
performance.

Kingsbury & Zhang (University of Cambridge) L0RL2 ACVT – May 2011 3 / 28



L0RL2 IRLS

Iterative reweighted least-squares minimization (IRLS)

min xTSx subject to ‖y − Φx‖2 = 0

S is a diagonal weight matrix. The solution of each step is the solution of

min ‖v‖2 subject to ‖y − Φx‖2 = 0 and x = S−
1
2 v

which is unique and the reweighted iterative rule is:

x = S−
1
2 (ΦS−

1
2 )†y, (2)

where † denotes the pseudo inverse (i.e. H† = (HTH)−1HT ).

The inverse of (HTH) is difficult for large problems.
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L0RL2 IRLS

Iterative reweighted least squares minimizations (IRLS)

Gorodnitsky & Rao (1997) Sj = 1

(|xj |2)
(1− p

2 )
, for 0 ≤ p ≤ 1 .

Chartrand & Yin (2008) Sj = 1

(|xj |2+ε2)
(1− p

2 )
, for 0 ≤ p ≤ 1

Daubechies et al (2009) I Theoretical analysis shows that local
convergence rate of the algorithm is
superlinear; smaller p values result in faster
convergence rate.

I Experimentally shows that Lp norm with
p → 0 can help to achieve a higher success
rate in exact signal recovery.

However, IRLS in this form strictly only models noise-free observations.
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L0RL2 Basic Model

Basic Model – Gaussian measurement noise

Consider the noisy system

y = Φx + n (3)

where we assume :

Φ is a known M × N matrix, n ∼ N (0, ν2) is noise

and the prior of x is a zero-mean scaled adaptive Gaussian model such that

p(x) ∝
√
|S| exp(−1

2x
TSx),

where S is a diagonal matrix, whose j th diagonal entry Sj = 1/σ2j .

This is well suited for modeling wavelet coefs.
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L0RL2 Basic Model

Basic Model – Prior for σj

We further assume an independent prior ∝ exp(−1
2ε

2/σ2j ) for each σj .
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Figure: Illustration of the prior for σj .

This prior can be regarded as an
approximation to the lower bounded
uniform prior U(ε,+∞). It is
approximately uniformly distributed
in the region (3ε,+∞). Meanwhile it
tends to 0 as σj approaches 0 so as
to prevent σ2 getting too small and
hence avoid numerical instability in
the model.
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L0RL2 Basic Algorithm

Log MAP function and basic algorithm

The prior on σj gives the following negative log MAP function:

Negative log MAP function

J(x,S) = ν2

xTSx− ln |S|+ ε2
∑
j

Sj

+ ‖y − Φx‖2 (4)

Minimizing J(x,S) results in the following iteration rules:

Basic algorithm

x = arg min
x

J(x,S) = (ΦTΦ + ν2S)−1ΦTy

σ2j = arg min
σ2
j

J(x,S) = |xj |2 + ε2

Sj =
1

σ2j
=

1

|xj |2 + ε2
∀ j


(5)
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L0RL2 Fast Algorithm L0RL2

Fast Algorithm L0RL2 – to avoid (ΦTΦ + ν2S)−1

For wavelet-like signal spaces, we introduce the vector α = [α1 . . . αK ] and
the diagonal operator Λα that multiplies the kth subspace/subband by αk :

(Λαx)k = αkxk for k = 1 · · ·K

where xk is a masked version of x with non-zeros only in the subband k,
and where αk may be optimized independently for each subband to be the
minimum αk such that

αkx
T
k xk ≥ ‖Φxk‖2 for any k and x.

Then using majorisation minimization (MM) [3], we have the following

new auxiliary function:

Jα(x,S, z) = J(x,S) + (x− z)TΛα(x− z)− ‖Φ(x− z)‖2 (6)
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L0RL2 Fast Algorithm L0RL2

Fast Algorithm L0RL2

The new auxiliary function eliminates the difficult xTΦTΦx term from
J(x ,S) and results in the following iteration rules:

L0RL2

xn+1 = (Λα + ν2Sn)−1
[
(Λα − ΦTΦ)zn + ΦTy

]
zn+1 = arg min

z
Jα(xn+1,Sn, z) = xn+1

 (7a)

Sn+1 = diag(
[
|xj ,n+1|2 + ε2

]−1
j=1,··· ,N) (7b)

Note that (Λα + ν2Sn) is now a diagonal matrix and hence is easy to
invert!
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L0RL2 Fast Algorithm L0RL2

J(x,S) = ν2
(
xTSx− ln |S|+ ε2

∑
j
Sj

)
+ ‖y − Φx‖2 (4)

xn+1 = (Λα + ν2Sn)−1
[
(Λα − ΦTΦ)zn + ΦTy

]
zn+1 = arg min

z
Jα(xn+1,Sn, z) = xn+1

 (7a)

Sn+1 = diag(
[
|xj ,n+1|2 + ε2

]−1
j=1,··· ,N) (7b)

Substituting eq(7b) into log MAP eq(4) gives

cost function

J(x,S) = ν2
(
const +

∑
j

ln(x2j + ε2)/ε
)

+ ‖y − Φx‖2 (9)

Kingsbury & Zhang (University of Cambridge) L0RL2 ACVT – May 2011 11 / 28



L0RL2 Fast Algorithm L0RL2
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Continuation Strategy Geometry of the penalty function

Geometry of the log-sum penalty function fln,ε

fln,ε = C ln
x2 + ε2

ε2
with ε = 0.1, compared to ‖x‖1 and thresholded ‖x‖0.
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Figure: Compared to the L1 norm, the geometry of the log-sum penalty function
lends itself well to detecting sparsity as ε→ 0.
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Continuation Strategy Geometry of the penalty function

Geometry: unit ball of fln,ε(x)
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Figure: The effect of ε on the geometry of the unit ball of fln,ε(x). When ε is
large, the geometry of fln,ε approximates the L2 ball; when ε becomes small, the
geometry of fln,ε approaches that of the L0 norm.
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Continuation Strategy L0RL2 with continuation

Acceleration and parameter selection

Now we consider the minimization of our problem:

Fε,ν(x) = ν2
∑
j

ln
|xj |2 + ε2

ε
+ ‖y − Φx‖2, (10)

where there are two parameters which decide the solution path. ν balances
the fidelity and sparsity, and ε decides the geometry of the penalty
function. We formulate a sequence of such problems Fεn,νn(x):

Fεn,νn(x) = ν2n
∑
j

ln
|xj |2 + ε2n

εn
+ ‖y − Φx‖2 (11)

starting from large ν0 and ε0, then simultaneously reducing νn and εn until
νn = ν and εn = ε. It is easy to see that Fεn,νn(x) continuously deforms to
Fε,ν(x). We try to ensure that the path of the global minima of Fεn,νn(x)
leads to the global minimum of Fε,ν(x).
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Continuation Strategy L0RL2 with continuation

Geometry: changes of the multidimensional cost function
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(a) J(x, ε). The region where ∂J(x,ε)
∂ε

> 0 is
coloured red.
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(b) Projection of J(x, ε) to plane ε = 0

Figure: The geometry changes of J(x, ε) =
∑3

j=1

∑
j ln(x2j + ε2)/ε on a toy

example: Φ = [3 2 3 ; 3 3 1.5] and y = [6; 6]. The bold line connects all global
minima as ε reduces towards zero. Sparsest solution is x = [2; 0; 0].
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Continuation Strategy L0RL2 with continuation

Algorithm with continuation

Let rL(x) denote the Lth largest amplitude element of vector x and Lmax

be the maximum number of nonzero terms we expect in x.

Set the initial ε = ‖ΦTy‖∞, and then reduce ε gradually.

1 Estimate xn+1 and zn+1 using eq(7a)

2 Update ε and ν:
L = min(L + ∆L, Lmax)
ε = min(2rL(xn+1), ε)
ν2 = 8ε2 min(α) to ensure local convexity of Fε,ν(x)

3 Update S according to eq(7b)

∆L controls the convergence rate and is chosen according to the size of
the worst-case sparsity Lmax and the desired tradeoff between convergence
rate and probability of reaching the global minimum.
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Numerical Results

1-D random signal

Numerical Result

1-D random signal

(a) Noise Free (b) Noise s.dev = 0.05, SNR ≈ 42dB

Figure: Plots showing how L0RL2 gradually selects the non-zero components of x
as ε is reduced. he sparse input signal has 1500 elements, among which there are
45 non-zeros. This signal is similar to Daubechies et al in [2]. In the example
with noisy observations, ν converges to 0.0576, whereas the true s.dev of the
added noise is 0.05.
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(a) noise free (b) noise s.d. = 0.05, SNR ≈ 42dB

Figure: Plots showing how L0RL2 gradually selects the non-zero components of x
as ε is reduced. The sparse input signal has 1500 elements, among which there
are 45 non-zeros. This signal is similar to that used by Daubechies et al in [2]. In
the example (b) with noisy observations, ν converges to 0.0576, whereas the true
s.dev of the added noise is 0.05.
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Numerical Results

1-D random signal: noise free example

Table: Time comparison of different algorithms

RMSE Time (s) RMSE Time (s)

L0RL2 8.80E-3 0.11 8.80E-7 0.19
IRLS 9.60E-5 32.50

SL0 5.20E-3 0.61 2.29E-5 0.84

IRL1 2.80E-6 0.59

L1-SpaRSA 8.90E-3 0.18 2.50E-4 0.67

L1-SPGL1 9.10E-3 0.31 1.20E-5 1.30

RMSE = ‖x− s‖2/‖s‖2, (12)

where x is the final estimation and s is the true input signal.
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Numerical Results

1-D Heavisine signal

0 0

initial

(a) Original signal (b) L1-optimization

Figure: The heavisine signal has sparse representation on wavelet basis, which is
well structured. Utilizing such information in signal reconstruction often results in
improved performance. We use dual-tree complex wavelets (DT-CWT) for
optimal performance (see our paper [4] for results with structural constraints).
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Numerical Results

1-D Heavisine signal

0

WeightUpdate=4, RMSE=0.090073

0

iter = 100,  RMSE=0.026557

(c) IRL1, RMSE = 0.042 (d) L0RL2 , RMSE = 0.026

Figure: The heavisine signal has sparse representation on wavelet basis, which is
well structured. Utilizing such information in signal reconstruction often results in
improved performance. We use dual-tree complex wavelets (DT-CWT) for
optimal performance (see our paper [4] for results with structural constraints).

Kingsbury & Zhang (University of Cambridge) L0RL2 ACVT – May 2011 19 / 28



Super-resolution

Super-resolution

A real problem:
In some situations the point-spread function (psf) H at a higher sampling
rate is available, although y at the same sampling rate is not, e.g. low
inter-slice sampling rate in 3D microscope or medical scan data.
Assume the observation is only available at a lower sampling rate, which
we model as:

D(y) = D(Hx) + D(n) (13)

where D is a matrix that represents the subsampling operation.
For simplicity, we denote this as:

our model

ȳ = D(Hx) + n̄ (14)
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Super-resolution

Embedding tree structure into the algorithm

To further enhance the algorithm we can fairly easily build structural tree
dependencies into the reweighting matrix S, which serves as a
regularization constraint to confine the support of the large coefficients.
This is especially effective with the DT-CWT because of its
shift-invariance, its complex coefs, and its directionally selective filter
properties.

Tree-model options

Enforce the tree structure in the model to generate S

Use bivariate shrinkage to denoise Wx(n+1), and then use the
denoised coefficient energies to update S.

We find the second method gives the best results so far . . .
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Experimental results

Super-resolving a simple ring in 2D:

(part of) original cubic spline L0RL2

Alternate columns are
omitted from the original

Difference from original:
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Experimental results

Results on Cameramen
Gaussian filter, [16× 16], σf = 1 pel, BSNR = 40dB.

(a) Observation with even columns missing (b) odd columns of (a)
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Experimental results

Results on Cameramen
Gaussian filter, [16× 16], σf = 1 pel, BSNR = 40dB.

(c) Cubic Spline interpolation of (d) (d) deconvolved result from (b)
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Experimental results

Results on Cameramen
Gaussian filter, [16× 16], σf = 1 pel, BSNR = 40dB.

(e) restored to higher resolution (f) odd columns of (e)
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Experimental results

Results on Cameramen: quantitative results

We use ISNR to quantify the improvement:

ISNR(x(n)) = 10 log10(
‖y − x‖2

‖x(n) − x‖2
)

ISNR(D(x(n))) = 10 log10(
‖ȳ −Dx‖2

‖Dx(n) −Dx‖2
)

and get the following ISNR(dB) measures:

(c) (d) (e) (f)
Gaussian filter 16× 16 3.1734 3.2720 4.2188 4.0900

Uniform blur filter 8× 8 4.3641 4.5664 5.5276 5.5179
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Experimental results

3D microscopy dataset

Wide-field fluorescence 3D datasets are often not equally sampled in
all directions to save time and cost. (Similarly for many medical 3D
datasets.)

The 3D DT CWT representation of the dataset gives 28 planar-wave
oriented subbands in each scale. These emphasize planar and linear
object features, while noise and aliasing effects in other directions are
suppressed by the sparsity-inducing regularization process.

The coefficients in different subbands are denoised by bivariate
shrinkage [Sendur & Selesnick 2002] to improve the quality of S, and
thus the final result.
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Experimental results

Original image

horizontal

vertical
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Experimental results

Spline interpolated image
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Experimental results

Our recovery - more results available on our website
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Conclusion

Conclusion

The L0RL2 algorithm

is suitable for large-scale problems, e.g. 3D datasets, because it only
requires matrix-vector multiplications and element-wise operations in
each iteration. Convergence is fast for many problems.

relies (in its basic form) only on one preset parameter, the sparsity
level Lmax. A loose estimate of Lmax is enough to achieve good
results.

is easy to implement and very flexible to allow the integration of prior
knowledge of signal structure (see [4] for explanation and results).

is well-suited to handling noisy measurement data (because of its L2
heritage), and provides good noise suppression in the final results.

Our model turns out to be similar to hierarchical (sparse) Bayesian
modelling, often solved by the Relevance Vector Machine [1].
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Conclusion
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