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Efficient Registration of Non-rigid 3-D Bodies
Huizhong Chen, Student Member, IEEE and Nick Kingsbury, Member, IEEE

Abstract—We present a novel method to perform accurate reg-
istration of 3-D non-rigid bodies, by using phase-shift properties
of the dual-tree complex wavelet transform (DT-CWT). Since the
phases of DT-CWT coefficients change approximately linearly
with the amount of feature displacement in the spatial domain,
motion can be estimated using the phase information from these
coefficients. The motion estimation is performed iteratively, firstly
by using coarser level complex coefficients to determine large
motion components and then by employing finer level coefficients
to refine the motion field. We use a parametric affine model
to describe the motion, where the affine parameters are found
locally by substituting into an optical flow model and solving the
resulting over-determined set of equations. From the estimated
affine parameters, the motion field between the sensed and the
reference datasets can be generated and the sensed dataset can
then be spatially shifted and interpolated to align with the
reference dataset.

Index Terms—Image registration, dual-tree complex wavelet
transform, optical flow.

EDICS Category: ARS-IVA, TEC-MRS

I. INTRODUCTION

W ITH the increasing availability of 3-D imaging systems
like Computed Tomography (CT) and Magnetic Res-

onance Imaging (MRI), multidimensional image analysis has
become a key topic for research. In most image processing
tasks which involve combining data from multiple sources,
accurate estimation of motion between datasets is of great
importance. The objective of image registration is geometri-
cally to align multiple images of a similar scene, acquired
at different times and positions and with different imaging
devices. Registration is widely used in many applications, such
as medical imaging (aligning datasets for disease diagnosis
and treatment planning), computer vision (object tracking,
structure-from-motion), and remote sensing (change detection,
mosaicing, image fusion, super resolution). In this paper, we
mainly consider applying the registration algorithm to medical
images. Medical image registration differs from other 3-D
object registrations in three main aspects: 1) images of a
medical object can change significantly with time due to elastic
tissue structures or in the presence of abnormalities. 2) medical
image registration tends to focus on internal object structures.
3) accurate registration must be achieved for optimal diagnosis.
However, it should be noted that our algorithm does not
make assumptions about specific types of image data, so the
proposed method can be generalized to other image categories.
Three-dimensional motion estimation has been studied for

some time but improved computation and memory resources
now make higher performance methods increasingly feasible.
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Fig. 1. Dual tree of real filters for the Q-shift CWT, giving real and imaginary
parts of complex coefficients from tree a and tree b respectively. Figures in
brackets indicate the approximate delay for each filter, where q =

1

4
sample

period. (Adapted from [1])

In 3-D registration, motion can occur along all 3 dimensions so
it is suboptimal to register datasets slice by slice. Also, for non-
rigid objects such as human tissue, the movement is typically
non-uniform throughout the dataset and hence the motion
should be described locally, rather than just globally. Further,
the object of interest may have experienced changes in the
sensed and the reference datasets, e.g., the removal of tumor
in medical images before and after a clinical intervention.
Hence a good multidimensional registration algorithm should
be accurate, robust and computationally efficient.
Previous work on image registration can be broadly clas-

sified into feature-based methods and area-based methods.
Feature-based approaches extract salient features from the
sensed and the reference datasets, and aim to find the transfor-
mation which minimizes the distance between corresponding
features. The extracted features can be regions, edges or inter-
est points. Matas et al. [2] detect Maximally Stable Extremal
Regions and setup the correspondence between pairs of images
based on these stable regions. Li et al. [3] proposed a contour-
based method which use region boundaries and other strong
edges as matching primitives. In [4], Takacs et al. use FAST
(Features from Accelerated Segment Test) keypoints [5] and
perform descriptor matching to estimate the image transforma-
tion. Ta et al. [6] proposed SURFTrac which matches Hessian
interest points inside a 3-D image pyramid. In contrast to
feature-based methods, area-based methods attempt to perform
registration without extracting salient features. Common area-
based approaches include cross-correlation (CC) methods and
mutual information (MI) methods. For CC methods like the
algorithms described in [7], [8], a displacement vector is
computed over pairs of tiles in the sensed and the reference
images by maximizing the normalized CC. Another type of
registration technique that is closely related to the CC methods
is the sequential similarity detection algorithm, which maxi-
mizes the sum of absolute differences of the image intensity
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Fig. 2. (a) The impulse responses of the 2-D DT-CWT subbands at level
4, in the order HL, HH, LH, L∗H, H∗H, H∗L. The filtering is performed
on rows first and then on columns, e.g. LH means low-pass filtering on
rows followed by high-pass filtering on columns. (b) The orientation of 3-
D DT-CWT subbands on one quadrant of a hemisphere. The filtering is
performed in the sequence: rows, columns and slices.

[9]. Image registration with MI was first proposed by Viola and
Wells [10] and Maes and Collignon [11], where the registration
is done by optimizing the MI between pairs of datasets.
Thevenaz et al. [12] employed Parzen windows to compute
the joint probability histogram and developed an MI optimizer
with the Marquardt-Levenberg method for multimodal image
registration. In [13], the joint probability was approximated by
discrete histograms and the maximization of MI was achieved
by a multiresolution hill climbing algorithm. For a more
complete review on image registration methods, readers are
referred to [14]–[19].
Our non-rigid body registration algorithm is based on the

ideas of Hemmendorff [20], [21] with significant changes
designed to improve computational efficiency. In particular,
the dual-tree complex wavelet transform (DT-CWT) [1], [22]
is used as the front-end filter bank to take advantage of
its near shift-invariance and directional selectivity, combined
with relatively low redundancy and computation load. The
algorithm is fully automated and may be applied to estimate
motion for a wide range of non-rigid objects. In addition, since
the motion of a rigid body is just a special case of non-rigid
motion, our proposed motion registration method can also be
used to register rigid objects, although difficulties may arise
at sharp motion boundaries due to the spatial support regions
of the filters used. Finally, our image registration algorithm
is based on aligning the phases of the DT-CWT coefficients,
which are robust to local mean and contrast changes of the
two datasets being registered. The proposed algorithm is well
suited to medical data where any large motion is mainly
global, and smaller local relative motions can be obtained from
the finer resolution motion estimation in later stages of the
algorithm. To handle very large local motion, an extension of
our method is to perform motion estimation by searching over
adjacent regions where the local motion has occurred.

II. DUAL-TREE COMPLEX WAVELET TRANSFORM

This section contains a brief introduction to the DT-CWT
and its properties for image registration. The DT-CWT in 3-D
will be discussed in some detail since we focus on registering
3-D datasets.

Fig. 3. The 8-band structure of 3-D DT-CWT, where each cube represents a
subband of one of the eight DWTs in a DT-CWT. The filtering is performed in
the sequence of rows, columns and slices. E.g. HLL means high-pass filtering
on rows and low-pass filtering on columns and slices.

A. The DT-CWT and its properties
The DT-CWT is an enhancement of the conventional dis-

crete wavelet transform (DWT), with two distinctive proper-
ties: near shift-invariance and directional selectivity in 2-D or
higher dimensions [23]. The basic idea of the DT-CWT is to
employ a Hilbert pair of real DWTs in parallel [22] to produce
the real and imaginary parts of complex wavelet coefficients.
Its framework for 1-D signals is shown in Fig.1.
The near shift-invariance property of the DT-CWT means

that the impulse response of a given subband from the trans-
form input to the inverse-transform output is approximately
independent of shift and hence free of aliasing [1]. Simon-
celli et al. [24] showed that shift invariance is equivalent to
interpolability of the subband coefficients. Hence for image
registration purposes, the DT-CWT coefficients from each
subband can be interpolated to represent the transformation
of shifted signals in the spatial domain.
The 1-D DT-CWT can be extended to 2-D to produce

directionally selective wavelet subbands [22], [23], as shown
in Fig.2a. The impulse responses of the oriented wavelet filters
are important for motion estimation, because the motion in the
direction normal to the stripes of the filter response will cause
an approximately linear phase change in the corresponding
subband coefficients. In other words, the DT-CWT has an
analogy to the Fourier transform, in the way that a shift
in the spatial domain corresponds to a linear phase change
in the frequency domain. For the DT-CWT in 3-D, each
transform level has 28 subbands which are selective to near-
planar surfaces. The orientations of these surfaces for the 28
subbands correspond to approximately equally spaced patches
on the surface of a hemisphere, one quadrant of which is
shown in Fig.2b.
The bandwidths of the wavelet filters are approximately one

octave wide, which are well suited to detection of edges (2-D)
or surfaces (3-D) since they are wide enough in frequency to
be well localized in space, and yet narrow enough for their
responses to approximate modulated waves with linear phase-
versus-displacement characteristics. At any one scale, they
approximately uniformly tile the 2-D frequency plane or 3-
D frequency volume. Hence we feel they are close to optimal
in their characteristics.

B. The DT-CWT in 3-D
The DT-CWT is implemented in 3-D by performing sepa-

rable filtering on rows, columns and slices of the 3-D dataset.
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This filtering process produces the structure shown in Fig.3,
which contains 8 bands, namely LLL, HLL, LHL, HHL, LLH,
HLH, LHH and HHH, as found in a conventional 3-D DWT.
But in the dual-tree version, since there are two trees of
filtering on each dimension, the DT-CWT produces an octal-
tree system which introduces a redundancy of 2:1 on each
dimension and gives a total redundancy of 8:1 in 3-D.
Each subband in the octal-tree system produces 8 real

coefficients (one from each tree) at each spatial location, and
these can yield 4 directional subbands of complex coefficients
by simple arithmetic sum and difference operations [22].
Because of the Hilbert pair relationships, these 4 subbands
correspond to different quadrants of the 3-D spectral half-
space, as depicted in Fig.4. Since the LLL band is used for the
next level of complex wavelet transform, there are altogether
(8 − 1) × 4 = 28 directional subbands for each DT-CWT
level. These subbands are produced by all the bands from the
8-band stucture except for the LLL band. To see how a quad
of directional subbands can be generated by the coefficients of
one band of the 8-band structure, we specifically consider the
HHH band at a certain level of the DT-CWT (other bands
follow the same derivation). The 3-D wavelet for the 1st

quadrant HHH subband can be written as:

ψ1(x, y, z) = [ψa(x) + jψb(x)][ψa(y) + jψb(y)][ψa(z)

+ jψb(z)] (1)
= [ψa(x)ψa(y)ψa(z)− ψb(x)ψb(y)ψa(z)

− ψa(x)ψb(y)ψb(z)− ψb(x)ψa(y)ψb(z)]

+ j[ψa(x)ψa(y)ψb(z)− ψb(x)ψb(y)ψb(z)

+ ψa(x)ψb(y)ψa(z) + ψb(x)ψa(y)ψa(z)] (2)

The subscripts a and b in the above equations denote tree a
(generating the real part) and tree b (generating the imaginary
part) in Fig.1. In (2), ψa(i) and ψb(i) are the tree a and tree
b high-pass filters being applied to dimension i ∈ {x, y, z},
with x, y and z denoting the axes of row, column and slice
respectively. Note that the 1-D DT-CWT filters suppress the
negative half of the frequency spectrum. Therefore the wavelet
in (2) only represents the spectrum in the 1st quadrant of
the upper half of the frequency domain. However, real 3-D
datasets contain independent frequency components in the 1st,
2nd, 3rd and 4th quadrants of the upper-half frequency space,
as depicted in Fig.4. The wavelets for the 2nd, 3rd and 4th
quadrants can be obtained from the following equations:

ψ2(x, y, z) = [ψa(x)− jψb(x)][ψa(y) + jψb(y)][ψa(z)

+ jψb(z)] (3)
ψ3(x, y, z) = [ψa(x) + jψb(x)][ψa(y)− jψb(y)][ψa(z)

+ jψb(z)] (4)
ψ4(x, y, z) = [ψa(x)− jψb(x)][ψa(y)− jψb(y)][ψa(z)

+ jψb(z)] (5)

It can be seen that ψ2(x, y, z), ψ3(x, y, z) and ψ4(x, y, z)
can be easily obtained by arithmetic sum and difference
operations on the terms of ψ1(x, y, z) in (2). If we rewrite

Fig. 4. The upper half-space of the frequency spectrum of 3-D datasets.

Fig. 5. For each of the row, column and slice dimensions, high-pass or low-
pass filters are applied to generate the corresponding octal-tree components. r
means a real component, while j1, j2 and j3 denote the imaginary operator
j for the row, column and slice directions respectively. For components in
the 1st quadrant, j1 = +j, j2 = +j and j3 = +j; for the 2nd quadrant,
j1 = −j, j2 = +j and j3 = +j; for the 3rd quadrant, j1 = +j, j2 = −j

and j3 = +j; for the 4th quadrant, j1 = −j, j2 = −j and j3 = +j.

(2) as

ψ1(x, y, z) = [A−G−D − F ] + j[B −H + C + E] (6)

where the symbols A to H represent the components in (2) in
the same order. Then ψ2(x, y, z), ψ3(x, y, z) and ψ4(x, y, z)
in (3), (4) and (5) can be rewritten as:

ψ2(x, y, z) = [A−G+D + F ] + j[−B +H + C + E](7)
ψ3(x, y, z) = [A+G+D − F ] + j[B +H − C + E] (8)
ψ4(x, y, z) = [A+G−D + F ] + j[−B −H − C + E](9)

Fig.5 illustrates how the components of the octal-tree system
in equations (6), (7), (8) and (9) are produced. The outputs A
to H in Fig.5 have the same meaning as in the equations.

C. Memory considerations for the 3-D DT-CWT
The redundancy of the 3-D DT-CWT is 8:1, which, although

modest for a shift-invariant 3-D transform, still tends to
cause heavy computation and large memory usage, compared
with a non-redundant transform. To solve this problem, our
algorithm only keeps the LLL band of the DT-CWT at level
1 and all other level 1 bands are discarded. In this way, the
redundancy is eliminated, giving a 1:1 transform. Note that
although all high-pass bands at level 1 are ignored, this does
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not cause excessive loss of information, because typical real-
world datasets do not have very sharp edges and the highest
frequency components are largely dominated by noise. Also,
the level-1 wavelets have poorer linear phase-shift properties
than at coarser levels, and so are less useful for registration.

III. OVERVIEW OF MOTION ESTIMATION

A. Description of motion: the affine model
Each motion vector is in the direction of the displacement,

with amplitude equal to the amount of shift. For non-rigid
registration purposes, the motion vectors should be described
locally. The full set of motion vectors which contains the
motion of the dataset at every location is called the motion
field.
In this work, we describe the 3-D motion field by the

affine transform [25], which can model typical motions like
translation, rotation, scaling and shear. A major advantage of
using the affine model lies in the fact that if the motions
at two locations are from the same affine model (e.g. shift,
rotation, scaling or shear, typically belonging to the same
object) then their affine parameters should also be the same.
This property is important when overcoming the problems of
ill-conditioning due to limited aperture (known as the aperture
problem [26]), for estimating motions of rigid bodies (section
V-A) and smoothing the motion estimates across a region of
the dataset (section IV-E).

B. Theoretical background of motion estimation
The model described here is based on the parametric model

introduced by Hemmendorff [21], with significant changes in
order to take full advantage of the efficient DT-CWT front
end.
1) The motion constraint: We define the 4-element homo-

geneous displacement vector at location x to be:

ṽ(x) =

[
v(x)

1

]
(10)

where v(x) is the motion vector at location x = [x, y, z]T .
A motion constraint vector is a 4-element vector c(x) that
defines a plane in 3-D space and satisfies:

cT(x) ṽ(x) = 0 (11)

Horn and Schunk in [27] showed that the motion constraints
can be estimated as the spatiotemporal gradient of the image
intensity. This is known as the optical flow model. In the
context of 3-D DT-CWT, since the phase of each complex
coefficient has an approximately linear relationship with the
local shift vector v(x), we have the following equation:

∂θd

∂t
= ∇xθd · v(x) which gives

[
∇xθd

−∂θd
∂t

]T
ṽ(x) = 0 (12)

where ∇xθd =
[
∂θd
∂x

∂θd
∂y

∂θd
∂z

]T
, representing the phase

gradient at x for subband d in the directions of x, y and
z. Note that d predominantly indexes the different directions
of subbands at a particular scale, but it may also index

different subband scales too. The term ∂θd
∂t

is the phase
gradient between the two datasets being registered, i.e. the
phase change at x of the DT-CWT coefficients of subband d

between the two datasets. Comparing (11) and (12), it is clear
that the motion constraint vector satisfies the expression:

cd(x) = Cd(x)

[
∇xθd

−∂θd
∂t

]
(13)

where Cd(x) is a scalar weighting factor which can be
designed to reflect the confidence of the motion constraint
at x in the direction of subband d. In applications where the
two datasets being registered are not identical, it is desirable
to give a larger weight to locations containing similar features
and a smaller weight to locations with inconsistent features
between the two datasets. These inconsistent features may be
caused by the need to improve the image visibility (injection
of radiocontrast agents as shown in Fig.9), the actual devel-
opment of disease (removal of tumor as shown in Fig.10), or
image noise. In order to limit the motion estimation outliers
caused by the inconsistent features, we design the confidence
measure Cd(x) defined by the following expression, which
gives highest weight to consistent features and lower weight
to less consistent features:

Cd(x) =
|
∑8

k=1
u∗

kvk|
2∑

8

k=1
(|uk|3 + |vk|3) + ε

(14)

where uk and vk are the wavelet coefficients in the refer-
ence and the sensed dataset respectively, and the subscripts
k = 1 . . . 8 denote the 8 neighboring wavelet coefficients
which are on a cube centered at location x in subband d.
The small positive constant ε prevents the denominator from
going to zero if the wavelet coefficients become very small. It
should be comparable with the cube of the expected amplitude
of the measurement noise. Note that the numerator in (14) is
proportional to the fourth power of the coefficient amplitudes,
while the denominator is proportional to their cubes (ignoring
ε), so overall Cd varies linearly with amplitude, which natu-
rally gives greater weight to stronger features in the dataset.
2) The cost function: The affine model equation is written

as:

v(x) =

⎡
⎢⎣
1 0 0 x 0 0 y 0 0 z 0 0

0 1 0 0 x 0 0 y 0 0 z 0

0 0 1 0 0 x 0 0 y 0 0 z

⎤
⎥⎦
⎡
⎢⎢⎣
a1

...
a12

⎤
⎥⎥⎦

= K(x) a (15)

Defining K̃(x) =

[
K(x) 0

0 1

]
and ã =

[
a

1

]
, and then using

(10), the homogeneous motion vector is given by

ṽ(x) = K̃(x) ã (16)

Combining (11) and (16) for all 28 subband directions, we
have:

cd(x)
T K̃(x) ã = 0 for d = 1 . . . 28 (17)

Thus for each location x, there are 28 constraint equations,
which is an over-determined set for the 12 unknown affine
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parameters in ã. Hence we find the value of ã which minimizes
the squared error ε(x). ε(x) is the cost function of our
algorithm, given by

ε(x) =

28∑
d=1

‖ cTd(x) K̃(x) ã ‖2

=

28∑
d=1

ãT K̃T(x) cd(x) c
T
d(x) K̃(x) ã

= ãT Q̃(x) ã (18)

where

Q̃(x) =
28∑
d=1

K̃T(x) cd(x) c
T
d(x) K̃(x) (19)

In practice, in order to handle the registration of dissimilar
image features as well as dealing with the aperture problem,
it is often helpful to combine the Q̃(x) matrices across more
than one level of the DT-CWT and over a slightly wider area
within each level to produce the most accurate estimate of the
affine parameters. We therefore define a locality χ to represent
this wider spatial and interscale region, such that

Q̃χ =
∑
x∈χ

Q̃(x) (20)

The Q̃ matrices are symmetric and so Q̃χ can be written
in the form:

Q̃χ =

[
Qχ qχ

qT
χ

q0,χ

]
(21)

where qχ is a 12-element vector and q0,χ is a scalar.
Substituting (21) into (18) and (20) , the cost function is

thus expressed as:

εχ =
∑
x∈χ

ε(x) = ãT Q̃χ ã

=
[
aT 1

] [Qχ qχ

qT
χ

q0,χ

][
a

1

]

= aTQχa+ 2aTqχ + q0,χ (22)

To minimize εχ, we differentiate the expression of εχ with
respect to a and set the derivative to zero. Hence

∇aεχ = 2Qχa+ 2qχ = 0 (23)

and the local affine parameter vector which gives the least
squared error is:

aχ = −Q−1

χ
qχ (24)

Once the affine parameters have been obtained, the corre-
sponding motion is obtained by substituting the elements of
aχ into (15).

IV. THE IMAGE REGISTRATION ALGORITHM
There are three major steps in our registration algorithm: (1)

transform the data to the DT-CWT domain; (2) perform motion
estimation; (3) register the sensed dataset to the reference
dataset using the estimated motion. A flowchart illustrating
the algorithm is shown in Fig.6. The pair of datasets to be
registered are firstly transformed by the DT-CWT and the

Fig. 6. Flowchart of the image registration algorithm.

levels which will be used for motion estimation are selected.
The subband coefficients of the sensed dataset are shifted
according to the motion field produced by previous iterations.
The shifted coefficients of the sensed dataset, together with the
coefficients of reference dataset, are used to generate motion
constraints. The Q̃(x) matrix can then be calculated at each
location x and smoothed across each locality χ to give Q̃χ.
Next, the affine parameters which minimize the least squared
error are obtained and added to the affine parameter estimates
from previous iterations to generate the motion field. After all
the iterations, the sensed dataset is finally interpolated in the
3-D spatial domain to register to the reference dataset. The
main blocks within the algorithm will now be described.

A. DT-CWT on input datasets
The algorithm takes two 3-D datasets A and B as in-

puts, where B is the reference dataset and A is the sensed
dataset. The two datasets are forward transformed with the
3-D DT-CWT and their complex wavelet coefficients at each
level (except level 1, see section II-C) are obtained.

B. Select CWT scales (levels) according to iteration
The multi-resolution nature of the DT-CWT means that we

can estimate the motion from different scales. For example,
if we choose the complex wavelet coefficients at level 3 to
perform motion estimation, then each coefficient corresponds
to a block of 83 voxels in the original dataset. This means one
affine vector will be estimated for each of these 83 blocks.
It is important to realize that a wrong motion vector is

likely to be produced if the phase change of a given complex
wavelet coefficient exceeds the range −π to +π, as this causes
ambiguity for deciding the motion. For a given amount of
motion, the phase change of coarser level complex coefficients
will be smaller than that of finer level coefficients by a factor
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of 2 per scale level [28]. This shows that by using coarser
level coefficients, the estimation algorithm can cope with
larger motion, whilst with finer level coefficients it can only
tackle small motion. However, performing motion estimation
from coarser levels only may lead to inaccurate local motion
estimates since the selected scale may be too coarse to capture
all the important data features and the real local motion. This
reveals a trade-off for selecting the levels at which the motion
estimation should be performed: coarser level coefficients can
estimate large motion but with limited accuracy, whilst finer
level coefficients can give good local motion accuracy but
cannot reliably estimate large motion vectors.
In order to achieve accurate motion estimation over a wide

range, we adopt a coarse to fine approach to estimate the
motion iteratively. In the first few iterations, the motion field
should be estimated from coarse level coefficients only (to
handle large motion) and this motion field is then used to
shift the sensed dataset towards the reference. Once the large
motion between the two datasets has been compensated, later
iterations can focus on estimating the small local residual
motion errors by using finer level coefficients. In this way
the motion estimate is gradually refined to approach the true
motion field.

C. Shift within subbands (interpolation of the DT-CWT coef-
ficients)
The feasibility of interpolating DT-CWT coefficients within

each subband separately relies on the transform’s shift-
invariant properties, as introduced in section II-A. The
DT-CWT coefficients of dataset A need to be shifted and
interpolated using estimated motion from previous iterations.
After interpolation, the complex coefficients of dataset A
should look more similar to those of dataset B because
the amount of motion between A and B has been reduced.
Finer level coefficients may then be used to perform motion
estimation in the subsequent iterations.
One may argue that dataset A could be shifted with the

estimated motion in the spatial domain and then transformed
with the DT-CWT to get the wavelet coefficients for the
shifted dataset. This method is feasible but tends to be slow
since shifting a 3-D dataset is computationally demanding. The
advantage of shifting in the complex wavelet domain is that it
provides a fast and smooth way of aligning the datasets, as the
number of DT-CWT coefficients at any level above 1 is much
smaller than the sample size of the original dataset, and the
coefficients are well bandlimited. Moreover, the computations
of performing the DT-CWT are avoided within the iterative
loop.
We must be aware that complex coefficients in each subband

are bandpass signals and should not be interpolated in the
normal way for lowpass signals. The DT-CWT filters introduce
a different phase offset rate to each of the subbands, and so
direct interpolation will not produce the correct result. Our
method for interpolating complex coefficients is as follows:
(1) De-rotate the phase of the bandpass complex coeffi-

cients to compensate for the phase offset rate and center
the subband on zero frequency;

(2) Interpolate the real and imaginary parts of the de-
rotated coefficients, using conventional (tri-)linear or
cubic methods;

(3) Re-rotate the phase of the complex coefficients to re-
store their phase offset rate and to correct their bandpass
center frequency.

The details of subband interpolation are discussed in ap-
pendix A.

D. Form constraints and calculate Q̃(x) at each location x

The phase of the DT-CWT coefficients can be used to
form the constraints as described by (13). With the constraint
vectors, we can then obtain the Q̃(x) matrix at each location
x and at each chosen scale by using (19).
At each wavelet scale, the locations x are chosen to be at

the centers of cubes bounded by 8 adjacent coefficients (the
uk and vk of (14)). The derivatives of the column vector in
(13) are then calculated by forming the two cubes of complex
coefficients, u and v, into corners of a 4-D hypercube, and
by taking conjugate products across each pair of hyperfaces
of the hypercube in turn. The 8 conjugate products from each
hyperface-pair are then summed (similar to the summation
in the numerator of (14), which is used for the ∂θ

∂t
term)

and the phase of the complex resultant is the required phase
derivative. Thus the derivatives are the average phase shifts
at the center of each hypercube with respect to x, y, z and t,
where the averages are effectively weighted by the magnitudes
of the conjugate product terms so that large coefficient pairs
contribute more to the phase ‘average’ than smaller pairs.

E. Smooth elements of Q̃(x) to give Q̃χ

Recall that each motion constraint vector from (13) has a
weighting factor Cd(x) which reflects our confidence in the
constraint. Equation (19) shows that a large weight motion
constraint cd(x) will contribute more to the elements of Q̃(x)
than a smaller one. Likewise in (20), larger Q̃(x) matrices will
contribute more to Q̃χ than smaller ones for each locality χ.
However, it can be seen from (21) and (24) that when Q̃χ

is used to solve for the affine vector aχ, the solution will
be independent of the total weight of Q̃χ. In this way the
weighting factors assigned to the motion constraints affect
their relative contributions to the affine motion solution but
the overall weight does not affect the final result. In smooth
data regions or where there are no consistent features between
datasets A and B, some or all of the eigenvalues ofQχ will be
small and the resulting affine parameters will not be reliable.
A solution to this problem is to smooth the elements of the

Q̃(x) matrices spatially across the dataset. The basic idea is to
bring the motion information from locations with larger weight
constraint vectors to those with smaller weight. This can be
achieved by expanding each locality χ to include regions
which overlap with other adjacent localities and by using a
smoothly decaying weighting w(x−χ

0
) as one moves away

from χ0, the center of χ. Hence (20) becomes

Q̃χ =
∑
x∈χ

w(x − χ
0
) Q̃(x) (25)
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and the localities χ are now larger and overlapping. This
effectively applies a spatial low-pass smoothing filter, defined
by the w(x − χ0), to the Q̃(x) matrices. Typically there are
many localities χ covering the whole dataset volume.
We find that a simple triangular low-pass filter gives good

performance. The choice of the smoothing filter size (i.e.
number of taps) is application dependent. A large filter should
be used if the motion of the object is believed to be relatively
smooth, i.e. the 12-element affine vectors are likely to be
similar at nearby localities. However, if the motion varies in
a significantly non-affine way across the dataset, then a small
smoothing filter will be more desirable. It would be relatively
easy to make the filter adaptive to the data, but we have not
investigated this.
The filtering in (25) also allows easy combination of the

Q̃(x) matrices across scale, where the basic sampling intervals
of x are different. We use simple triangular filters to upsample
or downsample the matrices from different scales so they all
are sampled at the chosen grid for the localities χ. Typically
the grid for χ corresponds to that for the level-3 or level-4
wavelet coefficients.

F. Solve for aχ and generate the motion field
The algorithm estimates the motion iteratively. Every it-

eration produces a set of affine vectors from (24), and they
are added to the aχ estimated from previous iterations. As
described in section IV-C, this motion field is used to shift the
DT-CWT coefficients of the sensed dataset and the shifted co-
efficients are used for the next iteration of motion estimation.
The 3-D motion field is computed at the resolution and grid

points of each wavelet scale that is being used, by linearly
interpolating affine vectors from the nearest locality centers
χ

0
, and then by using the affine expression of (15) at each grid

point. The multi-scale motion fields at the selected scales are
finally passed to the block ‘Shift within subbands’ to complete
the iterative loop.

G. Registration by spatial transform
After several iterations, a set of affine parameters are

obtained which accurately describe the motion between the
sensed and the reference datasets. The affine parameters are
then up-sampled to produce the motion field at the full
resolution, i.e. each voxel of the dataset has a corresponding
motion vector. With this motion field, the sensed dataset can
then be registered by interpolation in the 3-D spatial domain
to align it with the reference dataset. An alternative method
of registration would be to motion compensate every subband
in the wavelet domain and then inverse transform the result,
but this tends to introduce slight artifacts due to the transform
being only approximately shift invariant. Furthermore it does
not save any computation. Hence we recommend use of spatial
domain interpolation to perform the final registration step.

V. DETAILS OF THE REGISTRATION ALGORITHM
This section includes in-depth discussions on some of the

details of our algorithm.

A. Rigid body registration
The difference between rigid body and non-rigid body

registration is that the motion of a rigid body always conforms
to a single affine model (i.e. aχ must be the same at every
locality of the dataset), whereas the motion of a non-rigid body
is locally characterized. Thus for rigid body registration, the
Q̃χ matrices at each locality should be the same. This implies,
when estimating rigid motion, that the Q̃χ matrices at each
locality can simply be averaged to produce a global Q̃ which
is denoted by Q̃mean. Then Q̃mean replaces the original local
Q̃χ matrix at all localities before solving for a single affine
vector amean.
Even for non-rigid body registration, it can often be best to

perform the first few iterations using the rigid body registration
mode, before carrying out the non-rigid body motion estima-
tion. This means that we start by registering the two datasets
as a whole using coarse wavelet scales only to compensate
for possibly large motion, and then bring in local motion
information on later iterations by switching to the non-rigid
body mode and finer wavelet scales. Using rigid body mode
additionally helps to reduce the chance of Q becoming ill
conditioned, since it adopts the largest possible aperture (the
whole image) for the purely coarse-level iterations, at which
ill conditioning is most likely because of low spatial detail.

B. Selecting DT-CWT levels for iterations
For every iteration, one or several levels of DT-CWT can be

selected to carry out motion estimation. The levels should be
chosen in the sequence coarse to fine, in order to estimate the
large components of motion first and then gradually refine the
estimates. A typical choice of DT-CWT levels ranges from
level 5 or levels 5 and 4 in early iterations, to levels 4, 3
and 2 in the final few iterations, which take much longer to
compute. There is a big computational gain from minimizing
the number of iterations on which level 2 is used, as the
number of constraint equations increases by a factor of 8 as
each finer level is introduced.
It should be noted that the DT-CWT in its simplest form

requires the size of the dataset to be a multiple of 2K in
each dimension, where K is the coarsest transform level used.
However the DT-CWT can be modified slightly to break
the restriction on size, by appending symmetrically extended
(mirrored) coefficients as necessary at opposite edges of the
LLL band after each level of transform, so as to ensure the size
of the LLL band is always divisible by 8 in each dimension
before it is passed to the next coarser level. The modified
DT-CWT only requires that the initial datasets be a multiple
of 4 along each dimension. Some care must be taken, however,
in the programming of the motion estimation parts of the
algorithm to allow for the changes in subband sizes that this
modification produces.

C. Motion estimation at dataset boundaries
In the DT-CWT, to avoid boundary discontinuities the

dataset is symmetrically extended along each of the dimen-
sions before being filtered by the high-pass or low-pass filters.
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Although symmetric extension is a good technique for reduc-
ing edge effects, it leads to inaccuracy in estimating motion
normal to the boundary of the dataset. This is because motion
near the dataset boundary will cause reflected motion in the
symmetrically extended region. The components of these two
motions, normal to the boundary, move in opposite directions
to each other and thus tend to result in poor motion estimation
near boundaries.
Unfortunately it is not straightforward to estimate accurately

the motion at dataset boundaries. To reduce the estimation
error, we recommend using motion information at inner local-
ities to infer motion at the boundary localities. This scheme
can simply be achieved by zeroing out some or all of the
motion constraint vectors at the boundary localities when the
constraints are generated. This is equivalent to saying that
there is no information about certain components of motion
at the boundary localities. If all motion constraints near the
dataset boundaries are set to zero, Q̃(x) will also be zero
at these boundary localities. When the Q̃(x) matrices are
smoothed across the localities as described in section IV-E,
the information of the Q̃(x) matrices at neighboring inner
localities will leak into the Q̃χ near the boundaries. In this
way, the affine motion models at the boundaries will be
extrapolated from the affine models of the inner regions.

D. Modification to the Qχ matrix
We have shown in equation (24) that the optimal affine

parameter vector solution is aχ = −Q−1

χ
qχ. However in

practice, the Qχ at some localities may be found to be near
singular (very ill-conditioned). This is undesirable because
small numerical errors in Qχ will lead to large inaccuracies
in the solution of aχ. The ill-conditioning of Qχ implies
that the 12-parameter affine model is over-fitting the local
motion. The source of the ill-conditioning is often due to the
local data content being relatively simple and so the local
motion can be described by fewer than 12 parameters. To
remedy this problem (often known as the aperture problem),
one possible solution is to use a large smoothing filter when
the Q̃χ matrices are calculated. However, applying a large
filter may result inaccurate local motion estimation. A solution,
which we have used successfully with relatively rigid brain
scans, is to modify Q̃χ slightly to become Q̃′

χ
, where

Q̃′

χ
= Q̃χ + λQ̃mean (26)

Recall that Q̃mean is the mean of Q̃χ over all localities, i.e.
Q̃mean represents the estimate of the global motion. λ in (26)
should be a small constant which we will discuss shortly.
With the definition of Q̃′

χ
in (26), the solution of the affine

parameters is now expressed as follows:

aχ = −Q̃′−1

χ
q′

χ
(27)

where Q′

χ
and q′

χ
come from the newly defined Q̃′

χ
:

Q̃′

χ
=

[
Q′

χ
q′

χ

q′T
χ

q′
0χ

]
(28)

The modified Q̃′

χ
can be regarded as the superposition of

the local motion and a small fraction of global motion. This is

equivalent to driving the local motion estimate slightly towards
the global motion and the amount is controlled by λ. The value
of λ is not critical and we express it as:

λ =

√√√√ 0.001 .
∑
all χ Energy of Q̃χ

(# of localities) (Energy of Q̃mean)
(29)

where the energy of a matrix is defined as the sum of all
its elements squared. It is best to consider the meaning of
λQ̃mean in order to interpret λ in the above equation. With the
definition of λ in (29), the energy of λQ̃mean is just 0.001 of
the mean energy of the Q̃χ.
With the small amount of added global motion, Q̃′

χ
no

longer tends to be singular. This technique also tends to give
a more regularized motion field, especially in regions where
the motion is ill-defined.
For example, consider typical medical images with human

organs in the center being surrounded by dark backgrounds.
The featureless background is usually not perfectly dark and
some noise exists in these regions. Our motion estimation
gives a small weighting factor to the dark backgrounds, but
at the localities far away from the features it will still try to
register the noise because motion from the feature-rich regions
is not smoothed enough to affect these far away localities.
However, with the modified Q̃′

χ
, a small amount of global

motion is added to every locality, and so it will tend to
suppress noisy motion estimates in the background localities
and make them look like the global motion. Note that although
the motion estimates at the featureless background are not
critically important, it is best to stop them from being irregular
and introducing artifacts. This can have the added advantage
of speeding up the slice-based 3-D spatial interpolation which
follows the motion estimation.

VI. EXPERIMENTAL RESULTS
In this section, we show that our algorithm gives highly

accurate estimation of motion on artificial and real-world
datasets. The medical datasets in sections VI-B and VI-C,
together with the Matlab scripts for visualizing datasets, are
available online 1.

A. Registration of synthetically shifted datasets
An artificial 3-D shell pattern is generated as shown in

Fig.7a. It is produced by stacking several cubical shells
together and warping them with a non-rigid motion field. The
shape of the cubical shell is designed like this for two reasons:
1. its asymmetric nature avoids ambiguity when analyzing the
rotation components; 2. the rather irregular spatial features
excite all the DT-CWT subbands so we can test the motion
estimates from all subbands.
The synthetic 3-D shell pattern is warped by a single random

affine motion. The motion between the original and the warped
datasets is estimated and compared with the true motion. We
have used translation, rotation, scaling and shear components
to produce true affine motion. The affine parameters are

1http://mars3.stanford.edu/hchen/imagereg.zip
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Fig. 7. (a) The intersection view of the 3-D shell pattern (64 × 64 × 64).
(b) The rms motion estimation error versus the rms value of the true motion.
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Fig. 8. (a) The MRI dataset (140×140×68, 2mm slice sampling spacing).
(b) The rms motion estimation error versus the rms value of the true motion.
Our rms error curves are generated using 250 experimental results, while
Hemmendorff’s error curves are generated using the 124 data points presented
in Fig. 7 of [21].

randomly generated from zero mean Gaussian distributions
(except for the scaling component distribution, whose mean
is set to one). In order for all types of motion component
to contribute almost equally to the combined motion, the
rotation, scaling and shear components are scaled such that
their motion at a radius of n

4
(where n is the linear size of

the n3 dataset) from the center is approximately equal to the
translation motion.
To evaluate the accuracy of our registration algorithm, we

follow the evaluation method as described in [21], where the
estimated motion RMS error is plotted against the ground
truth motion RMS value. To get a statistical measure of the
registration accuracy, the registration results are averaged over
a large number of experiments. The error curve plotted in
Fig.7b shows that our algorithm achieves very high accuracy.
We have also performed experiments to evaluate the algo-

rithm performance on a real MRI dataset of the human brain,
as shown in Fig.8a. The testing conditions are the same as
those of the synthetic 3-D shell pattern and the results are
shown in Fig.8b. Comparing with Hemmendorff’s method [21]
on the same dataset, our method achieves better accuracy and
lower filter computational complexity. As shown in Appendix
B, the DT-CWT requires 75 operations per voxel compared
to Hemmendorff’s method which requires 310 operations per
voxel.

B. Registration of 3-D CT scans with contrast agent
In medical radiology, contrast agent injection techniques

are commonly used to improve the visibility of internal body
structures. Two 3-D abdominal CT scans (Fig.9a and Fig.9b)
are acquired during the venous phase and the delay phase of
kidney contrast agent injection. There is an interval of a few
minutes between the acquisition of the two scans and motion
has occurred mainly due to patient movement and breathing.
To show the effect of image registration, subtraction is per-
formed on the datasets before and after registration. Before
registration, the motion artifacts can be easily visualized in
Fig.9c. We then apply our algorithm to align the venous phase
dataset with the delay phase dataset and the difference after
registration is shown by Fig.9d. Comparing Fig.9c and Fig.9d,
it can be seen that the effects of motion at the outer boundary
and the backbone regions are largely eliminated. On the other
hand, the contrast agent in the kidneys as well as the gases
in the stomach and the intestines are shown clearly. These
observations are expected since the differences in these regions
are not related to motion.

C. Registration of MRI datasets
Fig.10 shows the registration of paired MRI scans taken

before and after the operation on a brain pituitary tumor. The
middle part of the tumor was debulked during the operation but
the right part was left alone. In this scenario, the objects in the
two 3-D MRI datasets are not the same since the tumor region
has changed. Recall that we use weighted motion constraints
to address the problem of registering non-identical objects, as
described in section III-B1. The weighting factor of the motion
constraint is small when the image features are dissimilar in
the two datasets, which occurs in the middle tumor region
where the features cannot be well matched. In Fig.10, it can
be seen that, apart from the middle tumor (in the red boxes),
the other parts of the post-operative dataset are well aligned
with the pre-operative dataset.

VII. CONCLUSIONS
We have shown how to perform accurate 3-D registration

using the phase information of the DT-CWTȮur algorithm
adopts an efficient iterative coarse-to-fine approach which
estimates large motion first and then refines the motion field. It
relies on shift-invariance and good directional filtering proper-
ties, which are key features of the DT-CWT. Non-rigid motion
is well modelled by a locally affine parametric model, whose
parameters are obtained by minimizing the squared errors of
the model. The weighting factors of the motion constraints are
designed to reduce perturbations of the motion estimates due
to inconsistent features and noise. From the final estimated
motion field, the sensed dataset can be accurately registered
to the reference dataset by spatial-domain interpolation.

APPENDIX A
INTERPOLATION OF DT-CWT COEFFICIENTS

The DT-CWT coefficients cannot be directly interpolated
since the transform produces bandpass filters which introduce
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(a) Venous phase (b) Delay phase (c) Difference between datasets before
registration

(d) Difference between datasets after
registration

Fig. 9. Registration of 3-D CT scans (384× 512× 128) with contrast agent, where the venous phase dataset is being registered to the delay phase dataset.
The registration is performed in 3-D, but only a single slice is displayed here for the convenience of visualization.

(a) Pre-operative dataset (slice 92) (b) Post-operative dataset (slice 99) (c) Post-operative registered to pre-
operative dataset (slice 92)

Fig. 10. Registration of 3-D MRI scans (512×512×128) before and after operation. The tumor region in each MRI image is highlighted by the red boxes.

a relatively high phase rotation rate to the coefficients [1].
In order to center the pass-band of the DT-CWT subband
outputs on zero frequency, we set up the expected rotation
rate for each subband to correspond to a frequency offset of
− 1

4
and − 3

4
times the subband output sampling rate, which are

the expected rotation rates for the low-pass and the high-pass
filters respectively.
Note that − 1

4
of the sampling frequency gives a phase

increment of −π
2
between samples. Nevertheless in practice,

we reduce this value a little to − π
2.1
, to model better the slight

asymmetry of the scaling function and wavelet frequency
responses. For ease of demonstration, denote ω0 = − π

2.1
and

ω1 = − 3π
2.1
. The expected phase rotation rate for each of

the 28 subbands can simply be calculated from the subband’s
corresponding filtering process. The rule is that high-pass (H),
low-pass (L), conjugate high-pass (H∗) and conjugate low-pass
(L∗) correspond to phase rotations of ω1, ω0, −ω1 and −ω0

respectively. For example, for the H∗LL band (remembering
this means conjugate high-pass filtering on rows, and low-pass
filtering on columns and slices), the expected phase rotation
is −ω1, ω0 and ω0 in the x, y and z directions respectively.
For each selected subband, having obtained the expected

phase rotation rate, the DT-CWT coefficients are de-rotated
by multiplying by phase rotation terms

exp[−jωxkx − jωyky − jωzkz ]

where kx, ky and kz are the linear indices of the coefficients
along the x, y and z directions; and ωx, ωy and ωz are the
expected phase rotation rates in these directions introduced by
the H or L filtering processes of the subband.
Interpolation of the de-rotated subband coefficients can now

be performed to shift the subband. Finally the interpolated
coefficients must be rotated back by multiplying them by

exp[jωx(kx + vx) + jωy(ky + vy) + jωz(kz + vz)]

where vx, vy and vz are the motion components in the x, y
and z directions respectively.

APPENDIX B
ALGORITHM COMPLEXITY

Assuming the input 3-D dataset is of the size N3. Perform-
ing a 1-D filtering on this dataset with a filter of length h

requires N3h operations, where 1 operation = 1 addition +
1 multiplication. For DT-CWT filtering, we use h = 9-tap
filter for level 1 and m = 14-tap filter for higher levels as
presented in [1]. Since we only keep the LLL band in the level
1 decomposition (as described in Section II-C), performing
level 1 DT-CWT needs 3N3h operations on 3 dimensions.
Level 2 requires 3N3m operations, and DT-CWT in each
higher level requires 1

8
of the operations of the previous level,

since the filter output from the previous level is downsampled
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by 2 in each dimension. Consequently,

DT-CWT complexity = 3N3h+ 3N3m(1 +
1

8
+

1

64
+ · · · )

= 75N3 operations

We perform similar analysis on the filter bank used in
Hemmendorff’s algorithm. Referring to Fig. 4 of [21], each
9-tap real-valued lowpass filter requires 9N3 operations, while
each 9-tap complex-valued quadrature filter requires 18N3

operations since it needs 9N3 for the real part and 9N3

for the imaginary part. Therefore, the complexity for level 1
decomposition as illustrated in Fig. 4 of [21] is (9×12+18×
9)N3 = 270N3. To create a multiscale tree, an extra lowpass
filter is needed in the final step of the level 1 decomposition to
generate a LLL band. The LLL band can then be downsampled
by 2 in each dimension so the next level of filtering requires
1

8
of the operations of the previous level. Hence,

[21] complexity = [270 + (9 + 270)× (
1

8
+

1

64
+ · · · )]N3

� 310N3 operations
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