
Iterative Sparsity Methods for

Coding and Deconvolution

with Overcomplete Transforms

Nick Kingsbury, Tanya Reeves and Yingsong Zhang

Signal Processing & Communications Group, Dept. of Engineering

University of Cambridge, Cambridge CB2 1PZ, UK.

ngk@eng.cam.ac.uk
www.eng.cam.ac.uk/~ngk

Inspire Sparsity Workshop, Cambridge, 14 & 15 Dec 2008

UNIVERSITY OF

CAMBRIDGE



Iterative Sparsity Methods for Coding – 1 Nick Kingsbury, Tanya Reeves and Yingsong Zhang

Iterative Sparsity Methods for

Coding / Compression

with Overcomplete Transforms



Iterative Sparsity Methods for Coding – 2 Nick Kingsbury, Tanya Reeves and Yingsong Zhang

Redundant representation with complex wavelets:
How to achieve sparsity ?

• Brief overview of dual-tree complex wavelets:

◦ Dual tree in 1-D – shift invariance
◦ Dual tree in 2-D – directional selectivity

• Iterative projection method of coding with overcomplete transforms
(frames):

◦ How iterative projection can improve sparsity, and hence rate-distortion
performance

◦ Good convergence strategies
◦ Results and comparisons with non-redundant real wavelet transforms (DWTs)
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Features of the Dual Tree Complex Wavelet Transform
(DT CWT)

• Good shift invariance.

• Good directional selectivity in 2-D, 3-D etc.

• Perfect reconstruction with short support filters.

• Limited redundancy – 2:1 in 1-D, 4:1 in 2-D etc.

• Low computation – much less than the undecimated (à trous) DWT and
typically 3 times that of the maximally decimated DWT. (Lifting methods can
still be used to improve efficiency.)

Each tree contains purely real filters, but the two trees produce the real and
imaginary parts respectively of each complex wavelet coefficient.
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Q-shift Dual Tree Complex Wavelet Transform in 1-D
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Figure 1: Dual tree of real filters for the Q-shift CWT, giving real and imaginary parts of complex

coefficients from tree a and tree b respectively. Figures in brackets indicate the approximate delay for

each filter, where q = 1
4 sample period.
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1-D Basis Functions at Level 4
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Figure 2: Scaling function and wavelet basis functions of the DT CWT at level 4, using the Daubechies

7-tap filter for level 1 (from 9,7 biorth. pair) and the 6-tap Q-shift wavelet filters for levels 2, 3 and 4.
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The DT CWT in 2-D

When the DT CWT is applied to 2-D signals (images), it has the following features:

• It is performed separably, with 2 trees used for the rows of the image and 2
trees for the columns – yielding a Quad-Tree structure (4:1 redundancy).

• The 4 quad-tree components of each coefficient are combined by simple sum and
difference operations to yield a pair of complex coefficients. These are part
of two separate subbands in adjacent quadrants of the 2-D spectrum.

• This produces 6 directionally selective subbands at each level of the 2-D
DT CWT. Fig 3 shows the basis functions of these subbands at level 4, and
compares them with the 3 subbands of a 2-D DWT.

• The DT CWT is directionally selective (see fig 3) because the complex filters can
separate positive and negative frequency components in 1-D, and
hence separate adjacent quadrants of the 2-D spectrum. Real separable
filters cannot do this!



Iterative Sparsity Methods for Coding – 7 Nick Kingsbury, Tanya Reeves and Yingsong Zhang

2-D Basis Functions at level 4
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Figure 3: Basis functions of 2-D Q-shift complex wavelets (top), and of 2-D real wavelet filters (bottom),

all illustrated at level 4 of the transforms. The complex wavelets provide 6 directionally selective filters,

while real wavelets provide 3 filters, only two of which have a dominant direction.
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2-D Shift Invariance of DT CWT vs DWT

Input (256 x 256)

Components of reconstructed ’disc’ images
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Figure 4: Wavelet and scaling function components at levels 1 to 4 of an image of a light circular disc

on a dark background, using the 2-D DT CWT (upper row) and 2-D DWT (lower row). Only half of

each wavelet image is shown in order to save space.
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Coding with the DT CWT

• DT CWT is 4 : 1 redundant – Why use it for compression?

Because:

• Overcomplete dictionaries of basis functions are known to provide the potential
for better coding (e.g. Matching Pursuits).

• The 4 reconstruction trees average the quantisation noise.

• Reconstruction is a projection from 4N -space to N -space. Noise components,
which are not in the N -dimensional range space of the transform, are in the
3N -dimensional null space and do not affect the decoded image.

• Complex wavelet coefficients can define edge locations more accurately than real
coefficients.
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How to achieve sparsity ?

Basic Algorithm – motivated by Matching Pursuits:

1. Set i = 1 and take the DT CWT of the input image.

2. Set to zero all wavelet coefs with magnitude smaller than a threshold θi.

3. Take DT CWT−1 and measure the error due to loss of smaller coefs.

4. Take DT CWT of the error image and adjust the non-zero wavelet coefs from
step 2 to reduce the error.

5. Increment i, reduce θi a little (to include a few more non-zero coefs) and repeat
steps 2 to 4.

6. When there are sufficient non-zero coefs to give the required rate-distortion
tradeoff, keep θi constant and iterate a few more times until converged.



Iterative Sparsity Methods for Coding – 11 Nick Kingsbury, Tanya Reeves and Yingsong Zhang

Iterative Projection
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If S is the range space of the DT CWT, projection onto S is PS = WM, and onto
the null space is P⊥ = I−PS.

On iteration i: wi = kW(x−Mŷi) = ky0 − kPSŷi

.
.
. yi+1 = ŷi + wi = ky0 + (I− kPS)ŷi = y0 + P⊥ŷi if k = 1

Thus on each iteration the range-space component of yi+1 remains at y0 (so its
inverse transform is always x) while its null-space component varies and attempts to
minimise ||ei||. Note that yi+1 is a projection of ŷi.
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Convergence
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With a centre-clipping non-linearity and k = 1, convergence to a local minimum
can be proved by Projection onto Convex Sets (POCS).

Substantial improvements in the converged result can be achieved by:

• Gradual reductions in clip threshold θi with i.

• Use of a soft non-linearity, such as a Wiener function
ŷi = yi . (|yi|2 − θ 2

i )+ / |yi|2, for early iterations.

• Increasing k (must be kept < 2 for stability). k ≈ 1.8 is good.
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Convergence of loop RMS error for Centre-Clipper
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 Update of mask every 5th iteration

Update of mask every iteration 

The centre-clipper first selects a mask of coefs to clip, and then multiplies by the
mask (a projection operation - hence can use POCS).
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Threshold Modification Experiments for DT CWT (k = 1)
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- - - shows non-redundant DWT for reference.
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Threshold Modification Experiments:
k = 1.8 and Wiener non-linearity for first 15 iterations (better by 0.34 dB).
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Histograms of DT CWT coefs yi: k = 1 and hard threshold.

Coef. magnitudes at Level 1
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Histograms of DT CWT coefs yi: k = 1.8 and Wiener for 15 iters.
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Comparison of DT CWT and DWT (centre-clipping only)
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Compression results for 512× 512 ‘Lena’ image (fully quantised)

10
−1

10
0

28

30

32

34

36

38

40

42

entropy (bit / pel)

PSNR (dB)

xxx Iterated DT CWT - - - DWT



Iterative Sparsity Methods for Coding – 20 Nick Kingsbury, Tanya Reeves and Yingsong Zhang

Non-redundant DWT
0.0975 bit/pel (30.66 dB PSNR)rms errors: 7.4733   rate: 0.0975

4:1 Overcomplete DT CWT
0.0970 bit/pel (31.08 dB PSNR)
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Non-redundant DWT
0.1994 bit/pel (33.47 dB)rms errors: 5.4080   rate: 0.1994

4:1 Overcomplete DT CWT
0.1992 bit/pel (34.12 dB)
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Iterative Projection – Conclusions

• Reducing the centre-clipping threshold θi from an initial value that is at least
twice the final value, as iterations proceed, improves performance.

• Setting k = 1.8 and using a soft non-linearity for early iterations improves
performance and convergence rate.

• Despite a redundancy of 4 : 1, the DT CWT can achieve coding performance
that is competitive with the non-redundant DWT (PSNR 0.65 dB better).

• Visibility of some coding artifacts can be reduced with the DT CWT.

• With a suitably optimised convergence strategy, computation rate should be
significantly less than for matching pursuits.
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Iterative Sparsity Methods for

Deconvolution

with Overcomplete Transforms
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Bayesian Wavelet-based Deconvolution

Assume an image measurement process with blur H and noise n of variance σ2
n:

y = Hx + n

Get MAP estimate of x by minimising

J(x) = 1
2||y −Hx||2 − σ2

n log(p(x))

where p(x) represents the prior expectation about the image structure.

It is often easiest to model p(x) in the wavelet domain, with wavelet coefs
w = Wx and x = Mw. Then we find w to minimise

J(w) = 1
2||y −HMw||2 + 1

2w
TAw

where A is diagonal and Aii = σ2
n/E(|wi|2), based on a Gaussian Scale

Mixture (GSM) model for the wavelet coefs wi, ∀i in vector w.
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Advantages of working with Wavelet Subbands

Simple steepest descent minimisation of J(w) yields a gradient descent direction

∇wJ(w) = MTHT (y −HMw)−Aw

but this blurs the differences between y and HMw.

Subband emphasis can alleviate this and dramatically speed up
convergence. We now minimise:

J(w) = 1
2||y −H

∑

j∈S

Mjwj

︸ ︷︷ ︸
x = Mw

||2 + 1
2

∑

j∈S

wT
j Ajwj

where Mj, Aj and wj are subband versions of M, A and w in which all entries
apart from those in subband j have been set to zero.

The term ||HMw||2 makes it difficult to minimise J(w) because of all the cross
terms in wTMTHTHMw; so we use the ideas of Daubechies, Defrise & De Mol
(2004) on each subband independently, as suggested by Vonesch & Unser
(2008), to minimise J(w), an upper bound on J(w).
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Let

Jn(w) = J(w) + 1
2

∑

j∈S

(
αj||Wjx(n) −wj||2 − ||HMj(Wjx(n) −wj)||2

)

where x(n) is the estimate for x at iteration n. As long as each αj is chosen to
be no less than |H(ω)|2 for all frequencies ω within the passband of
subband j, it can be shown that Jn(w) ≥ J(w), with approximate equality
when wj is near Wjx(n).

The proof of this requires that the transform defined by W and M is a tight
frame and that it is shift invariant so that MjWjH = HMjWj – i.e. the
transfer function of each subband can commute with the blurring function.

The Q-shift DT CWT approximately satisfies these criteria. The
Shannon wavelet also satisfies these, but it is not compactly supported.

By choosing αj optimally for each subband, we can overcome the problems of slow
convergence of wavelet coefficients in spectral regions where H has low gain.
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The Resulting Algorithm:

Jn(w) = 1
2

( ||y −HMw||2 + wTAw

+
∑

j∈S

αj||Wjx(n) −wj||2 − ||H(x(n) −Mw)||2
)

= C(x(n),y) +
∑

j∈S

(
(Hx(n) − y)THMjwj

+ 1
2αj||Wjx(n) −wj||2 + 1

2w
T
j Ajwj

)

where C(x(n),y) is independent of w. This is a simple quadratic in wj, and its
global minimum is achieved when ∂Jn(w)/∂wj = 0. This gives

(αjI + Aj)wj = αjWjx(n) + MT
j HT (y −Hx(n)) ∀j

Hence, noting that MT
j = Wj for a tight frame, we get the new wj and x:

w(n+1)
j = (αjI + Aj)−1

(
αjWjx(n) + WjHT (y −Hx(n))

)
∀j

x(n+1) = M
∑

j∈S

w(n+1)
j
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Updating the prior A

Note: In the preceding analysis, we have assumed that all coefs in w were
purely real, and that complex transforms (like DT CWT) created coefs whose
real and imaginary parts were separate real elements of w.
However in the following, we assume that these parts have been combined
together into complex elements of w.

Bayesian analysis with a Gaussian scale mixture (GSM) model gives a diagonal
prior matrix A such that Aii = σ2

n/E(|wi|2).

In practise we use Aii =
σ2

n

E(|wi|2) + ε2
so that

w∗i Aii wi = σ2
n

|wi|2
E(|wi|2) + ε2

≈ σ2
n ||wi||0

In this way we maximise sparsity, where ε defines the approximate threshold for
|wi| between being counted or not counted in ||wi||0. E(|wi|2) is updated from the
squared magnitudes of the complex coefs of Wx(n) at each iteration n.
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We call this function the L02 penalty, because

• It is closer to the L0-norm than to the L1-norm;

• It is smooth and differentiable (like the L2-norm) within each iteration of the
algorithm.

But what are the expected wavelet variances, E(|wi|2) ∀i ?

In practice, the estimated image is often contaminated by artifacts and noise, so the

simple approach of calculating E(|wi|2) = |w(n)
i |2 direct from each complex

coefficient in Wx(n) does not work as well as we might hope.

We find we can obtain better estimates by calculating denoised wavelet

coefficients ŵ
(n)
i and setting E(|wi|2) = |ŵ(n)

i |2.
For denoising, we use the Bayesian bi-variate shrinkage (Bay-bi-shrink)
algorithm of Sendur and Selesnick (2002), which models well the inter-scale
(parent-child) dependencies of complex wavelet coefficients.
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Initialisation and update strategies

• We initialise our algorithm with an under-regularised Wiener-like filter,
implemented in the frequency domain:

x(0) = (HTH + 10−3σ2
n I)−1 HT y

• Diagonal regularisation matrix A is initialised using

Aii =
σ2

n

|ŵi|2 + ε2
where ŵ = denoise(Wx(0)) and ε = 0.01

• Optionally, A is updated using ŵ = denoise(Wx(n))
at regular intervals in the iteration count n.
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y: Cameraman, 9× 9 uniform blur

+ noise at 40 dB PSNR
x(0): Initial image from

under-regularised Wiener-like filter
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x(10): Iteration 10 of DT CWT
with update of A

x(0): Initial image from
under-regularised Wiener-like filter
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x(10): Iteration 10 of DT CWT
with update of A

x(30): Iteration 30 of DT CWT
with update of A
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x: Original
of Cameraman

x(30): Iteration 30 of DT CWT
with update of A
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Convergence rate comparisons with
Fast Thresholded Landweber algorithm (Vonesch & Unser)
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3D widefield fluorescence microscope data

y: 3D fluorescence data
with widefield imaging blur

x(0): Initial data from
under-regularised Wiener-like filter

Size of 3D dataset= 256× 256× 80 = 5.24 . 106 voxels
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3D widefield fluorescence microscope data

x(10): Iteration 10 of DT CWT
with update of A

x(0): Initial data from
under-regularised Wiener-like filter

Size of 3D dataset= 256× 256× 80 = 5.24 . 106 voxels
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3D widefield fluorescence microscope data

x(10): Iteration 10 of DT CWT
with update of A

x(30): Iteration 30 of DT CWT
with update of A

Size of 3D dataset= 256× 256× 80 = 5.24 . 106 voxels
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Conclusions

• We have discussed some techniques for performing both Compression and
Deconvolution with overcomplete transforms.

• We have shown how sparsity helps with both of these types of large inverse
problems.

• For Compression, we have demonstrated the effectiveness of iterative
threshold-shrinkage methods and that there are some interesting outstanding
questions regarding optimal use of soft thresholds.

• For Deconvolution, we have introduced the L02 penalty function and shown that
Fast Thresholded Landweber (FTL) techniques may be used effectively with
overcomplete transforms that possess tight-frame and shift-invariance properties,
such as the DT CWT.

Papers on complex wavelets and related topics are available at:

http://www.eng.cam.ac.uk/˜ngk/


