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Abstract

A method for removing additive Gaussian noise from digital images is described. It is based on

statistical modelling of the coefficients of a redundant, oriented, complex multi-scale transform. Two

types of modelling are used to model the wavelet coefficients. Both are based on Gaussian Scale Mixture

(GSM) modelling of neighbourhoods of coefficients at adjacent locations and scales. Modelling of edge

and ridge discontinuities is performed using wavelet coefficients derotated by twice the phase of the

coefficient at the same location and the next coarser scale. Other areas are modelled using standard wavelet

coefficients. An adaptive Bayesian model selection framework is used to determine the modelling applied

to each neighbourhood. The proposed algorithm succeeds in providing improved denoising performance at

structural image features, reducing ringing artifacts and enhancing sharpness, while avoiding degradation

in other areas. The method outperforms previously published methods visually and in standard tests.

Index Terms

complex, wavelet, image, restoration, denoising, interscale phase.

I. I NTRODUCTION

Wavelet transforms have emerged as the premier tool for image denoising, due to the statistically useful

properties of wavelet coefficients of natural images. The sparseness property of wavelet coefficients and

tendency of wavelets bases to diagonalise images allows us to break the problem into modelling a small

number of ‘neighbouring’ coefficients (in space and scale) to reduce the dimensionality and improve the

tractability of the problem.
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Lenna Barbara

Fig. 1. Popular test images.

State-of-the-art Gaussian Scale Mixture (GSM) denoising algorithms employing over-complete multlis-

cale transforms achieve impressive results by modelling images according to the activity within neigh-

bourhoods of wavelet coefficients and attenuating coefficients heavily in ‘inactive’ image regions to

remove noise [1]. However, under the basic GSM model there is no distinction between the different

basic components of images that cause a neighbourhood to be active. This commonly leads to ringing

artifacts in the vicinity of edge and ridge discontinuities when removing medium and high levels of noise.

Consider the popularLennaandBarbara images shown in figure 1. The active regions of these images

could be broadly decomposed into two categories: areas of texture such as Lenna’s boa, and multiscale

edge and ridge features such as the outline of her figure and the edges of background objects. We call

the latterstructural features. Texture can also be broadly decomposed into two types (or perhaps more

accurately a spectrum between two extremes), periodic texture such as Barbara’s clothing and tablecloth

and more random texture such as Lenna’s boa.

Figure 2 displays an abstraction of the image model proposed here. The varying level of activity

modelled by the hidden multiplier in present GSM models is represented by a background of horizontally

varying intensity. However, a dual model framework divides the active areas into two components:

structural features, and other features including texture.

We propose to specifically model structural features using interscale phase relationships of complex

wavelet coefficients. The method is based on the novel ‘derotated’ coefficients introduced in [2]. The

transform used is the Dual Tree Complex Wavelet Transform (DT-CWT) [3]. The specific modelling

of structural features is combined with standard modelling using complex wavelet coefficients using an

adaptive Bayesian model selection framework.

The content of this paper is organised as follows.§II provides relevant background information.§III
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Fig. 2. Abstraction of the proposed image model.

details the proposed denoising algorithm.§IV discusses the constitution of the neighbourhoods to which

the modelling is applied. A summary of the algorithm is provided in§V and results given in§VI. §VII

and§VIII contain conclusions and suggestions for future work.

II. BACKGROUND

A. Dual Tree Complex Wavelet Transform

The Dual Tree Complex Wavelet Transform [3] uses a dual tree of real wavelet filters to generate the

real and imaginary parts of complex wavelet coefficients. This introduces a limited amount of redundancy

and allows the transform to provide approximate shift invariance and directionally selectivity filters, while

preserving the usual properties of perfect reconstruction and computational efficiency.

For ad-dimensional input, anL scale DT-CWT outputs an array of real scaling coefficients correspond-

ing to the lowpass subbands in each dimension and4d−2d

2 directional subbands ofM2dl complex wavelet

coefficients at levell, whereM is the total size of the input data. The mechanics of the DT-CWT are

not covered here. See [3] and [4] for a comprehensive explanation of the transform and details of filter

design for the trees.

In two dimensions the transform produces six directional subbands at each scale. We often describe

processing on a local neighbourhood or neighbourhood window of wavelet coefficients. This refers to a

group of ‘local’ coefficients at nearby spatial locations and adjacent scales. Parent and child coefficients

refer to coefficients in the next coarser and finer subbands respectively in the same directional subband

and at the same spatial location (possibly interpolated).

B. Derotated coefficients

In [2] we introduce complex wavelet coefficients that are derotated by twice the phase of the parent

coefficient,i.e. the coefficient at the next coarser scale at the same spatial location, such that their phase
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(in addition to the magnitude as described in [3]) becomes invariant at multiscale edges and ridges and

is consistent within each subband for each type of feature. The derotated coefficients are shown to offer

increased correlation at image edge and ridge discontinuities relative to standard wavelet coefficients and

therefore the potential for improved estimation in additive noise. Equation (1) defines the new derotated

coefficientw, wherex is a DT-CWT coefficient andxp the corresponding parent coefficient.

|w| = |x|

∠(w) = ∠(x)− 2∠(xp)
(1)

For a neighbourhood of wavelet coefficientsx we can write the derotation as a matrix operation as

shown in equation (2). In (2),w is a vector of derotated coefficients andA is a unitary rotation matrix

which rotates the each coefficient’s phase by twice the phase of its parent wavelet coefficient.

x = Aw (2)

C. Statistical image modelling with wavelets

An accurate model, whether implicit or explicit, is a critical component of nearly all image processing

tasks. For statistical approaches the choice of a suitable stochastic model is vital. This section examines

how to model wavelet coefficients to take advantage of the statistical characteristics common to many

photographic images. Apart from the interscale phase properties introduced here, the key properties of

wavelet representations that we wish to exploit are:

• Sparseness:Good wavelet transforms have an energy compaction property and the transforms of

natural signals tend to consist of only a few larger coefficients and many smaller coefficients.

• Spatial clustering: Strong dependencies in the form of spatial clusters exist between large magnitude

wavelet coefficients in each subband, due to edges and areas of texture in the data.

• Persistence across scale:The magnitudes of wavelet coefficients are correlated across scale. If a

parent coefficient is small, its children are more likely to be small.

It is widely known that the wavelet coefficients of images display highly non-stationary non-Gaussian

statistics [5]. The marginal distributions are typically long tailed with high kurtosis (fourth moment

divided by the variance squared). The shape, including the sharp peak at zero and the long tails, is

the statistical manifestation of the sparseness property of wavelet coefficients. These distributions have

previously been modelled using independent generalised Gaussian distributions also known as generalised

Laplacian distributions [5], [6]. However, this framework fails to take advantage of the spatial clustering

property or the persistence across scale of wavelet coefficients. Coefficients of natural photographic images
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Fig. 3. ‘Bow tie’ characteristic of wavelet coefficients of natural images.Conditional histogram of two spatially adjacent

wavelet coefficients for theLennaimage. Brightness corresponds to probability except that each column has been scaled to fill

the range of available intensities. Although the coefficients are roughly second-order decorrelated, they are highly dependent.

The standard deviation of a coefficient scales with the magnitude of the neighbouring coefficient.

exhibit marked higher order dependencies between neighbouring coefficients. This form of dependency

is illustrated in figure 3.

Figure 3 shows a conditional histogram of two spatially adjacent wavelet coefficients typical of natural

images. The coefficients were produced using the DT-CWT of the 512× 512Lennaimage and are taken

from a near horizontal subband at level 2. Brightness corresponds to probability except that each column

has been scaled to fill the range of available intensities. This so called ‘bow tie’ characteristic shape

is found for wavelet coefficients at nearby spatial locations, as well as adjacent scales and directional

subbands, for a wide range of natural images [7], [8], [9].

The wavelet coefficients of natural images display a self-reinforcing characteristic in that if one

coefficient is large in magnitude, then other coefficients in its neighbourhood are also likely to be large

in magnitude. The intuitive explanation for this is that localised image structures such as edges have

substantial power across many scales and nearby spatial locations at a given orientation. The wavelet

coefficients that represent the image will also have large magnitudes at these scales, locations and

orientation. However, the signs and relative magnitudes of these coefficients will depend on the exact

shape, location and orientation of the structure.

D. GSM models for wavelet coefficients

A simple statistical model that has been used to model natural signals such as speech, and more

recently to describe the non-stationary behaviour of the wavelet coefficients of natural images, is given

in equation (3). It assumes that each coefficientx(t) is specified by a stationary zero mean Gaussian
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processu(t) and a spatially fluctuating variancez(t). t is a position vector.

x(t) =
√

z(t) u(t) (3)

To model the self-reinforcing property of the coefficientsz(t) must be slowly varying int but need not

be symmetric in all directions. It has been shown that for slowly varyingz(t) this model can successfully

simulate the high kurtosis and longer tails of the marginal distributions in addition to the bow-tie shape

of the marginal histograms of wavelet coefficients of natural signals [7], [1]. Note that the above model

describes intrascale relationships only. A more comprehensive model would include a scale parameterl

so thatz = z(t, l) to model magnitude persistence across scale.

The stationary portion of the modelu(t) is Gaussian distributed over a small neighbourhood of wavelet

coefficients. It is generally assumed thatz(t) varies slowly enough to be considered constant over that

neighbourhood of coefficients. Under this assumption the model is now a particular form of a spherically

invariant random process called a Gaussian Scale Mixture (GSM).

For a small neighbourhood of coefficients at nearby spatial locations and scale, we now have a GSM

vector x which is the product of two independent random variables: a positive scalarz referred to as

the hidden multiplier or mixing variable and a Gaussian random vectoru distributed asN (0,Cu). For

each neighbourhood of wavelet coefficients this is written:

x =
√

z u (4)

It remains to specify the prior probability functionpz(z) for the multiplierz. Prior selection is covered

in more detail in [1]. In the proposed algorithm a Jeffreys prior is used for the reasons stated below.

E. Wavelet denoising

Image denoising involves finding an estimatex̂s of a signalxs in noisens given a noisy observation

ys. This is summarised in equation (5).

ys = xs + ns (5)

The standard problem definition in much of the denoising literature is to assume zero mean Gaussian

noise with covarianceCn, so thatns is distributed asN (0,Cn). In many cases the noise is assumed to

be white so thatCn = σ2
sI. It is assumed that the varianceσ2

s or covarianceCn of the noise is known.

If it is not known, it will have to be obtained from an area of the image known to have little or no signal

content or estimated using some other method,e.g.as in [10].
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The common approach to wavelet based denoising is to transform the signal into the wavelet domain,

denoise the detail coefficients and transform back to the image domain. Note that the lowpass scaling

coefficients are not usually altered. Taking the forward transform of equation (5) we obtain equation (6).

y = x + n (6)

In equation (6) the subscripts is dropped to indicate the variables are in the wavelet rather than the

spatial domain and each vector is the complex wavelet transform of the corresponding vector in (5). The

real and imaginary parts are considered as separate elements within each vector. In this paper we consider

only one neighbourhood of coefficients at a time. In this case, only the coefficients in the neighbourhood

are included in equation (6).

Simple thresholding noise removal:Classical wavelet based denoising techniques employ straightfor-

ward nonlinear thresholding of noisy wavelet coefficients. They are motivated by the sparseness property

of wavelet coefficients mentioned in§II-C and ignore the clustering properties. Their objective is to

suppress low amplitude coefficients which are more likely to constitute noise, and retain high amplitude

values which contain the bulk of the desired signal. Two of the earliest thresholding operators were hard

and soft thresholding [10], [11]. Various other operators have been suggested [12], [13], [14], [6], [15].

GSM techniques:A significant block of wavelet denoising literature proposes variations on a common

methodology. Although the reasoning used to derive each denoising scheme varies, many of the resulting

methods can be described in terms of the GSM framework outlined in§II-C. In general the assumption

of spatial and spectral locality is invoked and the estimate is based on a ‘local’ neighbourhood of wavelet

coefficients at the same or adjacent spatial locations and scales. The inclusion of coefficients at the parent

scale is often used to capture the ‘persistence across scale’ characteristic.

Equation (4) can be combined with equation (6) to produce (7), where the vector of coefficients is a

‘local’ neighbourhood.

y =
√

z u + n (7)

Conditioned on the hidden multiplier for a neighbourhood, the noisy observation is Gaussian distributed

with zero mean and covariancezCu + Cn, as given by equation (8) in whichN is the size of the

neighbourhood.

py|z(y|z) =
1

(2π)N/2|zCu + Cn|1/2
exp

(
−yT (zCu + Cn)−1 y

2

)
(8)

As a consequence, for a given value ofz the minimum mean square error (MMSE) estimate for the

original coefficients in the neighbourhood is given by equation (9), which is an adaptive Wiener estimate
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with signal covariancezCu. See Jain [16, pp. 276–279] for further details of Wiener filtering.Cu and

Cn are the covariance matrices for the vectors of wavelet coefficients of the Gaussian component of the

mixture model and noise respectively.

x̂ = zCu (zCu + Cn)−1 y (9)

In 2003 Portillaet al. proposed a somewhat new approach to estimation of the wavelet coefficients

using a GSM framework and the Steerable Pyramid wavelet transform [1]. They resolved to calculate the

Bayesian MMSE estimate for a particular coefficient in a neighbourhood of coefficients considered to be

a Gaussian Scale Mixture. As for the aforementioned two-step procedure, this technique is implemented

on a number of overlapping neighbourhoods - one for each coefficient. The result is presented in (10)

wherex̂c is the estimate for the ‘central’ complex coefficient.

x̂c = E {xc|y}

=
∫ ∞

0
p(z|y) E {xc|y, z} dz

(10)

In a discrete implementation, this takes the form of equation (11), where K is the number of discrete

values assigned toz.

x̂c =
K∑

k=1

p(zk|y) E {xc|y, zk} (11)

Conditioned on the multiplierz the MMSE estimate for the neighbourhood of coefficientsE {x|y, zk}
is given by (9). The posterior densityp(z|y) is also required for equation (11). This can be calculated

using Bayes formula, as shown in (12).

p(z|y) =
p(y|z) pz(z)∫
p(y|a) pz(a) da

(12)

The densityp(y|z) is given by equation (8) but a decision must be made on the choice for the prior

pz(z). In [1] Portilla et al. selected a Jeffrey’s prior, because it produced superior results to other the

options implemented.

The results produced by this advance by Portilla and colleagues are impressive. A recent adjunct to

this work attempts to use a spatially adaptive signal covariance matrix by assuming geometrically close

areas have similar covariance statistics [17]. It is interesting to compare this approach with the algorithm

presented here where the covariance information is adapted for multiscale features throughout the image

using information from the next coarser scale to adjust for the type of feature and its particular angle.
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Image Size

Barbara 512×512

House 256×256

Lenna 512×512

Peppers 256×256

TABLE I

IMAGES USED TO TEST THE PROPOSED DENOISING ALGORITHMS.

F. Test images

The images used in this article are well known test images that have been used in a variety of image

estimation literature. However, most of the images are available in more than one version, with differences

between them due to cropping, scanning, resizing, compression or conversion from colour to grey level.

For comparative purposes the images used to test the proposed denoising algorithm are those used in [1]

which are available at:

http://decsai.ugr.es/˜javier/denoise/test_images/index.htm .

However, thePeppersimage was found to have a row and column of zero pixels at the top and left-hand

edges of the image. These were filled in using the adjacent row and column, although for comparison

purposes the original version is also used in the results section. Table I lists the images used.

III. PROPOSED DENOISING ALGORITHM

The top-level denoising strategy used here is the same as most other wavelet based denoising algorithms:

decompose the noisy image intoL levels of 6 directional subbands and a set of (lowpass) scaling

coefficients, denoise the complex wavelet coefficients in each subband except for the scaling coefficients

and invert the transform to obtain the image estimate.

A. Modelling

Based on the investigations in [2], derotated wavelet coefficients are used to model structural features.

Complex wavelets have been shown in recent denoising literature to be an effective method of representing

images and have been shown in [2] to be particularly good, in terms of covariance information, as a basis

in areas of periodic texture. Hence, standard wavelet coefficients are used to represent the image areas

not near structural features. The two models are combined using a Bayesian model selection method.

Because the derotated coefficients have the same magnitude as standard DT-CWT coefficients we can

retain the GSM modelling of wavelet coefficients used in [1] to capture the clustering characteristic and

persistence across scale of wavelet coefficient magnitudes for both models.
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If derotated coefficients are to be used an accurate estimate of the phases of the parent coefficients

will be required. This is afforded by the nature of multiscale denoising algorithms. Due to the spectral

characteristics of typical natural images, wavelet coefficients of noisy images have a significantly higher

signal to noise ratio at the parent scale relative to that of the child. If, in addition, the coefficient has been

otherwise denoised, we can assume that a denoised parent coefficient is relatively noise free compared

to a noisy child coefficient.

Because the parent subband is sampled at1/4 of the density of the child subband, parent coefficients

need to be interpolated from the next coarser subband of the same orientation. Effective interpolation of the

parent coefficients is crucial in obtaining accurate phase information. The method used here is bandpass

interpolation which unwraps the expected phase rotations within each subband before interpolation.

Details of this method are provided in Appendix C of [18].

The modelling uses a neighbourhood approach standard in wavelet based GSM algorithms. The wavelet

coefficients are divided into overlapping groups of coefficients ‘neighbouring’ one another in spatial

location and scale. Denoising is performed on a ‘central’ complex coefficient based on the model for the

whole neighbourhood.

A vector of observed wavelet coefficients in a given neighbourhoody can be written in terms of

wavelet coefficientsx and n representing the clean image and noise as given in equation (6). Within

each neighbourhood the real and imaginary parts of complex coefficients are treated as separate variables.

This is necessary to fully capture the statistics of the derotated coefficients and is discussed further in

Appendix D of [18].

To integrate the specific modelling of structural image features with standard GSM modelling two

different models are assumed for the neighbourhoods of coefficientsx and a Bayesian framework is used

to combine them. The models are presented in equations (13) and (14). With reference to our image

model in figure 2, model 1 is intended to represent areas of texture using standard complex wavelet

coefficients and model 2 the major structural features of the image using derotated complex wavelet

coefficients.

Model 1:

x =
√

z u (13)

Model 2:

x = Aw =
√

z Aq (14)

Model 1 is the standard GSM modelling of a neighbourhood of wavelet coefficientsx as described
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in §II-E where z is the hidden or GSM multiplier andu is a neighbourhood of Gaussian variables

with zero mean and covarianceCu. In model 2,q is a vector of Gaussian distributed random variables

with covarianceCq. A is a unitary spatially varying inverse derotation matrix, which converts a set of

derotated coefficientsq to the corresponding DT-CWT coefficients using the phase of the interpolated

parent coefficients. Based on the assumption that an edge or ridge feature of a given polarity is equally

likely to one of the opposite polarity,q is assumed to have zero mean. See [2] for more background on

derotated coefficients.

B. Denoising

For each neighbourhood of coefficients we wish to estimate a ‘central’ coefficientxc from the set of

noisy coefficients in the neighbourhoody. To manage selection between the two models we introduce a

discrete model selection random variablem which can have valuesm1 and m2. The Bayesian MMSE

estimate is given in equation (15) derived in a similar manner to (10).

x̂c = E {xc|y}

=
∫

xc p(xc|y) dxc

=
∫ ∫ ∞

0

2∑

b=1

xc p(xc, z, mb|y) dz dxc

=
∫ ∞

0

2∑

b=1

p(z,mb|y) E {xc|y, z, mb} dz

(15)

It remains to determine the expected value of the neighbourhood’s central coefficientxc for a givenz

for each model and an expression for the joint posterior probability for the model and multiplier variables

given the observed noisy coefficients,p(z,m|y).

A key advantage of the GSM framework is the tractability of the estimatorE {xc|y, z, m}. Because

the noise as well as the vectorsu andq are Gaussian, for both models the expected value is a Wiener

estimator conditioned on a value forz and in the case of model 2 the rotation matrixA, with signal

covarianceszCu for model 1 andzACqAT for model 2. The estimators for each model are given in

equations (16) and (17).

Model 1:

E {x|y, z,m1} = zCu (zCu + Cn)−1 y (16)

Model 2:

E {x|y, z, m2} = zACqAT (zACqAT + Cn)−1 y (17)
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The joint posterior probability for the model and GSM multiplier are determined using Bayes formula

as shown in (18) with the denominator defined in equation (19).

p(z, m|y) =
p(y|z, m) pz,m(z,m)

p(y)
(18)

p(y) =
∫ 2∑

µ=1

p(y|a, µ) pz,m(a, µ) da (19)

In (18)p(y|z,m) is Gaussian with zero mean and covariancezCu+Cn for model 1 andzACqAT +Cn

in the case of model 2.

Model 1:

py|z,m(y|z,m1) =
1

(2π)N/2|zCu + Cn|1/2
exp

(
−yT (zCu + Cn)−1 y

2

)
(20)

Model 2:

py|z,m(y|z, m2) =
1

(2π)N/2|zACqAT + Cn|1/2
exp

(
−yT

(
zACqAT + Cn

)−1 y
2

)
(21)

C. Prior probabilities

The priorp(z, m) is decomposed as shown in equation (22).

p(z, m) = p(z|m)p(m) (22)

Prior for the hidden multiplierz: Although the prior for the hidden multiplierp(z|m) could potentially

be model dependent, currently a Jeffreys prior is used for both models,i.e. p(z|m1) = p(z|m2) = 1/z .

A Jeffreys prior was used in [1] where it was found to produce superior denoising results compared to

several other possibilities. It also has the advantage of simplicity, although it is an improper probability

density and when implemented needs to be set to zero on an interval[0, ε), whereε is a small positive

number.

Prior for the model section variablem: It is not logical to apply model 2 to a neighbourhood if

the neighbourhood’s dominant feature is not multiscale. That is, if the parent coefficients are not of

sufficient magnitude, the phase of the derotated coefficients becomes meaningless. This issue is dealt

with as follows: if the normalised weighted sum of the magnitudes of the parents of the coefficients in

a neighbourhood is less than the standard deviation of the noise on each complex coefficient then the

parent phase is deemed ‘untrustworthy’ andp(m2) is set to zero for that neighbourhood. Otherwise it

DRAFT April 15, 2007



MILLER & KINGSBURY 13

is assumed we have no information about the likelihood of structural features in the target image and

the models are given equal prior probabilities,i.e. p(m1) = p(m2) = 0.5. This is described by equations

(23) and (24).

p(m2) =





0 if
∑N

n=1 γn|x̂pn| < σ

0.5 otherwise
(23)

p(m1) = 1− p(m2) (24)

In (23) x̂pn are the estimates for the parents of the coefficients in the neighbourhood used for derotation

andσ is the standard deviation of the noise on a complex coefficient in the parent subband. The positive

weightingsγn, which sum to unity, are defined in equation (25).

γn =
|C̃q(c, n)|∑N

n=1 |C̃q(c, n)| (25)

In (25) c is the index of the complex coefficient that is to be denoised.C̃q is the complex covariance

matrix for the derotated coefficients obtained from the larger real covariance matrixCq. Cq is given

in equation (26), whereqr andqi are the real and imaginary parts ofq. C̃q is calculated using̃Cq =

Crr + Cii + i(Cir −Cri).

Cq = E






 qr

qi


 [

qr
T qi

T
]


 =


 Crr Cri

Cir Cii


 (26)

Note that using the adapted covarianceACqAT instead ofCq gives the same weightsγn.

D. Calculation of covariance matrices

It is necessary to calculate covariance matrices for the noiseCn and the Gaussian components of

both of the image modelsCu andCq. Separate matrices are calculated for each directional subband and

level of the transform. All covariance matrices are real, treating the real and imaginary parts of complex

coefficients separately but the matrices are constrained according to the guidelines in appendix D of [18].

That is, for derotated image coefficients and level 1 wavelet coefficients real covariance matrices are

used where the real and imaginary parts are treated separately. All other coefficients are treated as having

complex covariance matrices.

Cn is estimated by generating noise data with the appropriate power spectrum and transforming this

into the wavelet domain. Provided the number of observations K is large, the sample covariance can be

calculated using equation (27). In this casevk are the vectors of wavelet coefficients of the noise in each

neighbourhood,i.e. vk = nk andCv = Cn.
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Cv =
1
K

K∑

k=1

vkvT
k (27)

Given Cn, the signal covarianceCu is computed from the observation covariance matrixCy using

Cu = Cy −Cn as in [1]. Cy is calculated from the wavelet coefficients of the observed noisy signal

using equation (27) wherevk are now the neighbourhoods of noisy coefficientsyk. A similar procedure

can be used to calculateCq, as shown in equations (28) and (29).

CATy = E
[
(ATy)(ATy)

T
]

=
∫ ∞

0
CATy|z pz(z) dz

=
∫ ∞

0
(zCATu + CATn) pz(z) dz

= E {z}Cq + CATn

(28)

As done in [1] we setE {z} to unity, resulting in equation (29).

Cq = CATy −CATn (29)

CATy andCATn are required for equation (29). To obtain the derotation phases used in the neigh-

bourhood dependentA required to calculate these we have two options. We can use the noisy coefficients

or use the coefficients resulting fromE {x|y,m1}, i.e. those denoised using model 1 only. If the latter

option is chosen the coefficients need to be projected into the range space of the wavelet transform by

inverse transforming and transforming back into the wavelet domain, as this improves the accuracy of the

estimate.CATy andCATn can then be calculated using equation (30) withvk as the noisy coefficients

yk and noise coefficientsnk respectively.

CAT v =
1
K

K∑

k=1

AT
k vkvT

k Ak (30)

Finally, an eigenvector/eigenvalue decomposition ofCu andCq is performed and any negative eigen-

values are set to zero to ensure thatCu andCq are positive semidefinite.

E. Recalculation of covariance information

Ideally the statistics for each of the models would be generated only from neighbourhoods which they

are intended to model. For example, when estimating the model 2 covariance matrixCq, it is assumed

that contributions from neighbourhoods not close to discontinuities will be incoherent andCq will be

dominated by the statistics of the neighbourhoods with edges and ridges as the dominant feature. Although

this is true, other neighbourhoods will effectively contribute noise to the estimation. This effect can be
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combatted by recalculating the covariance matrices after an initial denoising iteration and weighting the

observations by the posterior probability for the model selection variablep(m|y). For model 1 this is

done using equation (31) to recalculateCy whereyk are the noisy coefficients andpk(m1|yk) is the

probability of model 1 for neighbourhoodk.

Cv,m1 =
1∑K

k=1 pk(m1|yk)

K∑

k=1

vkvT
k pk(m1|yk) (31)

A similar procedure is applied forCATn andCATy for model 2 using equation (32) withvk = nk

andvk = yk respectively.

CAv,m2 =
1∑K

k=1 pk(m2|yk)

K∑

k=1

AvkvT
k AT

k pk(m2|yk) (32)

Following this recalculation the algorithm may be re-run with the updated covariance matrices. In this

case any phases required for derotation may be obtained from the (range-space projected) result of the

previous denoising iteration.

F. Computational considerations

We now examine the computational implications of including the proposed additional modelling of

structural image features for the GSM algorithm.

Define Cm as a model dependent covariance matrix such thatCm = Cu for model 1 andCm =

ACqAT for model 2. Note that in the case of model 1Cm is fixed for each subband whereas for

model 2 it is dependent on the neighbourhood. For equations (16), (17), (20) and (21) calculation of

(zCm + Cn)−1 is required. Without manipulation this would require an inversion for each discretisation

of z for each neighbourhood.

Let Cn = SST , whereS is the symmetric square root ofCn, which can be calculated from the eigen-

vector/eigenvalue decomposition ofCn. Let {Qm,Λm} be the eigenvector/eigenvalue decomposition of

S−1CmS−T . Consider equations (33) and (34).

zCm + Cn = zCm + SST

= S
(
zS−1CmS−T + I

)
ST

= SQm (zΛm + I)Qm
TST

(33)

(zCm + Cn)−1 = S−TQm (zΛm + I)−1 Qm
TS−1 (34)

April 15, 2007 DRAFT



16 TO BE SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING

Equations (33) and (34) show that for model 1 all of the inversions and eigenvector/eigenvalue

decompositions are independent ofz and need only be done once for each subband. Note thatzΛm + I

is diagonal and trivial to invert. However, for model 2 an eigenvector/eigenvalue decomposition of

S−1CmS−T = S−1ACqATS−T needs to be calculated for each neighbourhood, sinceA is neigh-

bourhood dependent. Nevertheless, we have removed the dependance on the hidden multiplier, so the

number of decompositions is independent of the number of values used in the discrete representation of

z.

Apart from the necessary estimation of covariance matrices, the algorithm’s computational bottleneck

is the eigenvector/eigenvalue decomposition ofS−1ACqATS−T . The time taken for the Matlab imple-

mentation of the algorithm to run on a512 × 512 image using a PC with a Pentium IV processor is

approximately21/2 minutes per denoising iteration compared to 45 seconds when model 2 is omitted

from the algorithm, so the method is quite computationally demanding.

IV. N EIGHBOURHOOD SUPPORT

There is a tradeoff with regard to the size of neighbourhood used for GSM based denoising. On one

hand it is desirable that the support of the Wiener filter is large to take advantage of the correlations

between coefficients in the redundant transform. However, because the variance of wavelet coefficients

can change over a relatively short distance, a larger window can result in an inaccurate estimate for

pz (z). This tradeoff is also discussed by Mihçaket al. [19].

In recent literature the neighbourhood size is generally selected in anad hocmanner. There are many

variations in window selection for variance estimation and GSM based denoising methods. Voloshynovskiy

et al. use different sized neighbourhoods at different scales [20]. Strelaet al. use differently shaped

neighbourhoods for different directional subbands with a more primitive form of GSM denoising in an

attempt to capture the correlation structure along edges [21]. Mihçaket al. determine the size of the

neighbourhood dynamically for each neighbourhood using a technique called the bootstrap method [19].

Finally, for GSM denoising using the Steerable Pyramid transform [1] Portillaet al. hand optimised the

neighbourhood structure and chose a ‘3x3+p’ neighbourhood consisting of the coefficient to be denoised,

the eight surrounding coefficients from the same directional subband and the parent coefficient at the

same spatial location from the adjacent coarser scale. Note that the inclusion of parent coefficient in the

neighbourhood is consistent with the ‘persistence across scale’ property described in§II-C.
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A. Optimal fixed neighbourhood

For the denoising algorithm implemented, a number of different neighbourhood windows were con-

sidered. The optimal fixed neighbourhood was found to be a ‘++p’ neighbourhood which contains the

coefficient to be denoised, the four directly adjacent coefficients (which together form the shape of a ‘+’)

and the parent coefficient. It was found to produce marginally better results than the 3x3+p neighbourhood.

A smaller neighbourhood makes sense because the DT-CWT is less redundant than the Steerable Pyramid

and has a complex coefficient at each spatial location whereas the Steerable Pyramid coefficients are real,

so the locations of DT-CWT coefficients are more sparsely populated. Hence, the variance of a DT-CWT

coefficient is likely to become decorrelated over fewer coefficients than for the Steerable Pyramid.

The possibility of using smooth windows,i.e. windows where some coefficients are given less weight

than others, has been investigated. This problem is non-trivial. Even if a system is devised to implement

a smooth window, there is still the problem of how to assign weights to the coefficients in the neigh-

bourhood. The techniques developed are not included in the algorithm here due to their limited benefit,

added complexity and computational requirements.

B. Subband dependent neighbourhoods

In the proposed algorithm we would like to take advantage of the directional nature of structural

features and some types of texture. In particular, we would like to take advantage of the correlation of

derotated coefficients along the length of structural features demonstrated in [2]. We propose varying the

size and shape of the neighbourhood window depending on the subband orientation and scale. This is

based on the assumption that coefficient magnitudes will display greater clustering in the direction of

the subband’s orientation and at finer scales where the coefficients have a much smaller support relative

to the size of the features. In addition, at finer scales a larger neighbourhood assists in determining an

accurate estimate forp(z) in the presence of noise.

The direction and scale dependent neighbourhood window used was roughly optimised to improve

SNR performance. The neighbourhoods used are not exactly optimal but as will be shown in§VI-E

the overall impact is not insignificant and this demonstrates the stronger relationships between wavelet

coefficients in the direction of the subband’s orientation.

Figures 4 and 5 show the coefficients included in the GSM neighbourhoods. The line indicates the

direction of edges captured by each of the subbands. At levels 1 and 2 the directional windows in

figure 4, flipped or rotated appropriately, are used. At coarser scales the directionally independent ‘++p’

neighbourhood shown in figure 5 is used. As in [1], at the coarsest level denoised the parent is omitted.
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V. A LGORITHM STRUCTURE

The following list summarises the steps in the proposed denoising algorithm:

1) Decompose image using a multiscale transform.

2) Calculate model 1 covariance matricesCu andCn as detailed in§III-D.

3) Calculate expected values and probabilities for model 1,E {x|y, z,m1} andpy|z,m(y|z,m1), using

equations (16) and (20).

4) Obtain model 1 coefficient estimates using (15) withp(m1) = 1.

5) Obtain phases for derotation by projecting model 1 estimates into the range space of the transform.

6) CalculateCq for each subband as detailed in§III-D using derotation phases from step 5.

7) Calculate expected values and probabilities for model 2,E {x|y, z,m2} andpy|z,m(y|z,m2), using

equations (17) and (21).

8) Combine coefficient estimates using equations (18) and (15).

9) Project estimated coefficients into range space of transform.

10) RecalculateCu andCq as detailed in§III-E.

11) Recalculate expected values and probabilities for both models using equations (16), (17) and (18).

12) Obtain final estimate for coefficients using (15).

13) Reconstruct image from the estimated wavelet coefficients via the inverse wavelet transform.

VI. RESULTS

Results have been obtained using 8-bit greyscale images corrupted with random Gaussian white noise.

The algorithm detailed above was implemented with the Q-shift version of the DT-CWT with near-

symmetric 13,19 tap filters at level 1 and Q-Shift 14,14 tap filters at higher levels [3]. The wavelet

coefficients were denoised at 5 levels for the512 × 512 sized images and 4 levels for the256 × 256

images so that the denoised subbands had at least16 × 16 coefficients. The image was decomposed to

a further 2 levels so that parent and grandparent coefficient phases were available for use in derotation.

20 discrete values were used to define the prior forz.

To illustrate the effects of the novel components - directionally dependent neighbourhoods and the

dual model framework - comparisons are made with a standard GSM algorithm (model 1 only and a

fixed neighbourhood size) as described in [1] but implemented with the DT-CWT and with all other

parameters, such as the prior forz and covariance estimation, identical to the dual model algorithm.

Comparisons are made with the SNR results given in [1] to ensure our GSM implementation is adequate

and to allow comparison with the best published results.
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A. Model selection results

Firstly we verify that the model selection framework is operating as intended and that the Bayesian

framework is indeed selecting model 2 for neighbourhoods near structural features. Figure 6 shows the

value of p(m2|y) after the first denoising iteration (after step 9) and second denoising iteration for a

single wavelet subband of theLenna image. We see that at major structural features aligned with the

subband’s orientation the value ofp(m2|y) is close to unity meaning model 2 is selected as intended.

Notice that in flat areas the criterion in (23) forcesp(m2|y) to zero.

B. Error analysis

Next we illustrate the improvement achieved by the new modelling and verify that the dual model

algorithm offers improvement in areas near structural discontinuities as it was designed. To do this,

we plot two images displaying the improvement and degradation of the proposed algorithm relative to

standard GSM denoising. We quantify the improvement of the algorithm proposed here over standard

GSM denoising as the difference in absolute error with negative values set to zero,i.e. imp = max(|es|−
|ep|, 0), and the degradation asdeg = max(|ep| − |es|, 0). ep is the error of the dual model algorithm

proposed here andes is the error for standard GSM denoising implemented with the DT-CWT using only

model 1 and a fixed neighbourhood size. Figure 7 shows these comparisons for theLennaimage plotted

as an inverted grey-scale image. The proposed algorithm performs better at structural features than the

standard GSM method, particularly in areas directly next to discontinuities. Note that it is not better for

every pixel as the improvement is based only on improved statistics.

C. Visual analysis

Figure 8 shows clean, noisy and denoised versions of theBarbara image using the proposed algorithm.

Figure 9 shows a close up comparison of the proposed algorithm with that implemented using standard

GSM denoising. Ringing artifacts are reduced and edges tidied.

Some noise suppression algorithms have the tendency to smooth discontinuities. The specific modelling

of discontinuities in the proposed algorithm reduces ringing artifacts near discontinuities as well as

sharpening edges. This is demonstrated in figure 10 where the algorithm incorporating interscale phase

relationships produces a sharper image than standard GSM for theHouseimage corrupted with noise of

standard deviation 25. Note the relative widths of the edge and ridge features that make up the roof in

the estimates in figures 10 (c) and (d).

April 15, 2007 DRAFT



20 TO BE SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING

In most cases ringing is not eliminated entirely but it is significantly reduced and importantly the

improvement comes with the sharpening of edges rather than softening. The improvement at edges is

subtle and difficult to see on paper. A demonstration of the results is provided at:

http://www-sigproc.eng.cam.ac.uk/˜ngk/denoise.zip

D. SNR results

In this section a numerical assessment of the algorithm’s performance is presented and compared to

other state-of-the-art approaches. Note that improvement in traditional SNR terms will be limited as the

algorithm focuses primarily on improving structural features, which do not always constitute a large

proportion of the image area. For this reason an adapted measure of SNR improvement focussing on the

areas affected by the algorithm is also provided in this section.

Results were obtained for 4 8-bit greyscale images each corrupted with random white noise at different

levels. This was repeated for 8 different noise samples for each image and noise level. The images used to

obtain these results are identical to those used to produce the results obtained by Portilla and colleagues

and additional results are given for thePeppersimage without zero edge pixels as detailed in§II-F. Input

PSNR is defined as10 log(255/σs) dB whereσs is the standard deviation of the noise. The noise standard

deviations used ranged from 5 to 50.

Standard SNR improvement measure:The results of the standard GSM modelling implemented using

the DT-CWT are very similar to those published by Portillaet al. in [1] as would be expected. The

differences may be due to the different basis functions used including the lower number of oriented

subbands, handling of edges and the discrete parameterisation of the hidden multiplier. The results

are presented in figure 11. The proposed algorithm provides consistent improvement on standard GSM

denoising implemented with the DT-CWT and that implemented by Portillaet al.. Table II gives results

for the algorithm proposed here for a broader range of PSNR inputs.

Adapted SNR improvement measure:SNR improvement is a measure of the fractional reduction in

error energy achieved by the algorithm. Therefore, in evaluating the effects of the proposed algorithm on

structural features it is not appropriate to consider areas of the image not altered by the new algorithm.

Consider that if only part of an image is restored using the new approach, the SNR improvement for the

whole image will never drop below a certain level dictated by the areas remaining unchanged.

The DT-CWT is an energy preserving transform. The image domain error energy is equal to that of

the wavelet coefficients, provided they are in the range-space. To better evaluate the improvements of the

proposed modelling at discontinuities we measure SNR improvement of range-space projected wavelet
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Standard deviation of noise / Input PSNR (dB)

Image 5 / 34.15 10 / 28.13 15 / 24.61 20 / 22.11 25 / 20.17 50 / 14.15

Barbara 37.86 34.20 32.11 30.63 29.49 26.00

House 38.81 35.48 33.84 32.65 31.68 28.46

Lenna 38.46 35.67 34.00 32.79 31.82 28.75

Peppers 37.68 34.22 32.22 30.79 29.69 26.32

TABLE II

OUTPUT PSNROF PROPOSED DENOISING ALGORITHM(DECIBELS).

Standard deviation of noise / Input PSNR (dB)

Image 5 / 34.15 10 / 28.13 15 / 24.61 20 / 22.11 25 / 20.17 50 / 14.15

Barbara 0.20 0.43 0.55 0.60 0.62 0.60

House 0.32 0.49 0.57 0.60 0.61 0.62

Lenna 0.14 0.26 0.31 0.34 0.35 0.37

Peppers 0.14 0.44 0.32 0.37 0.40 0.44

TABLE III

SNR IMPROVEMENT OVER STANDARDGSM DENOISING USING ADAPTEDSNR METRIC (DECIBELS).

coefficients multiplied by the weight given to the new modelling (model 2) for each coefficient,i.e.

p(m2|y). Scaling coefficients, which are left unaltered before range-space projection are not included.

The SNR improvements over standard GSM denoising obtained using this metric are displayed in table

III.

E. Miscellaneous results

We now look at the effect of various changes to the proposed algorithm. The first change is using a ++p

neighbourhood at all levels and directional subbands. The second change is to restrict the algorithm to a

single denoising run so that the covariance matrices are not recalculated using the posterior neighbourhood

probabilities,i.e. steps 10-13 in§V are skipped. The final change considered is that of using ‘oracle’

phases,i.e. the phases of the clean coefficients, to derotate the coefficients for model 2. This should

indicate how much of the power of derotated coefficients is lost by using an approximation of the parent

phase in our denoising algorithm.

Table IV contains the average impact on SNR of each of the changes averaged over theBarbara,

House, Lenna and Peppersimages for a noise standard deviation of 25. Note that the average SNR

improvement offered by the proposed algorithm over standard GSM denoising with a directionally

independent neighbourhood for these images at this noise level is 0.26dB.
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Change ++p window Single iteration Oracle derotation phase

Average SNR difference -0.15dB -0.05dB +0.04dB

TABLE IV

EFFECTS OF VARIOUS CHANGES TO PROPOSED ALGORITHM.

The effect of using orientation and level dependent windows is a considerable 0.15dB, meaning the

directionally dependent neighbourhood is key to realising the full potential of the algorithm. However,

this figure overstates the independent contribution of this component. If the directionally dependent

neighbourhood is used with the standard, single model GSM denoising algorithm, the effect is an average

improvement of only 0.07dB. The improvement is much larger for theBarbara image, which has large

areas of periodic texture, and is on average only 0.03dB for the other images. The insight gained here

is that the phase invariance offered by derotated coefficients allows the dual model algorithm to take

advantage of correlations with neighbouring coefficients further from the central coefficient at finer scales.

The high dependence of the phase of DT-CWT coefficients on the relative position of nearby edges means

this is much less true for standard DT-CWT coefficients near multiscale features.

The effect of performing the second denoising iteration is small but useful. Surprisingly little improve-

ment is lost by using an approximation for the parent phases for derotation.

VII. C ONCLUSIONS

A denoising method based on GSM modelling of the wavelet coefficients of a shift-invariant, direction-

ally selective transform has been presented. The proposed algorithm reduces artifacts near edges while

maintaining edge sharpness.

Image processing algorithms designed specifically to perform well at discontinuities often suffer from

impaired performance in areas of images not suited to the algorithm. Characterisation using derotated

wavelet coefficients is not suited to all images or all regions of images but the adaptive model selection

framework used in the denoising method proposed here ensures that it does not degrade areas dominated

by features more suited to characterisation using standard complex wavelet coefficients while offering

good improvement near discontinuities.

VIII. F UTURE WORK

It may be possible to use information obtained at coarser scales to help define the model probabilities

at finer scales. The presence of an edge feature at a given scale should increase the probability of a ridge

at a finer scale. Similarly the presence of an edge should indicate the presence of two ridges at finer

scales. This information should result in more accurate model probability estimates.
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Potentially the most promising area for future work using interscale phase relationships is in deconvo-

lution and other inverse problems. Deblurring algorithms commonly encounter problems in reconstructing

discontinuities as the observations have often lost high frequency information and there is usually a trade-

off to be made between over-smoothing of edges and the amplification of noise and ringing artifacts. By

encouraging the correct relationships between wavelet coefficients at adjacent levels, it may be possible to

constrain the inversion such that ringing is reduced and edges sharpened as has been done for denoising.

Finally, the model selection framework developed has potential for integrating better models for other

parts of the images with different statistical characteristics. For example, it may be possible to distinguish

between areas of periodic texture and areas where the texture is more random.
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(a) Near-horizontal subband (b) Diagonal subband

Fig. 4. GSM neighbourhoods used at levels 1 and 2 of the proposed algorithm. The line indicates the direction of edges

captured by that subband.

Fig. 5. GSM neighbourhood used in the proposed algorithm at level 3 and higher for all directional subbands - ‘++p’.

(a) Original image
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(b) A posteriorimodel 2 probabili-

ties after first iteration
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(c) A posteriorimodel 2 probabili-

ties after second iteration

Fig. 6. Model selection results for theLennaimage. Value ofp(m2|y) for directional subband 4 (105◦) at level 2. The noise

standard deviation is 20.
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(a) Lenna image
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(c) Degradation of proposed algorithm com-

pared to standard GSM denoising

Fig. 7. Error analysis of proposed algorithm compared to standard GSM denoising for theLenna image. The noise standard

deviation is 25.
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(a) Clean image (b) Noisy image

(c) Denoising algorithm proposed here

Fig. 8. Denoising results for theBarbara image. The noise standard deviation is 25.
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(a) Clean image (b) Noisy image

(c) Denoising algorithm proposed here (d) Standard GSM denoising

Fig. 9. Comparative denoising results for theBarbara image.
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(a) Clean image (b) Noisy image

(c) Denoising algorithm pro-

posed here

(d) Standard GSM denoising

Fig. 10. Comparative denoising results for theHouseimage. The noise standard deviation is 25.
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(a) Barbara
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(b) Lenna
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(c) House
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(d) Peppers

Fig. 11. SNR improvement versus input PSNR compared to the best known published results. Crosses (x): proposed denoising

algorithm. Pluses (+): standard GSM denoising using the DT-CWT. Diamonds (¦): GSM denoising using Steerable Pyramid

as published in [1]. Circles (◦): best of the comparisons published in [1] from [22] forBarbara and Lenna and [23] for

HouseandPeppers. For Pepperswe also plot the results for the original image without zero edge pixels. Stars (*): proposed

denoising algorithm. Triangles (4): standard GSM denoising using the DT-CWT.
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