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ABSTRACT

In this paper, we propose a new algorithm to solve linear inverse
problems using an approximate l0 penalty on overlapped groups
of wavelet coefficients, and apply this to the deconvolution prob-
lem specifically. Prior work has shown the improvements gained
from using group-sparse penalties over coefficient-sparse penalties
for deconvolution and compressed sensing. Instead of minimizing
an l1-norm, as done in prior work, we instead design an overlapping
group prior which utilizes the Gaussian scale mixture model, and use
this to promote l0 sparsity. Using a Bayesian argument, we derive
a novel convex penalty function, which is a reweighted l2 approxi-
mation to the l0-norm that can be efficiently minimized. We show
that the new group-sparse algorithm produces superior deconvolu-
tion results compared to the same algorithm utilizing an unstructured
coefficient-sparse penalty.

Index Terms— structured models, deconvolution, iterative al-
gorithms, sparsity.

1. INTRODUCTION

Deconvolution of natural images is a well-studied, ill-posed, lin-
ear inverse problem. Natural images are sparsely represented by
wavelets [1], and superior deconvolution results have been obtained
using this knowledge by promoting solutions with sparse wavelet-
domain representations [2, 3]. Furthermore, signal models which
exploit overlapped parent-child groupings of these sparse wavelet
coefficients are potentially advantageous in efficiently solving de-
convolution problems, and these topics are considered here.

Owing to the ability of wavelet transforms to localize edges,
coefficient magnitudes exhibit strong statistical dependencies across
scales [4]. Early work in exploiting this structured sparsity employed
the hidden Markov model [5–7]. While this model is effective for
capturing some of the non-Gaussian behavior of wavelet magni-
tudes and promoting the persistence of magnitudes across scales,
it requires learning the dependencies using iterative reweighting
schemes. This motivates locally-convex quadratic penalties which
can be more efficiently solved.

Rao et al [8] have employed a convex overlapped group
lasso (l1) penalty and demonstrated significant improvements over
coefficient-wise penalties for deconvolution and compressed sens-
ing problems. In [9], Zhang et al have shown improved sparse
recovery results over the l1 sparse penalty using the modified
subband-adaptive iterative shrinkage/threshold (MSIST) algorithm,
which minimizes the reweighted l2 approximation to the l0-norm of
wavelet coefficient magnitudes. For this reason, we propose a group

sparse solver which incorporates an approximate l0 group sparse
penalty, and apply this to the deconvolution problem, building on
some of the strengths in both [8] and [9].

In [8], a simple parent-child, overlapping grouping policy is
used to facilitate the modeling of groups so that optimization can be
performed on a pre-defined structure. Overlapping group structures
are useful when the precise group structure or the degree of persis-
tence of wavelet magnitudes across scales is not known a priori [10].
Since the problem of finding the group structure which constitutes
the sparse approximation of a signal is NP hard in general [11],
we adopt the overlapping group approach in which the interscale
group dependencies are gradually learned, starting with a sensible
pre-defined group structure.

In [12], Zhang et al have shown promising deconvolution re-
sults using the MSIST algorithm. This algorithm is derived from
Bayesian principles, utilizing a Gaussian scale mixture (GSM) prior,
which is a powerful model for capturing the statistics of wavelet
coefficients [13–15].

Combining Bayesian wavelet-based image deconvolution using
the GSM prior, quadratic penalties, and group sparsity, we propose
a new locally-convex group-sparse solver. Unlike the work in [8],
we promote sparse solutions by approximating the l0-norm. Addi-
tionally, instead of promoting l0 sparsity at the coefficient-level as
in [12], we sparsify at the group level, leading to better estimates of
the sparse approximation of the underlying signal. We have chosen
the dual-tree complex wavelet transform (DT-CWT) as our sparsi-
fying transformation, because it has the advantages of approximate
shift-invariance and directional selectivity for a limited transform
domain redundancy. By incorporating the strong parent-child de-
pendency structure of these complex wavelet coefficient magnitudes
into our prior model, we show that we can find group-sparse solu-
tions via fast quadratic minimization.

In sec. 2.1, we introduce the GSM model and the MSIST
penalty. We define the group sparse model in sec. 2.2, and extend
the MSIST penalty to derive the group sparse MSIST algorithm in
sec. 2.3. In sec. 3 we show that, by imposing a simple grouping
policy, we can obtain superior results to those obtained without a
group structure, using the same basic algorithm and parameters. In
sec. 4 we conclude with suggested extensions of this research.

2. METHODS

2.1. Gaussian Scale Mixture (GSM) Model

The GSM model assumes that the statistics of an image can be de-
scribed locally, so that each wavelet coefficient follows an indepen-



dent Gaussian process with spatially varying statistical parameters.
Given an unobserved signal x ∈ RN and an additive white Gaussian
noise process n ∼ N(0, ν2), we observe

y = Φx+ n (1)

via matrixΦ= HWT . UsuallyH is a convolution matrix, andWT

represents an inverse wavelet transform. From a Bayesian point of
view, we can reconstruct the image from the observation model, or
likelihood p(y|x), and a GSM prior on the signal, p(x):

p(y|x) ∝ exp

�−�y −Φx�22
2ν2

�
(2)

p(x) ∝ exp
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where S is a diagonal matrix formed from the j-indexed vector s of
inverse variance estimates 1

vj
of each element xj in x.

Since we are using the DT-CWT, which transforms real image
pixels into complex wavelet coefficients, the redundant tight-frame
representation of the transform requires the coefficients to be split
into separate real and imaginary parts in x, to avoid the need for
the awkward “real-part” operator in the inverse transformWT . This
can be elegantly handled by regarding the real and imaginary compo-
nents of each complex coefficient as non-overlapping groups of size
2, and we have incorporated this into our previous work on sparsity-
regularized deconvolution [9, 12]. In the present context, we obtain
estimates of each vj by taking the mean of the squares of the real
and imaginary parts of each complex coefficient and also including
�2, an estimate of the variance of the noise present in the wavelet
coefficients. Hence,

vj = E
�
|xj |2

�
≈ 1
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The maximum a posteriori (MAP) estimate xMAP obtained by
maximizing the posterior p(x|y), or by minimizing its negative log-
arithm, is given by:

xMAP = argminx[−ln(p(y|x)p(x))]

= argminx

��Φx− y�22
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1

2
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�
(5)

The expression in eq. (5) can be minimized using fast threshold
Landweber iterations [3]. This is the MSIST algorithm, which min-
imizes the data fidelity term while promoting sparsity in an approx-
imate l0 sense, if the terms in S are equal to the reciprocal of the
expected variance of each term in x. We now consider how a group-
sparse penalty may be incorporated into MSIST, and introduce a sep-
arate model for the prior in eq. (3) which incorporates group struc-
ture, producing more robust estimates of the vj in eq. (4).

2.2. Overlapping Group Model

In this section, we introduce the notation and terminology for the
overlapping group sparse model. In this setup, xk can belong to two
or more separate groups, but a problem exists when we wish to use
the statistics of those groups to update the current estimate of xk. As
in [8], a strategy we use for dealing with overlapping groups is to
introduce a new vector x̂ ∈ RM of latent variables comprising mul-
tiple copies of each xk. An advantage of this duplication strategy is
that it does not require duplicating the columns of Φ in eq. (1) for
each of the latent variables, and thus minimizes computational com-
plexity. Generally M ≥ N , with equality for the special case when
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Fig. 1. Diagram showing quadtree hierarchy of x and x̂ with a par-
ent+4children overlapping group policy. Groups g1={1, 2, 3, 4, 5}
and g2 = {2, 6, 7, 8, 9} are shown using red and blue undirected
edges, respectively. Cluster elements x̂2 and x̂6 belong to groups
ĝ1={1, 2, 3, 4, 5} and ĝ2={6, 10, 11, 12, 13}, respectively, which
aren’t fully shown.

each coefficient comprises a non-overlapping group by itself. The
size M of the latent variable vector depends on the grouping policy.
We may also consider clustering elements of x̂ which correspond to
each element xk of x. We define the following terms:

• Group refers to a subvector xgi of x, or a subvector x̂ĝi

of x̂, indexed by the sets of indices gi ⊆ {1 . . . N} and
ĝi ⊆ {1 . . .M} for i ∈ {1 . . . Ng}, where Ng is the number
of groups. The groups gi may be overlapping, whereas the
groups ĝi may not. Two groups from the parent+4children
overlapping group policy are shown in fig. 1 using red and
blue undirected edges.

• Cluster refers to a subvector x̂Gk of x̂, indexed by the set
of indices Gk ⊆ {1 . . .M} for k ∈ {1 . . . N} such that all
elements of x̂Gk correspond to the multiple copies of a single
element xk of x. One cluster of size 2 for the overlapped
variable x2 is shown in fig. 1 using arrows.

2.3. Group Sparse MSIST Algorithm

In this section, we consider sparsifying at the group level while im-
posing a cluster fidelity constraint in order to keep the master close
to the mean of its duplicate elements.

First, adopting a Bayesian interpretation, we estimate x and x̂
jointly, maximizing the posterior p(x, x̂|y).

[x, x̂]MAP =argminx,x̂[−ln(p(y|x, x̂)p(x, x̂))]
=argminx,x̂[−ln(p(y|x, x̂)p(x|x̂)p(x̂))] (6)

For all k∈{1 . . . N}, we assume the conditional distribution of each
xk is normal, with mean x̄k and variance vG,k. Hence

p(xk|x̂Gk )=
1√

2πvG,k
exp

�
− (xk − x̄k)
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�
(7)



where x̄k, the cluster mean, and vG,k, the cluster variance, are esti-
mated from x̂Gk by

x̄k=
1

|Gk|
�

c∈Gk

x̂c (8)

vG,k=
1

|Gk|
�

c∈Gk

|x̂c − x̄k|2 (9)

Under an approximate group-independence assumption, we can ob-
tain the group prior:

p(x̂) ≈
�
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p(x̂ĝi)∝
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where vg,i is estimated from x̂ĝi . We also assume an independent
prior p(vg,i|�2) ∝ exp(−�2/2vg,i) for each vg,i as in [9], so that

vg,i=E
�
|x̂ĝi |2

�
=

1

2|ĝi|
�x̂ĝi�22 + �2 (11)

Next, we form diagonal matrices S̄ (N×N ) and Ŝ (M×M ) from
vectors s̄ and ŝ. The entries s̄k of N -length vector s̄ are the cluster
inverse variance estimates 1

vG,k
, and the entries ŝi ofNg-length vec-

tor ŝ are the group inverse variance estimates 1
vg,i

. When Ng <M ,

Ŝ is formed from an expanded version of ŝ so that ŝi is repeated to
give Ŝj,j = ŝi for each j ∈ gi. Thus we have the following penalty
function derived from eq. (6):

J(x, z, x̂, Ŝ, x̄, S̄)=�Φx− y�22
+ ν2

�
(x− x̄)T S̄(x− x̄)− ln(|S̄|)

�

+ ν2
�
x̂T Ŝx̂− ln(|Ŝ|) + �2tr(Ŝ)

�

+ (x− z)TΛα(x− z)− �Φ(x− z)�22
(12)

The penalty function in eq. (6) includes the cluster fidelity constraint
(second line) and group sparsity penalty (third line). In practice we
estimate x̄ and S̄ from x̂, but for generality eq. (12) is left as a func-
tion of all three quantities. The Majorization-Minimization (MM)
terms (fourth line) are not part of the Bayesian derivation, but serve
to remove the difficult cross-coupling term xTΦTΦx which results
from expanding the first line. The MM term is strictly positive, and
causes J(·) to upper-bound the MAP penalty (the first three lines),
as long as the diagonal matrixΛα is chosen such that (Λα −ΦTΦ)
is positive definite [3, 12].

In order to minimize eq. (12) we consider estimating the quanti-
ties x̄ and S̄ in terms of x̂. The vector of cluster means x̄ ∈ RN can
be written using an explicit matrix form:

x̄=Λ|Gk|Dx̂=Ax̂ (13)

where D is an N×M matrix which performs the sum in eq. (8),
whose (k,m)th element is given by

Dk,m=

�
1, if x̂m∈ x̂Gk

0, otherwise
for k ∈ {1 . . . N} andm∈{1 . . .M}

(14)
and Λ|Gk| is an N×N diagonal matrix of 1

|Gk| .
In practice we can achieve a similar effect of reducing the sec-

ond line in eq. (12) by minimizing the l2 norm using a user-defined

Lagrangian parameter τ2. In this way, we can control the relative
strength of the closeness of xk to the mean of x̂Gk using τ2 while
encouraging sparseness at the group level using ν2. In practice, we
find that using τ2 instead of S̄ produces better deconvolution results.
Additionally, this simplification avoids computing eq. (9) on each
iteration. Substituting τ2I for ν2S̄ in eq. (12), we have

J(x, z, x̂, Ŝ, x̄, S̄)=�Φx− y�22
+ τ2�x− x̄�22 + const

+ ν2
�
x̂T Ŝx̂− ln(|Ŝ|) + �2tr(Ŝ)

�

+ (x− z)TΛα(x− z)− �Φ(x− z)�22
(15)

Using eq. (13) where appropriate, we derive update rules to min-
imize eq. (15) at each iteration n by differentiating J(·) with respect
to each variable in turn and setting the derivatives to 0:

∂J(·)
∂x

=2
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�
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�
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Let ˆ̄S be the M×M block-diagonal matrix
�
τ2ATA+ ν2Ŝn

�

in eq. (18). The (p, q)th entry of each of N |Gk|×|Gk| blocks, ˆ̄Sk,
of ˆ̄S is given by

ˆ̄Sk,(p,q)=





τ2

|Gk|2 + ν2ŝi,(p), if p=q

τ2

|Gk|2 , otherwise
(20)

where ŝi,(p) is the group inverse variance estimate corresponding to
the (p)th element of x̂Gk . Thus, the update of x̂ in eq. (18) can be
accomplished via

x̂n+1=τ2ˆ̄S
−1

ATxn (21)

which requires N small matrix inverse operations and M vector-
multiply operations.

3. RESULTS

In this section, we test our claim that the algorithm which in-
corporates the group sparse prior in eq. (10) and minimizes the
penalty in eq. (15), referred to as Group MSIST (MG), outper-
forms the coefficient-sparse MSIST algorithm, referred to as Co-
efficient MSIST (MC), which solves eq. (5). We have used the
parent+4children grouping, as in fig. 1, for these experiments.

Using the standard Cameraman test image, we have simulated
various BSNR levels and blurring operations and compared with
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Fig. 2. Average ISNRn (dB) on the 40dB BSNR (9×9 uniform blur)
Cameraman for Group MSIST and Coefficient MSIST over 30 noise
realizations.

previously reported MSIST deconvolution results [12]. For these
tests, we have used the 9×9 uniform and the 15×15Gaussian (σ=1)
blur kernels for H and the DT-CWT as our redundant sparsifying
transformW to produceΦ, and added Gaussian noise n to produce
the observation y, as in eq. (1). Additionally, we’ve used the same
values for Λα as reported in [12] for the 9× 9 uniform blur test
case. By varying the nominal noise variance ν2, we’ve produced
several blurred signal-to-noise ratio (BSNR) test scenarios. BSNR
is computed using

BSNR=10log10
�Hur −Hur�22

Npν2
(22)

where ur = WTx ∈ RNp is the original ground truth signal before
applying the over-complete transform W and Hur is the mean of
Hur .

We’ve seeded both algorithms with x0 obtained by using the
regularized Wiener filter:

x0=W
�
(HTH+ 10−3ν2I)−1HTy

�
(23)

and on each iteration, we’ve computed the improvement in signal-
to-noise ratio (ISNR) via

ISNRn=10log10
�y − ur�22

�WTxn − ur�22
(24)

and use this to compare the performance of our algorithm to the MC
benchmark.

For almost all test cases, incorporating the group sparse penalty
leads to improved deconvolution results in terms of visual quality
and final ISNR. Fig. 3 shows the final visual result obtained from
applying the MC and MG algorithms for 200 iterations. In fig. 2 and
tables 1 and 2, we show average ISNR values at iteration n obtained
from repeating our experiments over 30 noise realizations. We’ve
ensured that the parameters ν and � for the coefficient MSIST and
group MSIST experiments were the same for each test scenario. In
particular, we’ve employed geometric homotopy continuation rules
for these parameters with a shrinkage factor of 0.8 per iteration, so
that the reweighted l2 penalty x̂T Ŝx̂ more closely approximates the
l0-norm as � is decreased, which is explained in detail in [12]. For
all of these experiments, we have used τ=0.1.

While this algorithm generally requires N block inverses, with
this chosen grouping policy the maximum block size is 2×2 (Gk≤
2), so that the matrix inverse has an explicit form which permits
efficient vector multiply operations. Thus, the per-iteration compu-
tational overhead is not significantly greater for MG than MC.

(a) Ground truth. (b) Blurred, noisy. (c) MC: 7.64dB. (d) MG: 8.22dB.

Fig. 3. Visual deconvolution results on 40dB BSNR (9×9 uniform
blur) Cameraman, with ISNR200 values.

n
20dB 40dB 50dB

MC MG MC MG MC MG
10 2.58 2.68 7.12 7.09 8.76 9.61
30 2.99 3.20 7.53 7.66 10.29 10.34
50 3.19 3.33 7.60 7.86 10.60 10.62
70 3.31 3.36 7.63 7.98 10.67 10.80
100 3.40 3.36 7.64 8.08 10.68 10.97

Table 1. Average ISNRn (dB) on the Cameraman for the Group
MSIST (MG) and Coefficient MSIST (MC) over 30 noise realiza-
tions using the 9×9 uniform blur for 20dB, 40dB, and 50dB BSNR
test scenarios. For MC, 20dB and 50dB BSNR results are those re-
ported in [12].

n
40dB 50dB

MC MG MC MG
10 4.50 3.74 8.96 8.80
30 6.34 6.32 9.64 9.63
50 6.76 6.89 9.84 9.98
70 6.84 7.05 9.90 10.14
100 6.84 7.14 9.91 10.26

Table 2. Average ISNRn (dB) on the Cameraman for the Group
MSIST (MG) and Coefficient MSIST (MC) over 30 noise realiza-
tions using the 15×15 Gaussian blur, σ = 1 for 40dB and 50dB
BSNR test scenarios.

4. CONCLUSION

In this paper, we’ve shown improved deconvolution results by in-
corporating group sparsity using a Bayesian argument. These re-
sults come at the added per-iteration expense of doing N small in-
verses as part of the variable duplication approach. However, when
small cluster sizes are employed, this expense can be minimized.
Future work may include faster approximation of these inverses, or
employing a strategy which simply optimizes the coefficient-wise
variances in the standard GSM model using group information, po-
tentially avoiding the need for latent variables. Using other con-
jugate priors, such as the Gamma prior, and variational Bayesian
methods for estimating the wavelet coefficient densities, may lead to
additional gains. The ISNR results for this and other sparsity-based
methods do not compare favorably with the state-of-the-art results
of BM3D [16]. However, relatively efficient algorithms which do
not rely on block matching and also leverage the strengths of statis-
tical modelling and wavelet domain thresholding, such as SURE-
LET [17], show promise for general linear inverse problems and
tractable extensions to three-dimensional deconvolution.



5. REFERENCES

[1] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition:
The Sparse Way, Academic Press, 3rd edition, 2008.

[2] M.A.T. Figueiredo and R.D. Nowak, “An EM algorithm for
wavelet-based image restoration,” Image Processing, IEEE
Transactions on, vol. 12, no. 8, pp. 906–916, 2003.

[3] C. Vonesch and M. Unser, “A fast thresholded Landweber al-
gorithm for wavelet-regularized multidimensional deconvolu-
tion,” Image Processing, IEEE Transactions on, vol. 17, no. 4,
pp. 539–549, 2008.

[4] L. He and L. Carin, “Exploiting structure in wavelet-based
bayesian compressive sensing,” Signal Processing, IEEE
Transactions on, vol. 57, no. 9, pp. 3488–3497, 2009.

[5] J.K. Romberg, M.B. Wakin, H. Choi, and R.G. Baraniuk, “A
geometric hidden markov tree wavelet model,” in Optical Sci-
ence and Technology, SPIE’s 48th Annual Meeting. Interna-
tional Society for Optics and Photonics, 2003, pp. 80–86.

[6] M.S. Crouse, R.D. Nowak, and R.G. Baraniuk, “Wavelet-based
statistical signal processing using hidden markov models,” Sig-
nal Processing, IEEE Transactions on, vol. 46, no. 4, pp. 886–
902, 1998.

[7] M.F. Duarte, M.B. Wakin, and R.G. Baraniuk, “Wavelet-
domain compressive signal reconstruction using a hidden
markov tree model,” in Acoustics, Speech and Signal Process-
ing, 2008. IEEE International Conference on. IEEE, 2008, pp.
5137–5140.

[8] N.S. Rao, R.D. Nowak, S.J. Wright, and N.G. Kingsbury,
“Convex approaches to model wavelet sparsity patterns,” in
Image Processing (ICIP), 2011 18th IEEE International Con-
ference on. IEEE, 2011, pp. 1917–1920.

[9] Y. Zhang and N. Kingsbury, “Fast L0-based sparse signal re-
covery,” in Machine Learning for Signal Processing (MLSP),
2010 IEEE International Workshop on. IEEE, 2010, pp. 403–
408.

[10] S.D. Babacan, S. Nakajima, and M.N. Do, “Bayesian group-
sparse modeling and variational inference,” Submitted to IEEE
Transactions on Signal Processing, 2012.

[11] L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis, “Group-
sparse model selection: Hardness and relaxations,” arXiv
preprint, arXiv:1303.3207, 2013.

[12] Y. Zhang and N. Kingsbury, “Improved bounds for modified
subband-adaptive iterative shrinkage/thresholding algorithms,”
Image Processing, IEEE Transactions on, vol. 22, no. 4, pp.
1373–1381, 2013.

[13] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simoncelli,
“Image denoising using scale mixtures of Gaussians in the
wavelet domain,” Image Processing, IEEE Transactions on,
vol. 12, no. 11, pp. 1338–1351, 2003.

[14] P. de Rivaz and N. Kingsbury, “Bayesian image deconvolution
and denoising using complex wavelets,” in Image Processing,
2001. Proceedings. 2001 International Conference on. IEEE,
2001, vol. 2, pp. 273–276.

[15] Y. Zhang and N. Kingsbury, “A Bayesian wavelet-based multi-
dimensional deconvolution with sub-band emphasis,” in Engi-
neering in Medicine and Biology Society, 2008. EMBS 2008.
30th Annual International Conference of the IEEE. IEEE,
2008, pp. 3024–3027.

[16] Aram Danielyan, “BM3D frames and variational image de-
blurring,” Image Processing, IEEE . . . , vol. 2011, no. 213462,
pp. 2006–2011, 2012.

[17] Feng Xue, Florian Luisier, and Thierry Blu, “Multi-Wiener
SURE-LET deconvolution.,” IEEE transactions on image pro-
cessing : a publication of the IEEE Signal Processing Society,
vol. 22, no. 5, pp. 1954–68, May 2013.


