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ABSTRACT

This paper introduces a method by which intuitive feature
entities can be created from ILP coefficients. The ILP trans-
form is a pyramid of decimated complex-valued coefficients
at multiple scales, derived from dual-tree complex wavelets,
whose phases indicate the presence of different feature types
(edges and ridges). We use an Expectation-Maximization
algorithm to cluster large ILP coefficients that are spatially
adjacent and similar in phase. We then demonstrate the re-
lationship that these clusters possess with respect to observ-
able image content, and conclude with a look at potential
applications of these clusters, such as rotation- and scale-
invariant object recognition.

1. INTRODUCTION

Multiscale representations of images possess many advan-
tages in object recognition and image retrieval activities. If
an object has a known and simple multiscale profile - that is,
a sparse set of feature entities in a known spatial and scale
pattern - then the search and identification of transformed
instances of a desired object is simplified. In particular, if
one can first search a decimated search domain for a coarse
level representation of an object, the potential exists to ac-
celerate an object recognition algorithm.

The Dual-Tree Complex Wavelet (DT CWT) [1] has the
ability to decompose a 2-D image into a decimated, multi-
scale representation that isolates coarse image components
into a sparse set of equally spaced complex coefficients. In
prior work [2], we have demonstrated a method by which
this set of coefficients may be manipulated into a new set,
the Interlevel Product (ILP). The phases of the ILP con-
sistently represent the type of feature in the spatio-scalar
vicinity, where a feature type may be a step edge or a ridge.
Thus, the presence of such a feature will result in a tight
spatial cluster of large similar-phase ILP coefficients at the
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appropriate scale; and, given an observation of such coeffi-
cients, one may infer the presence and characteristics of the
original feature.

In this paper, we seek to perform this latter task; from a
set of coarse-scale ILP coefficients, we will infer the pres-
ence of abstract ILP “feature” entities. Each entityc will
require the following parameters to represent feature char-
acteristics:

• Feature Type: θc. A feature is either a pure ridge,
a pure edge, or a combination of the two (“combi-
nation” is a loosely defined term that includes curvy
features, half-ridges, noisy edges, etc.) The feature
type is represented by the mean complex angle,θc, of
the ILP coefficients that comprise the entity.

• Feature Location: µc. The 2-D location of the fea-
ture is defined relative to other features in its level of
the multiscale hierarchy. Feature locations may also
be defined relative to specific parent features in the
next coarsest scale. And, ultimately, there will be a
“root” feature against which all features are relatively
measured. This feature will typically be the largest or
most salient feature at the coarsest level.

• Feature Shape: Σc. The shape parameter summa-
rizes the size, orientation, and spatial distribution of
the entity. We adopt the parameter nameΣc because,
in this paper, our shapes are covariance matrices of
Gaussian distributions. However, shape parameters
may be much more flexible to accommodate corre-
spondingly more complex shapes.

• Feature Saliency: αc. The saliency of the feature
refers to the level of contrast of the feature, and cor-
responds to the magnitude of the comprising ILP co-
efficients.

To create entities with these parameters, we will mod-
ify the traditional EM-trained Gaussian Mixture Model to
cluster large, same-phase coefficients. The resultant entities
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Fig. 1. Relationship between the complex phase of an ILP coef-
ficient in the15◦ subband and the nature of a∼15◦ feature in the
vicinity. Note that this phase-to-feature relationship is constant in
all subbands (with appropriately oriented features).

should not only be robust to multiscale misalignment (dis-
cussed further in [2]), but they should also possess semantic
meaning with regard to visually identifiable image features.

We begin in section 2 with a more detailed description
of the ILP transform with examples; section 3 describes the
modified GMM routine we use, and section 4 shows the re-
sults. We conclude in section 5 with further discussion on
the motivation for this methodology and future work.

2. THE ILP TRANSFORM

For anN ×M pixel image, the ILP is a pyramid ofL lev-
els, where each levell = 1 . . . L possessesN

2l × M
2l × 6

complex coefficients, where the six values at each spatial
location correspond to six directional subbands at15◦, 45◦,
75◦, 105◦, 135◦, and165◦; thus, it is identical in dimen-
sion to the DT CWT upon which it is based. It is created by
multiplying the DT-CWT coefficients at the corresponding
location and levell by the complex conjugate of a phase-
doubled, interpolated version of theirl + 1 parent coeffi-
cients; this process is outlined in detail in [2].

The phases of DT CWT coefficients are dependent upon
the spatial offset of directional features, and are therefore
unreliable to represent objects consistently. By contrast,
the phases of the ILP are only influenced by the nature of
the feature in the vicinity. Specifically, the relationship of
phase with local feature type is shown in Figure 1; large-
magnitude values that are purely real or purely imaginary
indicate edges and ridges (respectively) that are high-contrast
and ideal. Large magnitude ILP coefficients that possess
both imaginary and real components indicate hybrid fea-
tures (which can include curves, wide ridges, or ridge-edge
combinations), and small magnitude coefficients indicate
areas that are generally flat (where the phase is random and
meaningless).

In Figure 2, one can see the six-subband level 2 ILP
decomposition of a typical aerial image. By applying the
phase relationships shown in Figure 1, one can visually as-
sociate a macroscopic feature in the image with a cluster
of corresponding ILP coefficients in the ILP representation.
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Fig. 2. An aerial image (a) and its Level 2 ILP Decomposition
(χ2) (b), with subbands15◦, 45◦, 75◦, 105◦, 135◦, and 165◦

shown starting from the top left corner, clockwise.

For instance, one can consider the top edge of the upper-
left white building as an abstract feature that corresponds
to the cluster of ILP coefficients that are positive-real (i.e.
pointing to the right) in the corresponding location of the
15◦ subband. These positive-real coefficients extend not
only along the length of the edge, but are somewhat broad
in the direction normal to the edge as well. This “soften-
ing” of edges and ridges in the ILP domain allows us to use
smooth Gaussian clusters to represent these originally crisp
features, provided that the cluster can be associated with a
complex phase (which would be positive-real, in this case).

3. EM ALGORITHM FOR DIRECTIONAL
CLUSTERING

The Gaussian Mixture Model builds a set ofk Gaussian
clusters uponi data pointsx, where each clusterc = 1 . . . k
is weighted by a value,αc, and possesses the following dis-
tribution:

p(xi|µc, Σc) =
1

(2π)
d
2 |Σc| 12

e−
1
2 (xi−µc)

T Σ−1
c (xi−µc) (1)

The parametersµ, Σ, andα are determined through the
iterative Expectation-Maximization algorithm [3] by which
the log likelihood expression

k∑
c=1

N∑

i=1

log(p(xi|µc, Σc))p(c|xi,Θc) (2)



is maximized with respect to each parameter, while all
other parameters remain fixed. We calculatep(c|xi, Θc) us-
ing Bayes’ Rule andαc as a prior, andΘc refers to the com-
plete parameter set{µc, Σc, αc, θc} for all c ∈ k. The up-
date parameters for theαc cluster weights are

αnew
c =

1
N

N∑

i=1

p(c|xi, Θc) (3)

Equation (1) is used to model single-instance data points
at the givenxi locations. If we were to imagine that the data
point xi was independently and repeatedly observed in the
same locationβi times, the joint probability of this event
can be expressed as

p(xi, βi|µc, Σc) =
1
Qi

(p(xi|µc, Σc))
βi (4)

whereQi is a normalizing constant. If we allowβi to
take on any positive real value, rather than just integer mul-
tiples, we can also accommodate any data set where indi-
vidualxi locations are weighted by any value ofβi.

Our ILP data, however, is a set of continuous complex
ILP coefficients from levell, χl, wherexi is the location
of theχ

(i)th
l coefficient, and we need to create a real scalar

valueβi,c with respect to clusterc to use Equation (4). Our
clusters must be designed such that the largest adjacent sets
of these coefficients (in the same directional subband) with
similar phase should be clustered together and represented
by their mean phase,θc. Thus, we defineβi,c to be the

projectionof the χ
(i)th
l coefficient onto a unit vector with

the proposed cluster phaseθc:

βi,c = <
[
(χ(i)

l )∗ · ejθc

]
(5)

and j =
√−1. We can now model these real-valued

projections asβi,c instances of a single-instance data point
at that location; thus, our expression forp(xi|µc, Σc) has
now become

p(xi, βi,c|µc, Σc, θc) =

1
Qi

[
1

(2π)
d
2 |Σc| 12

e−
1
2 ((xi−µc)

T Σ−1
c (xi−µc)

]βi,c

(6)

Inserting these new values into equation (2) produces
the following expression:

k∑
c=1

N∑

i=1

[
log

1
Qi
− (7)

βi,c

2
[
log |Σc|+ (xi − µc)T Σ−1

c (xi − µc)
]
p(c|xi)

]

We maximize equation (7) with respect toΣc andµc by
differentiating and setting the result to zero, and solving for
each of these variables. The procedure for determiningΣc

andµc is almost identical to the original GMM derivation,
which is explained comprehensively in [4]. The resulting
iterative update equations forΣc andµc are shown below:

µnew
c =

∑N
i=1 βi,cp(c|xi,Θc)xi∑N
i=1 βi,cp(c|xi, Θc)

Σnew
c =

∑N
i=1 βi,cp(c|xi, Θc)(xi − µnew

c )(xi − µnew
c )T

∑N
i=1 βi,cp(c|xi,Θc)

From our interpretation ofβi,c as multiple instances of
a data point atxi, we can see that the update equation for
αnew, equation (3), may be rewritten as

αnew
c =

∑N
i=1 βi,cp(c|xi, Θc)∑N

i=1 βi,c

(8)

For the update equations of our additional parameter,θc,
we show an explicit derivation below. For simplification, we
define

Ki,c = −1
2

(
log |Σc|+ (xi − µc)T (Σc)−1(xi − µc)

)
(9)

Substituting equations (9) and (5) into equation (7), and
dropping constant terms, our new maximization expression
is

k∑
c=1

N∑

i=1

<
[
(χ(i)

l )∗ · ejθc

]
Ki,cp(c|xi) (10)

=
k∑

c=1

N∑

i=1

[
<[χ(i)

l ] cos θc + =[χ(i)
l ] sin θc

]
Ki,cp(c|xi)

Differentiating equation (10) with respect toθc and setting
it to zero provides us with

N∑

i=1

[
−<[χ(i)

l ] sin θc + =[χ(i)
l ] cos θc

]
Ki,cp(c|xi) = 0

⇒ sin θc

cos θc
=

∑N
i=1 =[χ(i)

l ]Ki,c [p(c|xi)]∑N
i=1 <[χ(i)

l ]Ki,c [p(c|xi)]

⇒ θnew
c = tan−1

∑N
i=1 =[χ(i)

l ]Ki,c [p(c|xi)]∑N
i=1 <[χ(i)

l ]Ki,c [p(c|xi)]
(11)

and thus equation (11) is our update equation forθnew
c .



Fig. 3. Trained Gaussian clusters, 10 per subband, to represent
the data shown in Figure 2. The angle of the arrow in each cluster
represents the ILP directionθc, and the magnitude representsαc,
the relative weight of the cluster.

4. RESULTS

In Figure 3, we see the ILP coefficients of Figure 2 clus-
tered with 10 coefficients per subband. As with all cluster-
ing algorithms, determining how many clusters are required
to effectively represent image features is an important as-
pect, and work will continue in this area. For this example,
iterations continue until all cluster means and complex di-
rections shift less than 0.1 samples and 0.1 radians between
iterations.

We have two criteria by which we can measure the ef-
fectiveness of our clustering algorithm: perceptually, and
numerically. Perceptually, we can compare cluster data with
our own perception of the image by looking at the heaviest-
weighted clusters in the image and associating them with
image features; in Figure 4, we see examples of the15◦ step
edge in the upper left farm, for instance, and the dominating
135◦ ridge-edge in subband 5 in the right of the diagram.

Numerically, we can regenerate the ILP coefficients and
compare the results with the original ILP coefficients through
a mean-squared error measure; or, equivalently, we could
use a normalized cross-correlation. Note that we cannot
sensibly use differences between the actual image and a
cluster-generated image, as small changes in the ILP can
produce large changes in the original image. With such
measures, we can find the minimal number of clusters re-
quired to capture a given proportion of overall ILP data.

5. CONCLUSIONS

This paper has introduced a method by which directional
ILP data may be clustered with a modified Gaussian mix-
ture. We show that this method can be used to sparsely rep-

Fig. 4. Perceptual interpretation of example clusters in Figure 3,
where the phases of each cluster are interpreted using the relation-
ship in Figure 1 at the appropriate subband orientation.

resent major image components at a given level of scale,
and the parameters of these clusters have clear perceptual
meaning. By reducing image content into this sparse for-
mat, we are able to perform fast searches for various per-
mutations and affine transformations of a desired object, in
a decimated search space. We therefore plan to use these
ILP clusters to build scale- and rotation-invariant represen-
tations of image objects that can be used for fast image re-
trieval and object recognition.
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