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ABSTRACT

In this paper we propose a new algorithm for reconstructing phase-
encoded velocity images of catalytic reactors from undersampled
NMR acquisitions. Previous work on this application has employed
total variation and nonlinear conjugate gradients which, although
promising, yields unsatisfactory, unphysical visual results. Our ap-
proach leverages prior knowledge about the piecewise-smoothness
of the phase map and physical constraints imposed by the system
under study. We show how iteratively regularizing the real and
imaginary parts of the acquired complex image separately in a shift-
invariant wavelet domain works to produce a piecewise-smooth
velocity map, in general. Using appropriately defined metrics we
demonstrate higher fidelity to the ground truth and physical system
constraints than previous methods for this specific application.

Index Terms— magnetic resonance, velocity imaging, com-
pressed sensing, iterative algorithms, sparsity.

1. INTRODUCTION

Magnetic resonance imaging (MRI) has been used effectively to
non-invasively image the distribution of velocity in liquid and gas
flows. While most MRI applications seek to accurately recover the
voxel magnitudes, the quantity of interest here is the velocity of
a fluid, which is proportional to the phase of the complex image.
In this application, we investigate the accurate recovery of phase
information from subsampled MRI measurements, used in the char-
acterization and prediction of flow behavior in packed bed catalytic
reactors. Subsampling enables one to reduce acquisition times and
thus study detailed features, such as fine vortices. Recovery of phase
is also useful in cardiovascular MRI [1], rheology, and the study of
porous media and granular flows [2].

Holland et al [3] have demonstrated the accurate recovery of
liquid-gas flow images in this application via total variation (TV)
minimization using a nonlinear conjugate gradients (NCG) solver.
This method, referred to as TV-NCG, was adapted from the CS MRI
methods originally proposed by Lustig et al [4]. However, the TV
regularization sometimes leads to unphysical blocking/staircasing
artifacts [5], limiting our ability to quantify flow structures. Another
technique developed by Zhao et al [6] regularizes the phase images
(using preconditioned conjugate gradients) and magnitude images
(using iterative soft thresholding) separately at each iteration. This
method is well-adapted to producing a smooth phase-map while
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preserving edges. However it requires switching between different
regularizers for the phase cost function in early iterations in order to
converge to a desirable local minimum, with no theoretical guaran-
tees.

We approach the problem of recovering phase maps with the
same piecewise-smooth assumption employed in [3, 6], and de-
velop an algorithm that incorporates the ideas in each. Like [3], we
consider the recovery of phase by regularizing the real and imagi-
nary parts separately, which is an approach justified in section 2.2.
Unlike [3] however, we employ a smooth dual-tree wavelet-based
regularization in order to avoid the blocking artifacts introduced by
TV minimization. Also we adopt a reweighted least squares ap-
proach to encourage sparsity, together with a continuation strategy
as in [6], in order to converge smoothly towards good sparse solu-
tions, despite the non-convexity of the problem space.

With these requirements in mind, iterative soft thresholding in
the wavelet domain is a natural approach. Wavelets can sparsely
represent piecewise-smooth signals very well, and the rapid con-
vergence of iterative sparse recovery via soft thresholding is well
studied [7, 8]. Generally, subband-adaptive thresholding algorithms
have produced promising results for image deconvolution [9, 10]
and, more recently, for CS MRI [11]. Therefore, we propose utiliz-
ing the modified subband-adaptive iterative shrinkage/thresholding
(MSIST) algorithm [12], which finds a sparse solution using a re-
weighted l2 approximation of the l0 norm in the wavelet domain.
However, because our input signal is complex, rather than being
purely real, we need to adapt the basic MSIST algorithm to handle
complex, phase-encoded data, which is explained in section 2.2.

For the proposed algorithm the dual-tree complex wavelet trans-
form (DT-CWT) is chosen as an overcomplete sparsifying basis,
because of the following desirable properties which make it well-
suited for this wavelet regularization application:

1. Shift-invariance,

2. limited redundancy (4 : 1 for 2-D images), and

3. an efficient filter-bank implementation.

Shift invariance ensures that the effects of wavelet domain thresh-
olding remain spatially localized and consistent. The dual-tree ap-
proach is a more computationally efficient way to achieve this than
other techniques (e.g. random shifting [9, 11]) for mitigating un-
wanted artifacts such as ringing.

Following the development of this algorithm, we show how the
physical constraints for the system under observation are incorpo-
rated in the reconstruction in section 2.3.



Fig. 1. k-space mask reduced vertically 4:1 to save space. The
k-space origin is centered and the sampled phase-encode lines are
shown in white.

2. METHODS

2.1. Compressed Sensing for Velocity Imaging

In this application, the velocity of a fluid, passing through a reac-
tor tube filled with spherical catalyst beads, is acquired by applying
two successive gradient pulses, using magnetic field gradients of +g
and −g, respectively, and separated by an observation time ∆. A
thorough treatment of MRI phase-encoded velocity imaging can be
found in [2].

After applying the appropriate imaging gradients, the acquired
complex image f is modeled as

f = m exp(−ix) (1)

where i =
√
−1, the magnitude m is proportional to the signal

strength, and the phase x encodes the velocity V according to

x = γgδ∆V (2)

Here, γ is the gyromagnetic ratio, ∆ is the time interval between
the two gradient pulses, and δ is the time duration of each gradient
pulse.

We model the observation of the k-space representation of f via
the undersampled Fourier transform Fu:

y = Fuf + b (3)

The term b represents the effects of noise or scanner imprecision.
Because the acquisition time is proportional to the sampling fraction,
it is desirable to increase the degree of undersampling in Fu in order
to improve the spatio-temporal resolution of the imaging system.

Using the Monte-Carlo incoherent sampling design in [4], k-
space patterns are simulated according to the polynomial decaying
density in eq. (4), and the sampling pattern with the smallest peak
interference is chosen.

p(kr=1) = (1− r)ρ (4)

Here ρ is the decay factor, typically chosen to be 5/2, r is the nor-
malized distance from the k-space origin, and kr takes on a binary
value, or mask value, according to this distribution (see fig. 1).
Fully-sampling near the k-space origin with random sampling ac-
cording to eq. (4) gives an optimal trade-off between the fidelity to
the observed signal and the necessary incoherence for artifact-free
CS recovery from fully-random sampling [4, 13].

2.2. MSIST Algorithm for Sparse Recovery of Phase Images

In [12], the MSIST algorithm has been shown to achieve superior
deconvolution results relative to other subband-adaptive algorithms
[9, 14] for approximately piece-wise smooth natural images. In this

application, we also assume that the velocity image is piecewise-
smooth, with a sparse representation in the wavelet domain. By
regularizing the real and imaginary parts of f , we can promote a
piecewise-smooth distribution of phase values.

We justify regularizing the real and imaginary parts in order to
obtain a piecewise-smooth phase x in eq. (1) as follows. If fRe =
m cos(x) and fIm = m sin(x) are smooth, then f will be smooth,
and so x = ∠f will also be smooth as long as m = |f | does not
become small. Hence, if fRe and fIm are piecewise-smooth, then x
will be piecewise-smooth as long as m is not small.

To avoid confusion because the input signal f and DT-CWT co-
efficients are both complex-valued, we summarize how the DT-CWT
coefficients are stored and used. The two uses of complex values
need to be kept separate since they are using complex to represent
different things. The DT-CWT produces 2N j-indexed, complex-
valued coefficients w̃j from a real image of size N pixels, via 4
parallel filter-banks [15]. Arranging the real and imaginary parts
of w̃ into a real column vector w such that w2j−1 = Re(w̃j) and
w2j = Im(w̃j) ∀j, we takeW andW ′ to be the forward and inverse
DT-CWT operators and these can now be purely real matrices of size
4N×N andN×4N respectively. This effectively converts the DT-
CWT into a purely real overcomplete transform, which can then be
applied separately to the real and imaginary parts of f to generate
the complex 4N -vector, wRe + iwIm = Wf = WfRe + iWfIm;
and similarly f = W ′wRe + iW ′wIm.

In order to find a sparse solution f∗ which minimizes the dis-
crepancy between the observed signal y and Fuf , we start with
minimization of the following penalty function J(f), representing
−2ν2 log of the pdf, where ν2 is the measurement noise variance:

J(f) = ‖y − Fuf‖2 − 2ν2 log(p(f)) (5)

Because f is complex, we must be careful how we define the
sparsity-inducing term, −2ν2 log(p(f)) in eq. (5). To achieve this,
we assume that the real and imaginary parts of f are both sparsely
represented in the wavelet-domain, each having a Gaussian distribu-
tion of coefficient magnitudes with zero mean and spatially adapt-
able variance, as in [10].

Following the same stabilized Gaussian scale mixture model
and majorization minimization (MM) approach detailed in [10], eq.
(5) can be expressed in terms of new variables w, S and z, where
w = wRe + iwIm, S is the diagonal matrix of inverse variances
in the model, and z represents the previous estimate of w for MM.
Hence:

J(w, S, z)) =‖y − FuW ′w‖2

+ ν2
[
wHSw + ln |S|+ ε2Tr(S)

]
+ (w − z)H(Λα −WF ′uFuW

′)(w − z) (6)

The MM expression on the third line of this equation is designed
to cancel out the term wHWF ′uFuW

′w from expanding the first
line. This leaves only linear terms in w plus a single quadratic term,
wH(Λα + ν2S)w, which avoids cross-coupling between the ele-
ments of w because Λα and S are diagonal and real. To achieve fast
and stable convergence, Λα must be chosen in a subband-dependent
way to be the minimum value which makes (Λα − WF ′uFuW

′)
positive definite.

Now J(w, S, z) is minimized iteratively in the conventional way
by taking derivatives with respect to w, z and S in turn and setting
them to zero. Since w is complex, we take derivatives with respect
to wRe and wIm, and set each to zero. This leads to the following
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expressions for updating wRe and wIm at iteration n+ 1:

wRe,n+1 = (Λα + ν2S)−1[W Re{F ′u(y − Fufn)}+ ΛαzRe,n]

wIm,n+1 = (Λα + ν2S)−1[W Im{F ′u(y − Fufn)}+ ΛαzIm,n]
(7)

Because (Λα −WF ′uFuW
′) is positive definite, zn+1 = wn+1, as

this minimizes the MM component of J , making it zero.
Then the diagonal elements of S are updated fromwn+1 by min-

imizing the second line of eq. (6), subject to the tying constraint
that S2j = S2j−1 so that the four components of each doubly-
complex wavelet coefficient pair are drawn in a phase-unconstrained
way from an isotropic 4-D Gaussian distribution. This gives, for all
j, indexing elements 2j−1 and 2j from wRe,n+1 and wIm,n+1:

S2j = S2j−1 =
1

1
4
(w2

2j−1,Re+w2
2j−1,Im+w2

2j,Re+w2
2j,Im)+ε2

(8)
Finally, to obtain the reconstructed complex image, we calculate

fn+1 = W ′wRe,n+1 + iW ′wIm,n+1 (9)

These steps from eqs. (7) to (9) are then iterated to convergence.
Note that ε2 in eqs. (6) and (8) is a stabilizing parameter which

makes J locally convex, and is typically shrunk from a large to a
small value as the minimization of J proceeds so as to encourage
convergence to the globally minimal solution (or a good approxima-
tion to it). For fastest convergence, it was reported in [10, 16] that
ν2 should be reduced with ε2 so that the ratio ν/ε remains approxi-
mately constant. Reducing ν and ε changes the shape of the sparse
penalty to mimic an l2 norm in earlier iterations, and an l0 norm in
later iterations. This slowly reduces the soft sparsity map of wavelet
coefficients and avoids convergence to poor local minima. Following
the suggestions in [10,16], a rapid reduction in early iterations of the
initial choice of ν0 and ε0 and a slower reduction in later iterations
to final values of νN and εN , ensures that the algorithm converges
well.

Here we have chosen an exponentially decaying continuation
rule for ν and ε which works well for this application:

νn = ν0 exp

(
− n

K

)
+ νN (10)

and

εn = ε0 exp

(
− n

K

)
+ εN (11)

where N is the total number of iterations (typically 20 to 50) and K
is a decay constant.

2.3. Enforcing physical system constraints and initial solution

For the application at hand, we consider improving the reconstruc-
tion by taking into account the physical constraints of a system of
fluid flowing through a tube packed with solid spheres, and, more
generally, any laminar flow system where solid and fluid interfaces
exist. From fluid dynamics, we expect the velocity of the fluid at the
fluid/solid interface to be zero [17], barring limitations imposed by
the resolution or imprecision of the acquisition. We refer to this as
the boundary layer constraint.

We start with a logical mask M , which indicates the presence
(1) or absence (0) of fluid. This mask is obtained by acquiring a
fully-sampled k-space image in the desired position along the reactor

Fig. 2. Mask used to enforce physical system constraints.

cylinder, and determining the regions where there is negligible signal
magnitude (absence of fluid) by using a simple thresholding rule.
This threshold is set by choosing a value halfway between the peaks
of a bimodal distribution of signal magnitudes, which correspond to
the solid and fluid regions. In practice, this mask M is available
for most experiments. It is derived from a separate, fully-sampled
k-space acquisition, where the velocity distribution of the fluid is of
no interest, and only the magnitude image is considered.

In order to provide ground truth for our results, we simulate the
effect of k-space undersampling by applying Fu to a fully sampled
k-space acquisition f to obtain y. We then obtain a zero-filled initial
solution f0 = F ′uy.

Before each iteration n of our reconstruction, we enforce zero
phase on all of the non-fluid elements of fn via M̄(∠fn) = 0, but
allow the magnitude to be unconstrained so it achieves smoothness
with the surrounding fluid elements and consistency with the mea-
sured data, y. Here we have used M̄(fn) to indicate selection of
those elements of fn corresponding to the non-fluid regions (black
in fig. 2). In this way, we incorporate a spatial domain velocity prior
into the wavelet regularization algorithm.

3. RESULTS

In our experiments, we have used the same raw data and k-space
sampling technique as in [3]. We start with a fully-sampled MR
acquisition of water flowing through a packed tube (27mm diame-
ter) of borosilicate glass beads (5mm diameter), the phase image of
which is shown in fig. 3a.

We quantify the performance of our algorithm using the same
l2 error metric defined in [3] for the ground truth x and the recon-
structed phase x∗:

L2E =
‖M(x− x∗)‖2
‖M(x)‖2

(12)

Using a 30% sampling fraction for y, and setting ν0 = ε0 =
5 × 10−3, νN = εN = 5 × 10−4, K = 1.5, and N = 50, we have
obtained an L2E of 7.4%. This compares favorably with the pre-
vious L2E of 11% reported in [3] for TV-NCG. Both our method
and TV-NCG benefit from incorporating the mask prior shown in
fig. 2. Without using this mask to enforce the zero phase constraint
explained in sec. 2.3, our L2E worsens to 11.3%, with a similar ef-
fect for TV-NCG indicated in [3].
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(a) Ground truth. (b) TV-NCG.
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(c) MSIST.

Fig. 3. Ground truth velocity image and reconstruction using TV-NCG and MSIST. Non-fluid regions are shown in blue.

The proposed method improves upon the visual quality as well,
as shown in figs. 3 and 4. In fig. 3, typical blocking artifacts which
arise from TV minimization are not present in the reconstructions us-
ing our proposed wavelet regularization algorithm. This difference
more clearly illustrated by the line plots in figs. 4d and 4f corre-
sponding to central horizontal rows in figs. 4c and 4e, respectively.
Here the MSIST reconstruction exhibits smoother transitions than
TV-NCG between low-flow and high-flow regions, and yet these
transitions are still sharp, as in the ground truth data.

(a) Ground truth, zoomed.
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(b) Ground truth, line plot.

(c) TV-NCG, zoomed.
0

25

50

75

100

(d) TV-NCG, line plot.

(e) MSIST, zoomed.
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(f) MSIST, line plot.

Fig. 4. Zoomed ground truth and reconstruction images with plots
from the central image line, where velocity (mm/s) is shown on the
vertical axis. Blocking/staircasing artifacts in (c) and (d) are miti-
gated in (e) and (f).

4. CONCLUSION

We have shown that the MSIST algorithm can be modified to ac-
commodate complex images with velocity phase encoding by reg-
ularizing the wavelet-domain real and imaginary parts separately.
We have designed this algorithm to reconstruct a piecewise-smooth
phase map obtained from a subsampled MR acquisition, and we have
demonstrated how the reconstruction of these images can be accom-
plished in general. By employing an overcomplete wavelet trans-
form (DT-CWT) in a subband-dependent regularization algorithm
with appropriate continuation rules, we have minimized potential
artifacts and allowed for fast convergence towards a more accurate
sparse solution.

For the specific application of catalytic bead reactor flow imag-
ing, the presence of physical velocity map constraints was handled
by enforcing spatial domain phase constraints in this wavelet regu-
larization approach. Consequently, we have improved upon the re-
sult in [3] obtained using TV regularization, both quantitatively and
qualitatively.

Future improvements using this algorithm on phase-encoded ve-
locity applications could potentially be realized by exploiting inter-
scale dependencies and stronger priors on the wavelet coefficients
[18, 19]. Improving the convergence speed by finding better param-
eters for Λα [12] and better continuation rules for ε and ν may also
be worth pursuing.
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