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ABSTRACT

It is becoming increasingly important to develop novel signal pro-
cessing and statistical analysis techniques to extract information
from biotechnology. This task is complicated by large datasets,
intricate physical systems, and the sheer diversity of information
that is available. In many systems, classical non-parametric sig-
nal processing techniques have been applied with some success.
However, where sufficient information is available to construct ac-
curate models, substantial gains can sometimes be derived from a
model-based approach. The Bayesian paradigm provides an ele-
gant and mathematically rigorous framework for the objective in-
corporation of information. In this paper, we develop a Bayesian
model for DNA sequencing, with an emphasis on generaly rele-
vant Bayesian model selection issues.

1. INTRODUCTION

The aim of Signal Processing is to develop agorithms that use as
much information about a system as possible without imposing
unfeasible computational requirements. Thisis particularly true of
biotechnology, where there is a wealth of prior information about
the chemical and physical processes leading to data generation,
but the systems are too complicated for all effects to be included
in the analysis process. Further complicating the situation, most
biological systems are subject to uncertainty, either deriving from
our understanding of the system or genuine random effects (e.g.
where quantum effects become significant). In this paper, we dis-
cuss the use of the Bayesian paradigm for rigorous inference from
DNA sequencing data where there is both uncertainty and a num-
ber of different information sources to be included.

The basic form of the DNA sequencing process is common to
many systems in biotechnology and is illustrated in figure 1. At
the heart is a biological object or system about which we wish to
make inference (in this case, the sequence of an unknown piece of
DNA). This object is subjected to a physical process, the biotech-
nology, which outputs a more directly informative quantity, per-
haps a physical object or other observable phenomenon. Finaly,
this output is quantified with some measurement apparatus.

Biological
Process
p(s)

Fig. 1. Modelling Biotechnology experiments.

In the figure, y denotes the measurements from the system, 1
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is a set of parameters used in the description of the measurement
process, 8 similarly parameterises the biotechnology process, and
s denotes the underlying biological object or system of interest.
Thep (-) quantities represent probability densitiesthat describethe
stochastic processesin question; for example, p (s) could describe
the biologically encoded algorithm used to generate achild’'s DNA
fromits parents’.

The @m of biotechnology analysis is to estimate p (s|y), the
posterior distribution of the underlying biological state given the
data. Using Bayes's rule, we have:

p(sly) xcp(yls)p(s)

- [ [r10.9)p@1s)p (8) a0 | p )

where, owing to the non-linearity of real systems, the integral giv-
ing p (y|s) israrely available analytically.

The application of the Bayesian paradigm to biotechnology thus
necessitates two major tasks:

o Development of suitable models for each of the three stages
- biology, biotechnology, and measurement - that capture the
essence of the physical processes.

e Numerical estimation of p(s|y) or a particular feature
thereof.

In the following sections we develop these ideas in the context
of the DNA seguencing problem, and provide someresultstoillus-
trate the potential advantages and disadvantages of the approach.
The intention is to give aflavour of the underlying biology, with-
out delving into more esoteric biological issues; a more detailed
description can be found in [6, 9].

2. DNA SEQUENCING BACKGROUND

Much, if not all, of the information which determines our physical
function is stored within our cells within the double helical chemi-
cal structure known as deoxyribonucleic acid (DNA). For our pur-
poses DNA can be thought of as a string of symbols (in redlity,
chemical bases) taken from a four letter alphabet: A (Adenine),
G (Guanine), C (Cytosine), or T (Thymine). In this paper we are
concerned with the determination of that sequence.

In 1974, Sanger [8] proposed a method for DNA sequencing
which, with technical improvements, has since been almost uni-
versally accepted. The idea behind the processis simple. Initialy,
via a process of replication and termination the DNA sequence
of interest, henceforth the template, is used to form a large pop-
ulation of partia replicas. Each replica is identica to the tem-
plate over arange of bases, always commencing with the first base
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of the template, and terminating some random distance down the
strand. That is, for the template ACGGG the population would
contain a number of each of the following: A, AC, ACG, ACGG,
and ACGGG.

Each fragment is fluorescently labelled according to its termi-
nating base, and the entire population isaligned at the start of agel.
An electric field is applied, causing the dlightly charged fragments
to progress through the gel at rates approximately inversely pro-
portiona to their length. The various subpopulations thus arrive at
the end of the gel in sequence order. A laser positioned near the
end of the gel excites the fluorescent labels, allowing a set of four
emission detectors to estimate the number of fragments terminated
by a each base passing at each time instant. Each emission detec-
tor is targeted at the maximum fluorescent emission frequency for
one of the four dyes.

Four data sets are obtained (henceforth, channels), correspond-
ing measurements of the fluorescence from the changing number
of fragments passing the end of the gel. This collection of data
is known as an electropherogram and is quite clearly indicative of
the underlying base sequence. The electropherogram is a mixture
of peaks in four channels, with each base in the sequence associ-
ated with one major peak in the corresponding channel, and three
secondary peaks in the remaining channels resulting from leskage
fluorescence. An example data set is shown in figure 3.

When the peaks are approximately of constant amplitude,
evenly spaced, well defined, and not obscured by noise, the data
istrivial to interpret. Unfortunately, in reality the data is subject
to several processes leading to serious degradation of data quality,
particularly near the end of the sequence. For example, during a
typical sequencing run an electropherogram exhibits variation in
the processes which define peak shape, spacing, amplitude, and
the nature of the noise.

The current state-of-the-art from a signal processing perspec-
tive, Phred, is described in [3], where a combination of peak de-
tection algorithms is proposed. Excellent results are also shown
in [2], while [6, 7] presents an algorithm based on statistical mod-
elling of the underlying process that is useful in some scenarios.

3. PROCESSMODELS

We now develop core models for DNA sequencing data that in-
clude our understanding of the biology, the biotechnology process,
and the observation process. A more detailed discussion of these
and peripheral modelsis supplied in [6].

3.1. Biological Process

The biological process relevant to DNA sequencing is the creation
of the DNA sample - usually the intermingling of parental DNA
coupled with mutation. Occasionally we may have specific in-
formation, perhaps that the sample corresponds to a gene about
which certain structural assumptions can be made. Specific struc-
tural information is, however, rare, and it is more usual to have
non-structural base frequency information, e.g. how much richer
isaregionin G and C than A and T. Here, we make the commonly
made assumption that the i** base in the sequence is randomly se-
lected with probability dependent only on the previous base, i.e.
the system is Markovian. This assumption allows incorporation
of more basic information, without making overly strong assump-
tions about DNA structure. Dencting s; € {4, G, C, T} asthei"

baseands;.; 1 2 {s1,...,5: 1} wewrite:

P (si|s1:i—1) = p(silsi—1)

3.2. Biotechnology Process
3.2.1. DNA Fragments

Intuitively, the time for each fragment from a particular subpopu-
lation to reach the end of the gel can be modelled as a draw from
a probability distribution with mean approximately inversely pro-
portional to the fragment length and variance dependent on the
diffusion processinduced by the gel. For a given fragment popula-
tion, the observed distribution of timesto traverse the gel can thus
be considered as a histogram.

If, as is typical when DNA sequencing, the number of frag-
ments is large, this histogram closely approximates a continuous
function. This can be thought of as the product of a continuous
unit area function which we will call the peak shape, ¢; (n), and
a scalar quantity denoting the total number of fragments in that
subpopulation, a;. Making the frequently valid assumption of a
Gaussian peak shape [1], and denoting p; to be the mean time for
afragment from subpopulation i to reach the end of the gel and v;
to beits variance, we have:

b (n) = V;W_wexp{_w ;Uz:»z}

The fluorescence emanating from each fragment is dependent on
the interaction between the fragment sequence and the attached
fluorescent dye. It istherefore reasonable to assume that each frag-
ment from a given population fluoresces in the same way. Using
w; 2 {w; a,wiq,wi,c,wir}" todenote the fluorescence in each
of the four channels associated with each fragment from subpop-
ulation ¢, the total DNA fragment related fluorescence at time n,
Xn 2 {Tn, A, Tn,c, Tn,0y Tn,7 )" ISGIVEN DY:

Np
Xn = Z aiqﬁi (n) Wi
=1

where N denotes the number of bases in the template.

We now proceed to develop models for the physical processes
parameterised above.

a; : The quantity a; is used to denote the total number of frag-
ments of length 4, and is dependent on the replication and frag-
ment termination processes (see section 2). Here, there are several
pertinent pieces of information: the termination process tends to
produce more shorter fragments than long; the number of frag-
ments in a given population is directly related to the sequence of
that fragment, and particularly strongly to the terminating base and
the two bases to either side; in the absence of sequence specific ef-
fects, fragments with the same terminating base and similar length
will appear in similar number. Sequence dependent termination
patterns are discussed in the context of the relevant biology papers
in[9].

In reality, a; is adiscrete value. However, since the number of
fragments is generally large, the information loss resulting from
alowing a; to be continuous is small, and the range of possible
model choices increases. We propose:

a; ~ G (@a,Ya,s;Ba,i)
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where the choice of a Gamma distribution ensures positivity, con-
stant «, ensures a constant ratio of expectation to standard devi-
ation, f3,,; is related to the mean in the absence of sequence de-
pendent effects, s; istermed the state and is defined as the termi-
nating base and immediately surrounding bases, and ~,,s; models
the effect of this local surrounding sequence. The model for 3, ;
includes the idea that the number of fragments ending in the same
terminating base varies slowly with fragment length. See [6] for a
block stationary model.

pi : The quantity p; is the mean time taken for fragments of
length 4 to pass the end of the gel and isroughly inversely propor-
tional to fragment mass. The time difference between the arrival
of adjacent populations thus tends to decrease with increasing se-
guence length, although the stochastic nature of the fragments pro-
gression through the gel leadsto substantial variation, herereferred
to as peak jitter. Peak spacing patterns are also strongly related to
the underlying base sequence; local secondary structure can form
that leads to a change in fragment mobility [1].

Intuitively, the time taken for a fragment population to reach
the end of the gel is equal to the time of the previous population
plus an amount reflecting the difference in velocity imparted by
the additional base. This velocity differential is dependent on the
local sequence in question, and also on the relative lengths of the
adjacent fragments. We propose:

1~ N (ppy U, )
bi —PpPi—1~ g (apan,i’yPaSi) , 1>1 (1)

where a, is representative of peak jitter and is assumed known,
Bp,i isrelated to the mean peak spacing in the absence of sequence
dependent effects, and ,,s; iSasequence dependent modifier. The
model for 3,,; incorporates the slowly varying nature of the pro-
cess [6].

v; : The peak width process evolves over time, with atendency
to slowly stochastically increase with time-dependent diffusion ef-
fects [3,4]. To our knowledge, the evolution of width exhibits no
noticeable dependence on sequence. The following is proposed:

Vi ~ g (av; ﬂv,i)

where «, is assumed known a priori, and 8, ,; is related to the
mean of the process. Similarly to 3,,; and 3,,;, the evolution of
Byv,i ismodelled as slowly varying [6].

w; : In the absence of interaction between the dye and local
sequence, the emission spectra are often accurately known apriori.
However, no chemistry is entirely devoid of sequence dependent
effects, known or unknown; even fragments with identical local
sequence can be expected to produce slightly different emission
spectra. Here, the Normal distribution is proposed to incorporate
this uncertainty:

j e {A7 G7 C7 T}

where p., ; (s;) denotes the expected emission of afragment with
state s; inthe j € {A,G,C, T} channel . Similarly, v, ; (s:)
denotes the uncertainty inherent in this expectation. Both are as-
sumed constant and known. The choice of the Normal distribution,
as opposed to a distribution ensuring positivity, has been made for
mathematical convenience (see section 4).

Wiyj ~ N (pw,j (8i) 5 Vw5 (i)

3.2.2. Background Fluorescence

There are a number of possible sources of additiona fluores-
cence; for example, unincorporated dye or the gel itself. We will

call this fluorescence the background and denote it at time n by
by, 2 {bn,4,bn,c,bn,c,bu,r}". The precise form of the back-
ground is unknown - it depends on a host of conditions unique
to the individual experiment in question - but it is usually slowly
time-varying in each of the four channels. The specific choice of
model is thus relatively arbitrary, other than that it should ensure
smoothness and be sufficiently powerful to represent a wide vari-
ety of background behaviour. Here, we use cubic B-splines with
evenly spaced knots:

Ng
b, =Y pjvj (n)
j=1

where Ns denotes the number of splines used, v; (n) denotes the
4™ cubic spline basis function, and p; isits regression coefficient.
A locally linear background can also be used in many scenarios
[2,6], but isinappropriate for some more difficult datasets.

The smoothness of the process can be mathematically incorpo-
rated via the model on the regression coefficients using the well

n 2
known smoothness measure [ ‘bn‘ dn. See[6] for more details.

The need to separate signal from noise on the basis of smoothness
frequently arisesin the analysis of biotechnology data.

3.3. Measurement Process

The output of the detectors is given by the sum of the fluores-
cence and any detector noise. Denoting detector noise as e, =
{en.A,€n.c,en,c,enr} and the observation process y,, we
have:

yn:xn+bn+en

The noise introduced by each detector, e,.;, j € {A4,G,C, T},
can reasonably be approximated as zero mean Gaussian, indepen-
dent, and stationary. A model for the variance of this noise can be
made on the basis of knowledge of the apparatus in question, or
using lessinformative considerations [6, 7].

4. BAYESIAN INFERENCE

Using Bayes'srule, the individual probabilistic models of the pre-
vious section can be combined to yield an expression for the joint
posterior distribution:

p(0,s,%ly) < p(yl0,¢)p(0]s)p(s)p ()

where s, 8, and v respectively denote the unknown parameters
introduced in the Biological Process, Biotechnology Process, and
Measurement Process sections (see figure 1). The object of our
inference, p (s|y), isnot analytically available, and must be calcu-
lated by numerically integrating the nuisance parameters.

One of the advantages of the Bayesian paradigm is that we can
consistently exploit partial linearity and Gaussianity in the system
to reduce the space over which numerical integration must be per-
formed. Inthiscase, the posterior islinear and Gaussian in wi: v,
leading to

PO, Ply) = / p(8,5,%ly) dwi:ns

where, _., issimply € with wi.n, removed. Inference is then
made using the reduced distribution p (0—.,, s, ¥|y). No approx-
imation is introduced.
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Fig. 2. Example of ambiguity. The top two plots show two predic-
tions from our algorithm superimposed on the raw data, while the
bottom plot shows Phred's prediction.

It is also interesting to notice that inherent in the estimation of
s is the estimation of the number of bases present in the sequence.
One of the core advantages of the Bayesian paradigm is that it al-
lows this problem of model selection to be tackled within the same
framework, without the introduction of less justifiable criteria. It
also naturally provides model based error metrics - p (s = Sly)
gives the probability of S being the correct sequence interpreta-
tion.

The development of appropriate numerical algorithmsis a dif-
ficult task. Markov Chain Monte Carlo (MCMC) techniques are
ideally suited to such statistical problems. These techniques aim
to simulate from adistribution of interest through construction of a
Markov chain with stationary distribution equal to therequired dis-
tribution. Quantities of interest can then be examined through his-
tograms of the simulated population; a good review can be found
in[5]. A similar algorithm to that used here can be found in [6].

5. RESULTSAND DISCUSSION

We now consider two datasets which demonstrate the ability of
the algorithm to improve on the current state-of-the-art, Phred [3],
in certain scenarios. The data in figure 2 is ambiguous in that
it is difficult to discern the number of bases in the region. Two
sequence interpretations are supported by our posterior p (s|y):
TTCGGGAA with probability 60% (corresponding to the true se-
quence) and TTCGGAA with probability 40%. The preprocessed
output of Phred is aso shown, and it is seen that an incorrect call
ismade. The advantage of the model based approach here lies not
only in its greater accuracy, but in the provision of a meaningful
confidence measure.

Figure 3 illustrates another advantage of the model based ap-
proach. Since Phred uses a deterministic peak detection scheme
and does not directly model the peak shape or emission spectrum
process, it can be susceptible to base calling errors when peak
cusps are not distinct or sequence dependent effects are present.

o
9420 9440 9460 9480 9500 9520 9540 9560

Fig. 3. Another example. The top plot shows our prediction, while
the bottom plot shows Phred's. Our prediction corresponds to the
true sequence.

We believe the model based approach brings many advantages
to DNA sequencing and to biotechnology analysis in general.
However, there are certain situations where a non-parametric ap-
proach, less sensitive to the precise form of the data, can be prefer-
able. These arise where anomalies in the process lead to a break
down of the model assumptions. These issues are discussed in
more detail in [6]. Finally, the analysis of real models can be com-
putationally intensive; suitable approximations must be made if
fast processing is reguired.
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