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Abstract

In this paper we present Monte Carlo methods for multi-target tracking and data association. The methods are

applicable to general non-linear and non-Gaussian models for the target dynamics and measurement likelihood. We

provide efficient solutions to two very pertinent problems: the data association problem that arises due to unlabelled

measurements in the presence of clutter, and the curse of dimensionality that arises due to the increased size of the

state-space associated with multiple targets. We develop a number of algorithms to achieve this. The first, which we

will refer to as the Monte Carlo Joint Probabilistic Data Association Filter (MC-JPDAF), is a generalisation of the

strategy proposed in [1], [2]. As is the case for the JPDAF, the distributions of interest are the marginal filtering

distributions for each of the targets, but these are approximated with particles rather than Gaussians. We also develop

two extensions to the standard particle filtering methodology for tracking multiple targets. The first, which we will

refer to as the Sequential Sampling Particle Filter (SSPF), samples the individual targets sequentially by utilising a

factorisation of the importance weights. The second, which we will refer to as the Independent Partition Particle Filter

(IPPF), assumes the associations to be independent over the individual targets, leading to an efficient component-

wise sampling strategy to construct new particles. We evaluate and compare the proposed methods on a challenging

synthetic tracking problem.

Index Terms

Multi-target tracking, particle filters, data association, joint probabilistic data association filter, sequential sampling

particle filter, independent partition particle filter.

I. INTRODUCTION

The detection and tracking of multiple targets is a problem that arises in a wide variety of contexts. Examples

include radar based tracking of aircraft, sonar based tracking of sea animals or submarines, video based identification

and tracking of people for surveillance or security purposes, and many more. The most commonly used framework

for tracking is that of Bayesian Sequential Estimation. This framework is probabilistic in nature, and thus facilitates

the modelling of uncertainties due to inaccurate models, sensor errors, environmental noise, etc. The general

recursions update the posterior distribution of the target state, also known as the filtering distribution, through

two stages: a prediction step that propagates the posterior distribution at the previous time step through the target
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dynamics to form the one step ahead prediction distribution, and a filtering step that incorporates the new data

through Bayes’ rule to form the new filtering distribution. In theory the framework requires only the definition of

a model for the target dynamics, a likelihood model for the sensor measurements, and an initial distribution for the

target state.

The application of the Bayesian sequential estimation framework to real world multi-target tracking problems

is plagued by two difficulties. First, realistic models for the target dynamics and measurement processes are often

non-linear and non-Gaussian, so that no closed-form analytic expression can be obtained for the tracking recursions.

In fact, closed-form expressions are available only in a small number of cases. The most well-known of these arises

when both the dynamic and likelihood models are linear and Gaussian, leading to the celebrated Kalman Filter (KF)

[3]. The second difficulty is due to the fact that in most practical tracking applications the sensors yield unlabelled

measurements of the targets. This leads to a combinatorial data association problem that is very challenging when

targets have a small separation compared to the measurement errors. Furthermore, clutter measurements may arise

due to multi-path effects, sensor errors, spurious objects, etc., further increasing the complexity of the data association

problem.

Many strategies have been proposed in the literature to address the difficulties associated with multi-target tracking.

We will not attempt to give an exhaustive summary here, but rather highlight some of the key contributions over

the years. When tracking a single object closed-form expressions are generally not available for non-linear or

non-Gaussian models, and approximate methods are required. The Extended Kalman Filter (EKF) [3] linearises

models with weak non-linearities around the current state estimate, so that the KF recursions can still be applied.

However, the performance of the EKF degrades rapidly as the non-linearities become more severe. To alleviate this

problem the Unscented Kalman Filter (UKF) [4], [5] maintains the second order statistics of the target distribution

by recursively propagating a set of carefully selected sigma points. This method requires no linearisation, and

generally yields more robust estimates. One of the first attempts to deal with models with non-Gaussian state or

observation noise is the the Gaussian Sum Filter (GSF) [6] that works by approximating the non-Gaussian target

distribution with a mixture of Gaussians. It suffers, however, from the same shortcoming as the EKF in that linear

approximations are required. It also leads to a combinatorial growth in the number of mixture components over

time, calling for ad-hoc strategies to prune the number of components to a manageable level. An alternative method

for non-Gaussian models that does not require any linear approximations has been proposed in [7]. It approximates

the non-Gaussian state numerically with a fixed grid, and applies numerical integration for the prediction step and

Bayes’ rule for the filtering step. However, the computational cost of the numerical integration grows exponentially

with the dimension of the state-space, and the method becomes impractical for dimensions larger than four.

For general non-linear and non-Gaussian models, Particle Filtering [8], [9], also known as Sequential Monte

Carlo (SMC) [10]–[12], or CONDENSATION [13], has become a practical and popular numerical technique to

approximate the Bayesian tracking recursions. This is due to its efficiency, simplicity, flexibility, ease of implemen-

tation, and modelling success over a wide range of challenging applications. It represents the target distribution

with a set of samples, known as particles, and associated importance weights, which are then propagated through
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time to give approximations of the target distribution at subsequent time steps. It requires only the definition of a

suitable proposal distribution from which new particles can be generated, and the ability to evaluate the dynamic

and likelihood models. As opposed to the strategy in [7], the computational complexity for particle filters does not

necessarily become prohibitive with an increase in the dimension of the state-space.

A large number of strategies are available to solve the data association problem. These can be broadly categorised

as either single frame assignment methods, or multi-frame assignment methods. We will focus mainly on the former

here. Methods to solve the multi-frame assignment problem include, e.g. Lagrangian relaxation [14]. The Multiple

Hypotheses Tracker (MHT) [15] attempts to keep track of all the possible association hypotheses over time. This is

a NP-hard problem, since the number of association hypotheses grows exponentially over time. Thus methods are

required to reduce the computational complexity. The Nearest Neighbour Standard Filter (NNSF) [16] associates

each target with the closest measurement in the target space. However, this simple procedure prunes away many

feasible hypotheses. In this respect the Joint Probabilistic Data Association Filter (JPDAF) [16], [17] is more

appealing. At each time step infeasible hypotheses are pruned away using a gating procedure. A filtering estimate

is then computed for each of the remaining hypotheses, and combined in proportion to the corresponding posterior

hypothesis probabilities. The main shortcoming of the JPDAF is that, to maintain tractability, the final estimate is

collapsed to a single Gaussian, thus discarding pertinent information. Subsequent work addressed this shortcoming

by proposing strategies to instead reduce the number of mixture components in the original mixture to a tractable

level [18], [19]. Still, many feasible hypotheses may be discarded by the pruning mechanisms. The Probabilistic

Multiple Hypotheses Tracker (PMHT) [20], [21] (sub-optimally) assumes the association variables to be independent

to work around the problems with pruning. It leads to an incomplete data problem that can be efficiently solved

using the Expectation Maximisation (EM) algorithm [22]. However, the PMHT is a batch strategy, and thus not

suitable for online applications. The standard version of the PMHT is also generally outperformed by the JPDAF.

Some of the reasons for this, and a number of possible solutions, are discussed in [23].

Even though methods to solve the data association problem do not usually rely on linear and Gaussian models,

this assumption is often made to simplify hypothesis evaluation for target originated measurements. For example,

non-linear models can be accommodated by suitable linearising using the EKF. As for the EKF, however, the

performance of the algorithms degrades as the non-linearities become more severe. Recently strategies have been

proposed to combine the JPDAF with particle techniques to accommodate general non-linear and non-Gaussian

models [1], [2], [24], [25]. The data association problem has also been addressed directly in the context of particle

filtering. The feasibility of multi-target tracking with particle filters has first been claimed in [26], [27], but the

examples there deal only with a single target. In [28] a method is described that computes the distribution of the

association hypotheses using a Gibbs sampler [29] at each time step. The method is similar in spirit to the one

described in [30] that uses Markov Chain Monte Carlo (MCMC) techniques [31] to compute the correspondences

between image points within the context of stereo reconstruction. The main problem with these MCMC strategies

is that they are iterative in nature and take an unknown number of iterations to converge. They are thus not entirely

suitable for online applications. In [32] a method is presented where the associations are sampled from an optimally
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designed importance distribution. The method is intuitively appealing since the association hypotheses are treated

in a similar fashion to the target state, so that the resulting algorithm is non-iterative. It is, however, restricted to

Jump Markov Linear Systems (JMLS) [33]. An extension of this strategy, based on the Auxiliary Particle Filter

(APF) [34] and the UKF, that is applicable to general Jump Markov Systems (JMS) is presented in [35]. Another

approach that is similar in spirit is described in [36]. Samples for the association hypotheses are generated from an

efficient proposal distribution based on the notion of a soft-gating of the measurements.

Particle filters have also been applied to the problem of multi-target tracking based on raw measurements,

e.g. [37]–[39]. These so-called Track Before Detect (TBD) strategies construct a generative model for the raw

measurements in terms of a multi-target state hypothesis, thus avoiding an explicit data association step. However,

such measurements are not always readily available in practical systems, and may lead to a larger computational

complexity if they are. For these reasons we will not consider TBD techniques here, but instead focus our attention

on the more conventional thresholded measurement procedure.

The multi-target tracking problem suffers from the curse of dimensionality. As the number of targets increases,

the size of the joint state-space increases exponentially. If care is not taken in the design of proposal distributions

an exponentially increasing number of particles may be required to cover the support of the multi-target distribution

and maintain a given level of accuracy. For poor proposals it may commonly occur that particles contain a mixture

of good estimates for some target states, and bad estimates for other target states. In the computation of the

particle weights, however, the entire particle is penalised for the component targets with bad estimates, so that

even components with good estimates are destroyed during the resampling stage. This leads to a rapid depletion of

the Monte Carlo representation. This problem has been acknowledged before in [40], where a selection strategy is

proposed that constructs new particles from individual target states that are deemed to be accurately estimated. We

will consider similar proposal strategies here.

In this paper we present a number of particle filter based strategies for multi-target tracking and data association for

general non-linear and non-Gaussian models. The first, which we will refer to as the Monte Carlo Joint Probabilistic

Data Association Filter (MC-JPDAF), is a generalisation of the strategy proposed in [1], [2] to multiple observers

and arbitrary proposal distributions. As is the case for the JPDAF, the distributions of interest are the marginal

filtering distributions for each of the targets. Contrary to the JPDAF, which approximates these with Gaussians,

we will use particle approximations. The marginal association probabilities required during the filtering step are

computed using these particles. We also develop two extensions to the standard particle filtering methodology for

tracking multiple targets. The first is an exact strategy that samples the individual targets sequentially by utilising

a factorisation of the importance weights. We will refer to this algorithm as the Sequential Sampling Particle

Filter (SSPF). The second strategy assumes the associations to be independent over the individual targets. This is

similar to the approximation made in the PMHT, and implies that measurements can be assigned to more than one

target. This assumption effectively removes all dependencies between the individual targets, leading to an efficient

component-wise sampling strategy to construct new particles. We will refer to this approach as the Independent

Partition Particle Filter (IPPF). As opposed to the JPDAF, neither approach requires a gating procedure, but captures
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the notion of a soft-gating of the measurements by an efficiently designed proposal distribution, similar in spirit to

the one in [36].

The remainder of the paper is organised as follows. Section II introduces the Bayesian sequential estimation

framework, and shows how the general recursions can be implemented using Monte Carlo techniques, leading to

the particle filter. Section III discusses the modelling assumptions for the multi-target tracking problem. It develops

models for the target dynamics, discusses the data association problem, and derives a likelihood model conditional

on a known association hypothesis. It also develops a prior for the association hypothesis, which is required by the

subsequent tracking algorithms. The MC-JPDAF is outlined in Section IV. The general framework is first presented,

together with the required assumptions, and then it is shown how the framework can be implemented using Monte

Carlo techniques. The multi-target particle filtering algorithms are developed in Section V, together with efficient

proposals for the association hypothesis. Section VI discusses some choices for the target state proposal distribution

that is applicable to both the MC-JPDAF and the multi-target particle filtering algorithms. The proposed methods

are evaluated and compared on a challenging synthetic tracking problem in Section VII. Finally, Section VIII

summarises the paper and makes a number of suggestions for future research.

II. BAYESIAN SEQUENTIAL ESTIMATION AND PARTICLE FILTERS

Since particle filters will form the core component of the multi-target tracking algorithms developed here, we

begin this paper by a brief description of the Bayesian sequential estimation framework and its Monte Carlo

approximation, i.e. the particle filter. We will describe the framework for a generic model parameterised by a state

xt, where t denotes the discrete time index. For tracking the distribution of interest is the posterior p(xt|y1:t), also

known as the filtering distribution, where y1:t = (y1 · · ·yt) denotes all the observations up to the current time step.

In the Bayesian sequential estimation framework the filtering distribution can be computed according to the two

step recursion

prediction step: p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

filtering step: p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
,

(1)

where the prediction step follows from marginalisation, and the new filtering distribution is obtained through a

direct application of Bayes’ rule. The recursion requires the specification of a dynamic model describing the state

evolution p(xt|xt−1), and a model for the state likelihood in the light of the current measurements p(yt|xt)
1. The

recursion is initialised with some distribution for the initial state p(x0). Once the sequence of filtering distributions

1The dynamic and likelihood models rely on the Markov assumptions

xt ⊥ y1:t−1|xt−1

yt ⊥ y1:t−1|xt,

(2)

i.e. the current state is independent of all the previous measurements given the previous state, and the current measurements are independent of

all the previous measurements given the current state.
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is known point estimates of the state can be obtained according to any appropriate loss function, leading to, e.g.,

Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE) estimates.

The tracking recursion yields closed-form expressions in only a small number of cases. The most well-known of

these is the Kalman Filter (KF) [3] for linear and Gaussian dynamic and likelihood models. For general non-linear

and non-Gaussian models the tracking recursion becomes analytically intractable, and approximation techniques

are required. Sequential Monte Carlo (SMC) methods [10]–[12], otherwise known as Particle Filters [8], [9], or

CONDENSATION [13], have gained a lot of popularity in recent years as a numerical approximation strategy to

compute the tracking recursion for complex models. This is due to their efficiency, simplicity, flexibility, ease of

implementation, and modelling success over a wide range of challenging applications.

The basic idea behind particle filters is very simple. Starting with a weighted set of samples {w(n)
t−1,x

(n)
t−1}

N
n=1

approximately distributed according to p(xt−1|y1:t−1), new samples are generated from a suitably designed proposal

distribution, which may depend on the old state and the new measurements, i.e., x(n)
t ∼ q(xt|x

(n)
t−1,yt), n = 1 · · ·N .

To maintain a consistent sample the new importance weights are set to

w
(n)
t ∝ w

(n)
t−1

p(yt|x
(n)
t )p(x

(n)
t |x

(n)
t−1)

q(x
(n)
t |x

(n)
t−1,yt)

,

N∑

n=1

w
(n)
t = 1, (3)

where the proportionality is up to a normalising constant. The new particle set {w(n)
t ,x

(n)
t }

N
n=1 is then approximately

distributed according to p(xt|y1:t). Approximations to the desired point estimates can then be obtained by Monte

Carlo techniques. From time to time it is necessary to resample the particles to avoid degeneracy of the importance

weights. The resampling procedure essentially multiplies particles with high importance weights, and discards those

with low importance weights. A full discussion of degeneracy and resampling falls outside the scope of this paper,

but more detail can be found in [10].

III. MODEL DESCRIPTION

In this section we will describe the elements of the multi-target tracking model. The construction of the state-

space and the assumptions on the target dynamics are first treated in Section III-A. Section III-B then describes

the measurement process and the data association problem, and formulates the likelihood conditional on a known

association hypothesis. A prior for the association hypothesis is developed in Section III-C. All the components of

the model are elucidated by the graphical model in Figure 1. Where appropriate we will illustrate the various parts

of the model with practical examples.

A. State-Space and Dynamics

We will assume that the number of targets to be tracked K is fixed and known. Each target is parameterised

by a state xk,t, k = 1 · · ·K, which may differ in interpretation over the individual targets. The combined state

is constructed as the concatenation of the individual target states, i.e. xt = (x1,t · · ·xK,t). The individual targets

are assumed to evolve independently according to Markovian dynamic models pk(xk,t|xk,t−1), k = 1 · · ·K. This
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PSfrag replacements

x1,t−1

xK,t−1

x1,t

xK,t

r̃i
1,t

r̃i
K,t

yi
t = (yi

1,t · · ·y
i
Mi,t)

clutter source

i = 1 · · ·No

Fig. 1. Graphical model. The graphical model is given for a single time step. Filled dots indicate known variables, whereas unobserved

random variables are signified with open dots. The associations are depicted in terms of the target to measurement associations, and are also

unobserved.

implies that the dynamics for the combined state factorises over the individual targets, i.e.

p(xt|xt−1) =
K∏

k=1

pk(xk,t|xk,t−1). (4)

The tracking strategies we will develop later can also be applied to targets whose motion is coupled, such as

leader-follower behaviour and convoy movements. In such cases the targets that are correlated need to be treated

jointly as a single “super target”. For simplicity we do not explicitly consider this possibility here.

Example 1: In the tracking application we will consider later we will be interested in tracking K slowly

manoeuvring targets in the xy plane. We will assume that each component of the position evolves independently

according to a near constant velocity model of the form in [16]. The state of the k-th target comprises its position

and velocity in the xy plane, i.e. xk,t = (xk,t, ẋk,t, yk,t, ẏk,t). Assuming further a uniform discretisation with a

sampling period of T seconds, the state evolution equation for the k-th target becomes

xk,t = Axk,t−1 + vk,t, (5)

with

A =


 Acv 02×2

02×2 Acv


 , Acv =


1 T

0 1


 , (6)

where 0n×m denotes the n×m matrix of zeros. The state evolution noise vk,t is assumed to be zero-mean Gaussian

distributed with fixed and known covariance

Σk =


σ2

k,xΣcv 02×2

02×2 σ2
k,yΣcv


 , Σcv =


T 3/3 T 2/2

T 2/2 T


 . (7)

Note that under these assumptions the individual target dynamics is linear and Gaussian, and non-singular. �
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B. Measurements, Data Association and Likelihood

In the discussions that follow we will suppress the time index t whenever there is no danger of ambiguity arising.

Measurements for multi-target tracking are assumed to be available from No spatially distributed observers. We

will denote the observer locations by pi
o, i = 1 · · ·No, and allow them to vary with time. At any particular time the

combined set of measurements from all the observers will be denoted by y = (y1 · · ·yNo), where yi = (yi
1 · · ·y

i
Mi)

is the vector comprising the M i measurements at the i-th observer. Note that the number of measurements at each

observer generally varies with time. The nature of the individual measurements yi
j will depend on the characteristics

of the sensors. Typically each measurement will correspond to an estimated line of sight from the observer location

to the measurement source. Measurements do not only arise from the targets to be tracked. Additional clutter

measurements may result due to multi-path effects, spurious objects, sensor errors, etc. We will assume that each

of the targets can generate at most one measurement per sensor at a particular time step, but may go undetected.

We will further assume that several or all of the measurements may be due to clutter.

To deal with the data association problem it is necessary to introduce a set of association variables. These can

be specified either as measurement to target or target to measurement associations, with the former being more

commonly used. Both formulations carry the same information, but are useful in different contexts. We will consider

both in what follows. We will denote a measurement to target association (M→T) hypothesis by λ = (λ1 · · ·λNo),

where λi = (ri,M i
C ,M i

T ) is the measurement to target association hypothesis for the measurements at the i-th

observer, with M i
C the number of clutter measurements, and M i

T the number of target measurements. Note that

M i = M i
C + M i

T . The elements of the association vector ri = (ri
1 · · · r

i
Mi) are given by

ri
j =





0 if measurement j at observer i is due to clutter

k ∈ {1 · · ·K} if measurement j at observer i stems from target k.

(8)

In a similar fashion we will denote a target to measurement association (T→M) hypothesis by λ̃ = (λ̃1 · · · λ̃No),

where λ̃i = (r̃i,M i
C ,M i

T ) is the target to measurement hypothesis for the measurements at the i-th observer. For

this formulation the elements of the association vector r̃i = (r̃i
1 · · · r̃

i
K) are given by

r̃i
k =





0 if target k is undetected at observer i

j ∈ {1 · · ·M i} if target k generated measurement j at observer i.

(9)

As noted above these two representations are equivalent, and it is straightforward to convert from one to the other.

More specifically, initialising the corresponding association vectors with zero, the conversions for the i-th observer

are given by

T→M to M→T: ri
r̃i

k
= k if r̃i

k 6= 0, k = 1 · · ·K

M→T to T→M: r̃i
ri

j
= j if ri

j 6= 0, j = 1 · · ·M i.
(10)

Conditional on any formulation of the association hypothesis we assume the measurements at a particular observer

to be independent of each other, and independent of those at the other observers. This leads to a factorised likelihood
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model which, conditional on the measurement to target association hypothesis, becomes

p(y|x, λ) =

No∏

i=1

[ ∏

j∈Ii
0

pi
C(yi

j) ·
∏

j∈Ii

pi
T (yi

j |xri
j
)
]
, (11)

where Ii
0 = {j ∈ {1 · · ·M i} : ri

j = 0} and Ii = {j ∈ {1 · · ·M i} : ri
j 6= 0}2 are respectively the subsets of

measurement indices at the i-th observer corresponding to clutter measurements and measurements from the targets

to be tracked. In the above pi
C denotes the clutter likelihood model for the i-th observer, which is normally assumed

to be uniform over the volume of the measurement space V i. The likelihood for a measurement at the i-th observer

associated with a particular target, denoted by pi
T , depends only on the state of the target with which it is associated.

Under these assumptions the likelihood simplifies to

p(y|x, λ) =

No∏

i=1

[
(V i)−Mi

C

∏

j∈Ii

pi
T (yi

j |xri
j
)
]
. (12)

In a similar fashion the likelihood conditional on the target to measurement association hypothesis becomes

p(y|x, λ̃) =

No∏

i=1

[ ∏

j∈Ii
0

pi
C(yi

j) ·
K∏

k=1

pi(yi
r̃i

k
|xk)

]

=

No∏

i=1

[
(V i)−Mi

C

K∏

k=1

pi(yi
r̃i

k
|xk)

]
,

(13)

where, with a minor abuse of notation, the likelihood in the second product can be written as

pi(yi
r̃i

k
|xk) =





1 if r̃i
k = 0

pi
T (yi

r̃i
k

|xk) otherwise.
(14)

Example 2: If the sensors yield line of sight measurements of the targets relative to the observers in the xy plane,

the individual measurements at the i-th observer can be written as yi
j = (Ri

j , θ
i
j), where Ri

j and θi
j are respectively

the measured range and bearing from the observer to the source, with the bearing measured anti-clockwise from

the x axis. If the range and bearing are assumed to be corrupted by independent Gaussian noise, the likelihood for

the j-th measurement, under the hypothesis that it is associated with the k-th target, becomes

pi
T (yi

j |xk) = N(yi
j |ŷ

i
k,Σi

y
), (15)

where Σi
y

= diag(σ2
Ri , σ2

θi) is the fixed and known diagonal covariance with the individual noise variances. The

components of the mean ŷi
k = (R̂i

k, θ̂i
k) = g(xk,pi

o) are given by

R̂i
k =

(
(xk − xi

o)
2 + (yk − yi

o)
2
)1/2

θ̂i
k = tan−1

( yk − yi
o

xk − xi
o

)
,

(16)

with pi
o = (xi

o, y
i
o). For this model the volume of the measurement space for the i-th observer is V i = 2πRi

max,

where Ri
max is the maximum range of the sensor. This follows from the measurement independence assumption. �

2In terms of the target to measurement association hypothesis these sets can be denoted by I i
0

= {1 · · ·M i} \ {r̃i

k
: k = 1 · · ·K} and

Ii
= {r̃i

k
: k = 1 · · ·K}, respectively.
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C. Association Prior

In most applications of practical interest the association hypothesis is unknown, and thus needs to be estimated

alongside the other unknowns, or marginalised from the problem. To achieve this within a Bayesian framework it is

necessary to define a prior distribution over the association hypothesis. We will assume the prior for the association

hypothesis to be independent of the state and past values of the association hypothesis. The prior we present here

follows closely the one described in [41]. For the measurement to target association hypothesis we assume that the

prior factorises over the observers, i.e.

p(λ) =

No∏

i=1

p(λi). (17)

For each of the observers the prior is further assumed to follow the hierarchical structure given by

p(λi) = p(ri|M i
C ,M i

T )p(M i
C)p(M i

T ), (18)

with
p(ri|M i

C ,M i
T ) = [Nλi(M i

C ,M i
T )]−1

p(M i
C) = (λi

C)Mi
C exp(−λi

C)/M i
C !

p(M i
T ) =

(
K

M i
T

)
P

Mi
T

D (1− PD)K−Mi
T .

(19)

In the absence of measurements the prior for the association vector is assumed to be uniform over all the valid

hypotheses. Given the number of target measurements, the number of valid hypotheses are given by

Nλi(M i
C ,M i

T ) =

(
M i

M i
T

)
K!

(K −M i
T )!

, (20)

and follows from the number of ways of choosing a subset of M i
T elements from the available M i measurements,

multiplied by the number of possible associations between the M i
T detections and the K targets. The number of

clutter measurements is assumed to follow a Poisson distribution, with rate parameter λi
C

3, which is assumed to

be fixed and known. The binomial prior for the number of target measurements follows from summing over the
(

K
Mi

T

)
possible ways to group M i

T target detections among the K targets under the assumption that all the targets

share the same fixed and known detection probability PD. It is, of course, possible to associate different detection

probabilities with each of the target-observer pairs, and have them vary with time, but we do not consider this

possibility here.

The prior for the target to measurement association hypothesis follows a similar structure, with the only difference

being that the number of valid hypotheses for a given number of target measurements is now given by

Nλ̃i(M
i
C ,M i

T ) =

(
K

M i
T

)
M i!

(M i −M i
T )!

. (21)

3It is common practice to define the rate parameter in terms of the spatial density of the clutter µi, i.e. λi

C
= µiṼ i. Here Ṽ i is the physical

volume of the space observed by the sensor, to be contrasted with the volume of the measurement space V i.
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In the algorithms we develop later we will make extensive use of this form of the association prior. For this form

it is possible to obtain a factorisation over the individual target associations that takes the form

p(λ̃i) = p(M i
C)

K∏

k=1

p(r̃i
k|r̃

i
1:k−1), (22)

with

p(r̃i
k = j|r̃i

1:k−1) ∝





1− PD if j = 0

0 if j > 0 and j ∈ {r̃i
1 · · · r̃

i
k−1}

PD

Mi
k

otherwise,

(23)

where M i
k = M i − |{l : r̃i

l 6= 0, l = 1 · · · k − 1}| is the number of unassigned measurements, taking into account

the assignments of the previous k − 1 associations. Note that this sequential factorisation can be performed over

any permutation of the target ordering. Note further that the prior for the number of target detections is implicitly

captured by the factorisation of the association vector, and hence disappears from the expression for the prior. This

factorisation will aid in the design of efficient sampling strategies to combat the curse of dimensionality with an

increase in the number of targets.

IV. MONTE CARLO JPDAF

The Joint Probabilistic Data Association Filter (JPDAF) is probably the most widely applied and successful

strategy for multi-target tracking under data association uncertainty. The original formulation of the JPDAF in [16],

[17] assumes linear and Gaussian models. For models with weak non-linearities the EKF can be applied to linearise

the system. Subsequent research has led to many useful extensions to the standard JPDAF to address some of its

shortcomings and make it more generally applicable. For example, methods to maintain a mixture of Gaussians for

each target state, instead of a single Gaussian, are described in [18], [19].

Here we present a Monte Carlo implementation of the general JPDAF framework, applicable to general non-

linear and non-Gaussian models. This strategy, which we will refer to as the Monte Carlo JPDAF (MC-JPDAF), is a

generalisation of the method proposed in [1], [2] to multiple observers and arbitrary proposal distributions. We will

first outline the general JPDAF framework in Section IV-A, and then show in Section IV-B how this framework can

be implemented using Monte Carlo techniques, so that it applies to general non-linear and non-Gaussian models.

The JPDAF requires a gating procedure to keep the number of valid association hypotheses to a reasonable level. In

Section IV-C we describe a gating procedure that is applicable within the context of a Monte Carlo implementation

of the JPDAF.

A. JPDAF Framework

Instead of maintaining the filtering distribution for the joint state p(xt|y1:t) the JPDAF effectively combats

the curse of dimensionality by recursively updating the marginal filtering distributions for each of the targets
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pk(xk,t|y1:t), k = 1 . . . K, through the Bayesian sequential estimation recursions in (1). The prediction step proceeds

independently for each target as

pk(xk,t|y1:t−1) =

∫
pk(xk,t|xk,t−1)pk(xk,t−1|y1:t−1)dxk,t−1. (24)

Due to the data association uncertainty the filtering step cannot be performed independently for the individual targets.

The JPDAF gets around this difficulty by performing a soft assignment of targets to measurements according to the

corresponding posterior probabilities of these marginal associations. More specifically, it achieves this by defining

the likelihood for the k-th target as

pk(yt|xk,t) =

No∏

i=1

[
βi

0k +

Mi∑

j=1

βi
jkpi

T (yi
j,t|xk,t)

]
, (25)

where βi
jk = p(r̃i

k,t = j|y1:t), j = 1 · · ·M i, is the posterior probability that the k-th target is associated with the

j-th measurement, with βi
0k the posterior probability that the k-th target is undetected. The likelihood is assumed

to be independent over the observers. The component of the likelihood for each observer is a mixture, with one

mixture component for each possible target to measurement association, and the mixture weights equal to the

posterior probabilities of the corresponding marginal associations. With the definition of the likelihood above the

filtering step proceeds in the normal way specified by (1), i.e.

pk(xk,t|y1:t) ∝ pk(yt|xk,t)pk(xk,t|y1:t−1). (26)

Thus with the definitions for the one step ahead prediction distribution in (24) and the filtering distribution in (26)

the JPDAF fits within the Bayesian sequential estimation framework of (1). All that remains is the computation

of the posterior probabilities of the marginal associations βi
jk, where i = 1 · · ·No ranges over the observers,

j = 0 · · ·M i ranges over the measurements, with 0 signifying that the target in question is not associated with any

of the measurements, and k = 1 · · ·K ranges over the targets. These marginal probabilities can be computed by

summing over the corresponding joint association probabilities, i.e.

βi
jk = p(r̃i

k,t = j|y1:t) =
∑

{λ̃i
t∈Λ̃i

t:r̃
i
k,t

=j}

p(λ̃i
t|y1:t), (27)

where Λ̃i
t is the set of all valid joint target to measurement association hypotheses for the data at the i-th observer.

Thus the posterior probability for a particular target to measurement association is obtained by summing over all

the joint association hypotheses in which this marginal association occurs. Under the assumptions discussed below

the posterior probability for the joint association hypothesis can be expressed as

p(λ̃i
t|y1:t) ∝ p(λ̃i

t)(V
i)−Mi

C

∏

j∈Ii

pri
j,t

(yi
j,t|y1:t−1), (28)

where p(λ̃i
t) is the joint association prior developed in Section III-C, and pk(yi

j,t|y1:t−1) is the predictive likelihood

for the j-th measurement at the i-th observer using the information from the k-th target, given in the standard way

by

pk(yi
j,t|y1:t−1) =

∫
pi

T (yi
j,t|xk,t)pk(xk,t|y1:t−1)dxk,t. (29)
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To obtain the expression for the joint association posterior probability in (28) it was necessary to assume that the

predictive likelihood is independent over the observers, as well as over the individual measurements at each of the

observers. In the likelihood the conditioning was also changed from the target to measurement associations to the

measurement to target associations. This is valid since both representations carry the same information, and are

related through a deterministic one-to-one mapping.

The original formulation of the JPDAF in [16], [17] assumes linear and Gaussian forms for the dynamic and

likelihood models, and a Gaussian approximation for the filtering distribution. Under these assumptions Kalman

filter updates are obtained for the one step ahead prediction distribution in (24) and the predictive likelihood in

(29). The mixture likelihood in (25) is collapsed into a single Gaussian, so that a Kalman filter update is also

obtained for the filtering distribution in (26). In the next section we show how the general JPDAF framework

can be implemented using Monte Carlo techniques, making it applicable to general non-linear and non-Gaussian

models.

B. Monte Carlo Implementation

The Monte Carlo implementation of the JPDAF presented in this section is a generalisation of the strategy

proposed in [1], [2] to multiple observers and arbitrary proposal distributions. It aims to represent the marginal

filtering distributions for each of the targets with Monte Carlo samples, or particles, instead of a Gaussian, as is the

case for the standard JPDAF. More specifically, for the k-th target, assume that a set of samples {w(n)
k,t−1,x

(n)
k,t−1}

N
n=1

is available, approximately distributed according to the marginal filtering distribution at the previous time step

pk(xk,t−1|y1:t−1). At the current time step new samples for the target state are generated from a suitably constructed

proposal distribution, which may depend on the old state and the new measurements, i.e.

x
(n)
k,t ∼ qk(xk,t|x

(n)
k,t−1,yt), n = 1 · · ·N. (30)

We will not be specific about the form of the state proposal distribution here, but will delay the presentation of

particular forms for this distribution until Section VI. Using these Monte Carlo samples the predictive likelihoods

in (29) can straightforwardly be approximated as

pk(yi
j,t|y1:t−1) ≈

N∑

n=1

α
(n)
k,t pi

T (yi
j,t|x

(n)
k,t ), (31)

where the predictive weights are given by

α
(n)
k,t ∝ w

(n)
k,t−1

pk(x
(n)
k,t |x

(n)
k,t−1)

qk(x
(n)
k,t |x

(n)
k,t−1,yt)

,

N∑

n=1

α
(n)
k,t = 1. (32)

This approximation can now straightforwardly be substituted into (28) to obtain approximations for the joint

association posterior probabilities, from which approximations for the marginal target to measurement association

posterior probabilities can be computed according to (27). These approximations can, in turn, be used in (25) to

approximate the target likelihood. Finally, setting the new importance weights to

w
(n)
k,t ∝ w

(n)
k,t−1

pk(yt|x
(n)
k,t )pk(x

(n)
k,t |x

(n)
k,t−1)

qk(x
(n)
k,t |x

(n)
k,t−1,yt)

,

N∑

n=1

w
(n)
k,t = 1, (33)
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leads to the sample set {w(n)
k,t ,x

(n)
k,t }

N
n=1 being approximately distributed according to the marginal filtering distri-

bution at the current time step pk(xk,t|y1:t).

We conclude this section by presenting a summary of the MC-JPDAF algorithm. Assuming that the sample sets

{w
(n)
k,t−1,x

(n)
k,t−1}

N
n=1, k = 1 · · ·K, are approximately distributed according to the corresponding marginal filtering

distributions at the previous time step pk(xk,t−1|y1:t−1), k = 1 · · ·K, the algorithm proceeds as follows at the

current time step.

Algorithm 1: MC-JPDAF

• For k = 1 · · ·K, n = 1 · · ·N , generate new samples for the target states x
(n)
k,t ∼ qk(xk,t|x

(n)
k,t−1,yt).

• For k = 1 · · ·K, n = 1 · · ·N , compute and normalise the predictive weights

α
(n)
k,t ∝ w

(n)
k,t−1

pk(x
(n)
k,t |x

(n)
k,t−1)

qk(x
(n)
k,t |x

(n)
k,t−1,yt)

,

N∑

n=1

α
(n)
k,t = 1. (34)

• For k = 1 · · ·K, i = 1 · · ·No, j = 1 · · ·M i, compute the Monte Carlo approximation for the predictive

likelihood

pk(yi
j,t|y1:t−1) ≈

N∑

n=1

α
(n)
k,t pi

T (yi
j,t|x

(n)
k,t ). (35)

• For i = 1 · · ·No, enumerate all the valid joint target to measurement association hypotheses at the i-th

observer to form the set Λ̃i
t.

• For i = 1 · · ·No, λ̃i
t ∈ Λ̃i

t, compute the joint association posterior probability

p(λ̃i
t|y1:t) ∝ p(λ̃i

t)(V
i)−Mi

C

∏

j∈Ii

pri
j,t

(yi
j,t|y1:t−1). (36)

• For k = 1 · · ·K, i = 1 · · ·No, j = 0 · · ·M i, compute the marginal association posterior probability

βi
jk =

∑

{λ̃i
t∈Λ̃i

t:r̃
i
k,t

=j}

p(λ̃i
t|y1:t). (37)

• For k = 1 · · ·K, n = 1 · · ·N , compute the target likelihood

pk(yt|x
(n)
k,t ) =

No∏

i=1

[
βi

0k +
Mi∑

j=1

βi
jkpi

T (yi
j,t|x

(n)
k,t )

]
. (38)

• For k = 1 · · ·K, n = 1 · · ·N , compute and normalise the particle weights

w
(n)
k,t ∝ w

(n)
k,t−1

pk(yt|x
(n)
k,t )pk(x

(n)
k,t |x

(n)
k,t−1)

qk(x
(n)
k,t |x

(n)
k,t−1,yt)

,

N∑

n=1

w
(n)
k,t = 1. (39)

• For k = 1 · · ·K, if resampling is required then for n = 1 · · ·N , sample an index m(n) ∼ {w
(l)
k,t}

N
l=1 and

replace {w(n)
k,t ,x

(n)
k,t } ← {N

−1,x
m(n)
k,t }.

�

The resulting sample sets {w(n)
k,t ,x

(n)
k,t }

N
n=1, k = 1 · · ·K, are then approximately distributed according to the

corresponding marginal filtering distributions at the current time step pk(xk,t|y1:t), k = 1 · · ·K. Note that the
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resampling step can be performed independently for each of the targets. Resampling is necessary to avoid degeneracy

of the particle sets, and is normally invoked once an estimate of the effective sample size, which acts as a measure

of degeneracy, falls below a predefined threshold. A more complete discussion about degeneracy and resampling

can be found in [10].

C. Gating

The biggest drawback of the JPDAF is its computational complexity. Recall that the computation of the marginal

association posterior probabilities in (27) requires enumeration over all the valid joint target to measurement

associations. For a particular observer the total number of such associations is given by4

Nλ̃ =

min(K,M)∑

MT =0

Nλ̃(MC ,MT ), (40)

where the number of hypotheses for a given number of target detections and clutter measurements Nλ̃(MC ,MT )

follows from the expression in (21). The number of valid hypotheses increases exponentially with an increase in

the number of measurements and targets, rendering exhaustive enumeration infeasible for even moderate values for

these quantities. Thus if the JPDAF is to remain a practical alternative for solving the multi-target tracking problem

methods are required to reduce the number of hypotheses to a feasible level.

Gating [16] is probably one of the most straightforward and effective methods to achieve this reduction. For each

target a validation region is constructed from the available information, and only measurements that fall within

the target validation region are considered as possible candidates to be associated with the particular target. This

procedure is graphically illustrated in Figure 2.

We will now present a gating procedure that can be applied within the context of the MC-JPDAF. The Monte

Carlo approximation of the predictive likelihood in (31) can be written as

pk(y|y1:t−1) ≈
N∑

n=1

α
(n)
k N(y|ŷ

(n)
k ,Σy), (41)

where ŷk = g(xk,po) is the mapping of the k-th target state into the measurement space, as illustrated in Example

2. This Gaussian mixture can be straightforwardly approximated by a single Gaussian with mean and covariance

given by

µ
ŷk

=

N∑

n=1

α
(n)
k g(x

(n)
k ,po)

Σŷk
= Σy +

N∑

n=1

α
(n)
k

[
g(x

(n)
k ,po)− µ

ŷk

][
g(x

(n)
k ,po)− µ

ŷk

]T
.

(42)

Using these statistics a set of validated measurements for the k-th target can be obtained as

Yk = {yj : d2
k(yj) ≤ ε}, (43)

4The issues surrounding gating applies independently to each of the observers. We will thus focus on a single observer, and drop the observer

index in the discussion for notational clarity. For the same reason we will also suppress the time index.
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Fig. 2. Measurement gating. Targets mapped into the measurement space (circles) and their validation regions (ellipses). Only measurements

(squares) that fall inside the validation region for a particular target are candidates to be associated with that target.

where d2
k(yj) is the squared distance based on the measurement innovations, given by

d2
k(yj) = (yj − µ

ŷk
)TΣ−1

ŷk
(yj − µ

ŷk
), (44)

and ε is a parameter determining the size of the validation region. The validation region is an ellipsoid that contains

a given probability mass under the Gaussian assumption. The value of the parameter ε is related to the specified

value of the probability mass to be included in the validation region. It can be obtained using the fact that d2
k is

approximately chi-squared distributed with number of degrees of freedom equal to the dimension of yj . The set of

valid target to measurement associations for the k-th target follows straightforwardly as

r̃k ∈ R̃k = {j : d2
k(yj) ≤ ε} ∪ {0}. (45)

Note that we always allow each of the targets to be undetected to take account of the possibility that any or all of

the measurements within the target validation region may be due to clutter. As an example the valid association

sets for the configuration in Figure 2 are R̃1 = {0, 2, 3}, R̃2 = {0} and R̃3 = {0, 3}. The set of viable joint

associations Λ̃ can now be constructed by enumerating all the valid combinations of the elements in the marginal

sets R̃k, k = 1 · · ·K. The number of hypotheses obtained in this manner will typically be substantially smaller than

the number obtained by an exhaustive enumeration. To complete our example the set of viable joint associations

for the configuration in Figure 2 is enumerated in Table I. There are only 5 such joint associations, whereas an

exhaustive enumeration would have resulted in 34 joint associations, almost an order of magnitude more.

Remark 1: The validation region for the k-th target is given by Vk = {y : d2
k(y) ≤ ε}. The probability that a

target measurement falls inside the validation region PG can be obtained by integrating the predictive likelihood
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r̃1 r̃2 r̃3

0 0 0

0 0 3

2 0 0

2 0 3

3 0 0
TABLE I

VIABLE JOINT ASSOCIATIONS FOR THE CONFIGURATION IN FIGURE 2.

over the validation region. This integration is intractable, but a Monte Carlo approximation follows as

PG =

∫

Vk

pk(y|y1:t−1)dy ≈
N∑

n=1

α
(n)
k

∫

Vk

N(y|ŷ
(n)
k ,Σy)dy. (46)

The validation region is generally not aligned with the likelihood covariance, so that the Gaussian integral above

also becomes intractable. However, a Monte Carlo approximation can be straightforwardly obtained by generating

samples from the Gaussian, and computing the proportion of the samples that fall inside the validation region, i.e.
∫

Vk

N(y|ŷ
(n)
k ,Σy)dy ≈ L−1

L∑

l=1

IVk
(y(l) + ŷ

(n)
k ), {y(l)}Ll=1 ∼ N(0,Σy), (47)

where IA(·) denotes the indicator function for the set A. Note that since the likelihood covariance is fixed only a

single set of samples is required to compute the Gaussian integrals for all the terms in (46). Subsequent to gating we

need to replace the target detection probability PD in the association prior with PDPG, and restrict the predictive

likelihood in (36) to the validation region, i.e. normalise it with PG. In all our experiments we found that PG was

either unity, or very close to it, so we ignored it, without detrimental effects to the results.

V. MULTI-TARGET PARTICLE FILTERS

The JPDAF, even in its general form, suffers from a number of shortcomings. It is only an approximate method in

that a number of independency assumptions are made to perform both the filtering operations and the computation

of the association probabilities. Furthermore, any practical implementation requires a gating procedure to keep

the number of association hypotheses to a feasible level. In this section we propose particle filtering strategies to

solve the multi-target tracking problem. The first strategy samples the individual targets sequentially by utilising

a factorisation of the importance weights. We will refer to this algorithm as the Sequential Sampling Particle

Filter (SSPF). The second strategy assumes the associations to be independent over the individual targets. This is

similar to the approximation made in the PMHT, and implies that measurements can be assigned to more than one

target. This assumption effectively removes all dependencies between the individual targets, leading to an efficient

component-wise sampling strategy to construct new particles. We will refer to this approach as the Independent

Partition Particle Filter (IPPF). As opposed to the JPDAF, neither approach requires a gating procedure, but captures

the notion of a soft-gating of the measurements by an efficiently designed proposal distribution.
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The particle filtering algorithms differ from the MC-JPDAF in the manner in which they deal with the data

association uncertainty and their strategy to combat the curse of dimensionality. The MC-JPDAF takes care of the

association uncertainty by combining all of the feasible association hypotheses according to their corresponding

posterior probabilities, which are in turn computed using the Monte Carlo samples. On the other hand, the particle

filtering strategies augment the multi-target state with the unknown association hypothesis. The association uncer-

tainty is then represented by Monte Carlo samples that are generated from an efficient proposal distribution based

on the notion of a soft-gating of the measurements. The MC-JPDAF effectively avoids the curse of dimensionality

by maintaining the marginal filtering distributions for each of the targets. The particle filtering strategies, on the

other hand, exploit a factorisation of the importance weights to decompose the difficult joint estimation problem

into a number of easier estimation problems, each defined in the state-space for a single target.

In what follows we first outline the standard particle filter architecture, adapted for multi-target tracking in Section

V-A. This strategy suffers greatly from the curse of dimensionality. Sections V-B and V-C then formulate the details

of the SSPF and the IPPF, respectively, as alternatives to the standard particle filter for more efficient multi-target

tracking.

A. Standard Particle Filter

Direct estimation of the filtering distribution of the joint target state p(xt|y1:t), with xt = (x1,t · · ·xK,t), is

difficult due to the unknown associations. To overcome this difficulty we augment the joint target state with the

unknown associations, and attempt to estimate the joint filtering distribution p(xt, λ̃t|y1:t) recursively through time

using particle techniques. For the purpose of the particle filtering strategies introduced in the following sections we

choose to work with the target to measurement associations. Using Bayes’ rule the joint filtering distribution can

be expressed as

p(xt, λ̃t|y1:t) ∝ p(λ̃t)p(yt|xt, λ̃t)

∫
p(xt|xt−1)

∑

λ̃t−1

p(xt−1, λ̃t−1|y1:t−1)dxt−1

= p(λ̃t)p(yt|xt, λ̃t)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1,

(48)

where p(λ̃t) is the target to measurement association prior in (22), p(yt|xt, λ̃t) is the conditional likelihood in (13),

and p(xt|xt−1) is the joint state dynamics in (4). As for the standard particle filter, assume that a set of samples

{w
(n)
t−1,x

(n)
t−1, λ̃

(n)
t−1}

N
n=1 is available, approximately distributed according to the filtering distribution at the previous

time step p(xt−1, λ̃t−1|y1:t−1). The samples for the joint state alone {w(n)
t−1,x

(n)
t−1}

N
n=1 are then approximately

distributed according to the marginal filtering distribution at the previous time step p(xt−1|y1:t−1). These samples

are sufficient to obtain a Monte Carlo approximation of the integral in (48), so that old samples for the associations

can be discarded. This is due to the fact that the association hypotheses are assumed to be temporally independent. At

the current time step new multi-target states and association hypotheses are jointly proposed from some appropriately

defined proposal distribution, i.e.

(λ̃
(n)
t ,x

(n)
t ) ∼ q(λ̃t,xt|x

(n)
t−1,yt), n = 1 · · ·N, (49)
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where we define the joint proposal so that it factorises as

q(λ̃t,xt|xt−1,yt) = q(λ̃t|xt,yt)q(xt|xt−1,yt). (50)

Note that the proposal for the association hypothesis depends only on information at the current time step. It is

straightforward to show that setting the new importance weights to

w
(n)
t ∝ w

(n)
t−1

p(λ̃
(n)
t )p(yt|x

(n)
t , λ̃

(n)
t )p(x

(n)
t |x

(n)
t−1)

q(λ̃
(n)
t |x

(n)
t ,yt)q(x

(n)
t |x

(n)
t−1,yt)

,

N∑

n=1

w
(n)
t = 1, (51)

leads to the sample set {w(n)
t ,x

(n)
t , λ̃

(n)
t }

N
n=1 being approximately distributed according to the joint filtering

distribution at the current time step p(xt, λ̃t|y1:t).

However, such a straightforward implementation of the particle filter suffers greatly from the curse of dimension-

ality. As the number of targets increases an exponentially increasing number of particles is required to maintain the

same estimation accuracy. In practice, after the proposal step, it commonly occurs that the resulting joint particles

have good estimates for some target states, and bad estimates for other target states. In the computation of the

importance weights, however, the entire particle is penalised for the component targets with bad estimates, so that

even components with good estimates are destroyed during the resampling stage. This leads to a rapid depletion

of the Monte Carlo representation. The following two sections develop particle filtering strategies to combat this

problem.

B. Sequential Sampling Particle Filter

If the association hypothesis were known the filtering distribution would factorise completely over the individual

targets. Each of the targets could then be treated independently, thus defeating the curse of dimensionality. For an

unknown association hypothesis a complete factorisation of the filtering distribution is not possible. It is, however,

possible to construct a proposal for the associations that factorises sequentially over the individual target associations.

This facilitates a strategy where the targets and their associations can be sampled sequentially, conditionally on

each other, in much the same way as the standard particle filter samples states over time. We first describe the

architecture for such a particle filter, which we term the Sequential Sampling Particle Filter (SSPF), in Section

V-B.1, before presenting the details for the association proposal in Section V-B.2.

1) SSPF Architecture: As was the case for the MC-JPDAF we assume the proposal for the joint target to factorise

over the individual targets, i.e.

q(xt|xt−1,yt) =

K∏

k=1

qk(xk,t|xk,t−1,yt). (52)

Specific forms for the state proposal for the individual targets are presented in Section VI. In turn we assume the

proposal for the association hypothesis to factorise over the individual observers, i.e.

q(λ̃t|xt,yt) =

No∏

i=1

q(λ̃i
t|xt,y

i
t). (53)

For each individual observer we will define the proposal in terms of the target to measurement association vector,

i.e. q(λ̃i
t|xt,y

i
t) = q(r̃i

t|xt,y
i
t), with the proposals for the number of clutter measurements M i

C and target detections
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M i
T being implicit. Thus once the association vector has been generated from the proposal, the number of clutter

measurements and target detections are deterministically determined. However, we will define the proposal for the

association vector such that the resulting number of clutter measurements and target detections approximately follow

the corresponding prior models in (19). For the time being we will assume that the proposal for the association

vector takes a form that factorises sequentially over the individual target associations, i.e.

q(r̃i
t|xt,y

i
t) =

K∏

k=1

q(r̃i
k,t|r̃

i
1:k−1,t,xk,t,y

i
t). (54)

Note that the sequential factorisation can be performed over any permutation of the individual target associations.

In practice we choose the order randomly, as discussed below. However, for notational clarity we will retain

the form above in the remainder of the discussion. We delay the development of the proposal for the individual

target associations in the factorisation above until Section V-B.2, and turn now to the problem of computing the

importance weights. Substituting the expressions for the conditional likelihood and joint state dynamics in (13) and

(4), respectively, the factorised form for the association prior in (22), and the factorised forms for the state and

association proposals in (52) and (53), respectively, into (51) leads to an expression for the importance weight given

by

wt ∝ wt−1

[No∏

i=1

(V i)−Mi
C p(M i

C)
]
·

K∏

k=1

wk,t, (55)

where the weight for the k-th target is given by

wk,t ∝
pk(xk,t|xk,t−1)

qk(xk,t|xk,t−1,yt)
·

No∏

i=1

pi(yi
r̃i

k,t
,t
|xk,t)p(r̃i

k,t|r̃
i
1:k−1,t)

q(r̃i
k,t|r̃

i
1:k−1,t,xk,t,yi

t)
. (56)

Note that the weight for the k-th target wk,t depends on those for the targets earlier in the sequence only through

the associations. This factorisation of the importance weight suggests a sampling procedure where the joint target

state and association vector are constructed in a sequential fashion in much the same way as the standard particle

filter samples states over time. The importance weight for the particle can be updated cumulatively during this

construction, facilitating resampling steps should the variance of the cumulative weights become too high (i.e. the

Monte Carlo representation becomes degenerate). Because of the resampling procedures the target sampled first in

the sequence will have the most depleted representation, with the diversity increasing towards the target sampled

last in the sequence. To eliminate this problem the procedure can be repeated a number of times for different

orderings of the targets, with the final Monte Carlo representation obtained by combining the samples obtained

from the individual runs.

The SSPF algorithm is summarised below. For the sake of clarity the summary is given for a single forward run of

the algorithm. In practice the forward run should be repeated a number of times for different random permutations

of the target ordering. The final result can then be obtained by treating the resulting discrete distributions as

components of a mixture distribution, and sampling the required number of samples from this mixture. Assuming

that the sample set {w(n)
t−1,x

(n)
t−1}

N
n−1 is approximately distributed according to the marginal filtering distribution
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at the previous time step p(xt−1|y1:t−1), a single forward run of the SSPF algorithm proceeds as follows at the

current time step.

Algorithm 2: SSPF Forward Run

• For n = 1 · · ·N , initialise the cumulative weights α
(n)
0,t = w

(n)
t−1.

• For k = 1 · · ·K,

− For n = 1 · · ·N , generate new samples for the target states x
(n)
k,t ∼ qk(xk,t|x

(n)
k,t−1,yt).

− For i = 1 · · ·No, n = 1 · · ·N , generate samples for the target to measurement associations r̃
i(n)
k,t ∼

q(r̃i
k,t|r̃

i(n)
1:k−1,t,x

(n)
k,t ,yi

t).

− For n = 1 · · ·N , update and normalise the cumulative weights

α
(n)
k,t ∝ α

(n)
k−1,t

pk(x
(n)
k,t |x

(n)
k,t−1)

qk(x
(n)
k,t |x

(n)
k,t−1,yt)

·
No∏

i=1

pi(yi

r̃
i(n)
k,t

,t
|x

(n)
k,t )p(r̃

i(n)
k,t |r̃

i(n)
1:k−1,t)

q(r̃
i(n)
k,t |r̃

i(n)
1:k−1,t,x

(n)
k,t ,yi

t)
,

N∑

n=1

α
(n)
k,t = 1. (57)

− If resampling is required then for n = 1 · · ·N , sample an index m(n) ∼ {α
(l)
k,t}

N
l=1 and replace

{α
(n)
k,t ,x

(n)
1:k,t, {r̃

i(n)
1:k,t}

No

i=1} ← {N
−1,x

m(n)
1:k,t , {r̃

im(n)
1:k,t }

No

i=1}.

• For n = 1 · · ·N , compute and normalise the particle weights

w
(n)
t ∝ α

(n)
K,t

[No∏

i=1

(V i)−M
i(n)
C p(M

i(n)
C )

]
,

N∑

n=1

w
(n)
t = 1. (58)

• If resampling is required then for n = 1 · · ·N , sample an index m(n) ∼ {w
(l)
t }

N
l=1 and replace

{w
(n)
t ,x

(n)
t , λ̃

(n)
t } ← {N

−1,x
m(n)
t , λ̃

m(n)
t }.

�

Note that in the above M
i(n)
C is deterministically determined once the association vector r̃

i(n)
t has been sampled.

The resulting sample set {w(n)
t ,x

(n)
t , λ̃

(n)
t }

N
n=1 is approximately distributed according to the joint filtering distri-

bution at the current time step p(xt, λ̃t|y1:t). Since the forward run has to be repeated a number of times at each

time step computational savings can be achieved by performing each forward run on a reduced particle set. This

reduced set can be obtained by resampling with replacement from the input particle set.

2) Association Proposal: In this section we develop an efficient proposal for the target to measurement asso-

ciations, and show how to sample from it. The proposal, which is similar in spirit to the one developed in [36],

is based on the notion of a soft-gating of the measurements. The general form of the proposal has already been

alluded to in the previous section where we discussed the SSPF architecture. Recall from (53) that it depends only

on information available at the current time step, and that it factorises over the individual observers. For notational

clarity we will thus suppress the time and observer indices here, and focus only on the proposal for a single observer,

with those for the other observers following in a similar fashion. Recall also from the previous section that the

proposal is defined in terms of the target to measurement association vector, with the proposals for the number of

clutter measurements and target detections being implicit. As discussed in the previous section the proposal for the
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association vector is assumed to take the following factorised form

q(r̃|x,y) =
K∏

k=1

q(r̃k|r̃1:k−1,xk,y). (59)

Recall from the discussion in the previous section that the factorisation can be performed over any permutation of

the target ordering.

The components of the association vector are sampled sequentially conditional on each other. The proposal for

the k-th component is conditional on all the components sampled earlier in the sequence. We will make use of this

property to ensure that measurements associated with targets earlier in the sequence are not considered as candidates

to be associated with the current target. In this way the algorithm is guaranteed to generate only valid association

hypotheses. The probability of a particular target to measurement association should be high for those measurements

close to the target, and should diminish as the distance between the measurement and target increases. For targets

with no measurements in their immediate vicinity the probability of being undetected should be significant. These

requirements can be achieved by using Bayes’ rule to define the proposal for the k-th component of the association

vector as

q(r̃k = j|r̃1:k−1,xk,y) =
q(y|r̃k = j,xk)q(r̃k = j|r̃1:k−1,xk)

∑M
l=0 q(y|r̃k = l,xk)q(r̃k = l|r̃1:k−1,xk)

. (60)

We assume the data component of the proposal to factorise over the individual measurements, with the unassigned

measurements following a uniform clutter model, and the assigned measurement to be generated by the relevant

likelihood model, i.e.

q(y|r̃k = j,xk) =





V −M if j = 0

V −(M−1)pT (yj |xk) if j ∈ {1 · · ·M}.
(61)

We further set the prior component of the proposal to be equal to the factorised form of the target to measurement

association prior in (23), i.e.

qj = q(r̃k = j|r̃1:k−1,xk) = p(r̃k = j|r̃1:k−1). (62)

Thus each target has a non-zero probability of being undetected, and previously assigned measurements are prevented

from being considered as candidates for association to the current target. With these definitions for the data and

prior components the proposal for the k-th component of the association vector can finally be expressed as

q(r̃k = j|r̃1:k−1,xk,y) =





q0V −1

q0V −1+
∑

M
l=1 qlpT (yl|xk)

if j = 0

qjpT (yj |xk)

q0V −1+
∑

M
l=1 qlpT (yl|xk)

if j ∈ {1 · · ·M}.
(63)

Since this distribution is discrete it can easily be sampled from using standard techniques. Generating a sample for

the entire association vector can be achieved by sequentially sampling the individual components conditional on

each other from r̃1 to r̃K .
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C. Independent Partition Particle Filter

Posterior dependencies between the targets exist due to the unknown association hypothesis. These dependencies

can be removed by assuming the associations to be independent over the individual targets. This simplification is

similar to the one made by the PMHT, and implies that any particular measurement can potentially be assigned

to more than one target. As we will illustrate below such an assumption facilitates an efficient component-wise

sampling strategy to construct new joint particles. We will refer to this algorithm as the Independent Partition

Particle Filter (IPPF). A similar strategy has been proposed in a somewhat different context before in [40].

More precisely, the PMHT simplification can be achieved by redefining the association prior in (23) as

p(r̃k = j|r̃1:k−1) = p(r̃k = j) ∝





1− PD if j = 0

PD

K otherwise,
(64)

where we have suppressed the time and observer indices for notational clarity. A prior of this form further implies

that the proposals for the individual target associations in (63) also become independent, i.e. q(r̃k|r̃1:k−1,xk,y) =

q(r̃k|xk,y). Thus the product of the individual target weights in (56) now capture an independent factorisation over

both the targets and the associations.

This factorisation immediately suggests an efficient component-wise sampling strategy to construct new particles.

A new joint particle can be constructed by sampling the individual target components from the pool of particles,

after the state prediction step, according to the individual target component weights. Thus the joint state-space is

effectively partitioned so that the algorithm does not suffer from the curse of dimensionality. To ensure a properly

weighted sample the final particle weight should be set to

wt ∝ wt−1

[No∏

i=1

(V i)−Mi
C p(M i

C)
]
. (65)

A further resampling step on the joint particle can be included should these weights become degenerate.

The IPPF algorithm is summarised below. Assuming that the sample set {w(n)
t−1,x

(n)
t−1}

N
n−1 is approximately

distributed according to the marginal filtering distribution at the previous time step p(xt−1|y1:t−1), the IPPF

algorithm proceeds as follows at the current time step.

Algorithm 3: IPPF

• For k = 1 · · ·K, n = 1 · · ·N , generate new samples for the target states x
(n)
k,t ∼ qk(xk,t|x

(n)
k,t−1,yt).

• For k = 1 · · ·K, n = 1 · · ·N , i = 1 · · ·No, generate samples for the target to measurement associations

r̃
i(n)
k,t ∼ q(r̃i

k,t|x
(n)
k,t ,yi

t).

• For k = 1 · · ·K, n = 1 · · ·N , compute and normalise the individual target weights

w
(n)
k,t ∝

pk(x
(n)
k,t |x

(n)
k,t−1)

qk(x
(n)
k,t |x

(n)
k,t−1,yt)

·
No∏

i=1

pi(yi

r̃
i(n)
k,t

,t
|x

(n)
k,t )p(r̃

i(n)
k,t )

q(r̃
i(n)
k,t |x

(n)
k,t ,yi

t)
,

N∑

n=1

w
(n)
k,t = 1. (66)

• For k = 1 · · ·K, n = 1 · · ·N , sample an index mk(n) ∼ {w
(l)
k,t}

N
l=1 and replace {x(n)

k,t , {r̃
i(n)
k,t }

No

i=1} ←

{x
mk(n)
k,t , {r̃

imk(n)
k,t }No

i=1}.
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• For n = 1 · · ·N , compute and normalise the particle weights

w
(n)
t ∝ w

(n)
t−1

[No∏

i=1

(V i)−M
i(n)
C p(M

i(n)
C )

]
,

N∑

n=1

w
(n)
t = 1. (67)

• If resampling is required then for n = 1 · · ·N , sample an index m(n) ∼ {w
(l)
t }

N
l=1 and replace

{w
(n)
t ,x

(n)
t , λ̃

(n)
t } ← {N

−1,x
m(n)
t , λ̃

m(n)
t }.

�

Note again that M
i(n)
C is deterministically determined once the association vector r̃

i(n)
t has been sampled. The

resulting sample set {w(n)
t ,x

(n)
t , λ̃

(n)
t }

N
n=1 is approximately distributed according to the joint filtering distribution

at the current time step p(xt, λ̃t|y1:t), under the PMHT assumption.

VI. TARGET STATE PROPOSAL

Both the MC-JPDAF in Section IV and the multi-target particle filtering algorithms in Section V require the

specification of a proposal distribution for the individual target states qk(xk,t|xk,t−1,yt). This section will present

and discuss some choices for this distribution.

In the original formulation of Monte Carlo techniques for sequential estimation in [42], [43] the state proposal

distribution was taken to be the target dynamics, i.e.

qk(xk,t|xk,t−1,yt) = pk(xk,t|xk,t−1). (68)

This is also the choice made in the first modern variant of the particle filter, known as the Bootstrap Filter [8].

Subsequently many particle filter practitioners have adopted this choice, since it leads to an intuitively simple strategy

where new particles are predicted from the target dynamics, and the importance weights are proportional to the

corresponding particle likelihoods. It can, however, lead to inefficient algorithms, since the state-space is explored

without any knowledge of the observations. A standard approach to address this shortcoming is to increase the state

noise for the proposal. This, however, leads to estimated trajectories that are less smooth than those predicted by

the true target dynamics.

In [10], [44] it is shown that the proposal distribution that is optimal in the sense that it minimises the variance

of the importance weights is of the form

qk(xk,t|xk,t−1,yt) = pk(xk,t|xk,t−1,yt) ∝ p(yt|xk,t)pk(xk,t|xk,t−1), (69)

where p(yt|xk,t) is the likelihood conditional on the target state only. For models with non-linearities, non-Gaussian

noise and data association uncertainty it is generally not possible to obtain a closed-form expression for the optimal

proposal distribution.

As a compromise between the prior proposal and the optimal proposal we define a mixture proposal of the form

qk(xk,t|xk,t−1,yt) = γDpk(xk,t|xk,t−1) + (1− γD)
∑

(i,j)∈Pk

γM
i,jq

i
k(xk,t|xk,t−1,y

i
j,t). (70)
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A proportion of γD, 0 ≤ γD ≤ 1, of the new particles is sampled from the target dynamics. The remainder of the

new particles is sampled from a mixture with each component accounting for one particular measurement. The set

Pk contains the observer and measurement index pairs of those measurements deemed to have an impact on the

state of the k-th target. It can be found using a gating procedure similar to the one described in Section IV-C, but

using the particles approximating the filtering distribution at the previous time step. The mixture weights should sum

to one, i.e.
∑

(i,j)∈Pk
γM

i,j = 1, and can be set to be inversely proportional to the distance between the transformed

target state and the measurement under consideration. However, we normally set these weights to be uniform. We

assume each individual mixture component to be of the form

qi
k(xk,t|xk,t−1,y

i
j,t) ∝ pi

T (yi
j,t|xk,t)pk(xk,t|xk,t−1), (71)

where pi
T (yi

j,t|xk,t) is the target likelihood at the i-th observer. The component proposal is thus equal to the optimal

proposal for the particular measurement, i.e. for the assignment k = ri
j,t. However, even though each component

concerns only a single measurement it is still not possible to obtain a closed-form result in general. In these cases

we aim to find the best approximation to the optimal proposal within a given parametric class of distributions,

such as the Gaussian or Student-t distributions (see e.g. [10] for more detail on approximation techniques). This

procedure is further exemplified in the example below.

Example 3: This example follows on from Examples 1 and 2, and shows how to construct a Gaussian approx-

imation to the optimal proposal in (71) by linearising the observation model (see also [10]). In what follows we

will suppress the time t, target k, observer i and measurement j indices for notational clarity, and denote the old

state by x′. Using the notation of Examples 1 and 2 the dynamic and likelihood models can be written as

p(x|x′) = N(x|Ax′,Σ)

pT (y|x) = N(y|g(x,po),Σy).
(72)

Performing a first-order Taylor series expansion of the non-linear mapping g around the point x? leads to a Gaussian

approximation of the optimal proposal of the form

q(x|x′,y) = N(x|µ?,Σ?), (73)

with
Σ? =

(
Σ−1 + J?TΣ−1

y
J?

)−1

µ
? = Σ?

(
Σ−1Ax′ + J?TΣ−1

y
(y − c?)

)

c? = g(x?,po)− J?x?.

(74)

In the above J? is the Jacobian of the non-linear mapping g evaluated at the point x?, and is given by

J? = R̂?−1


 (x? − xo) 0 (y? − yo) 0

−R̂?−1(y? − yo) 0 R̂?−1(x? − xo) 0


 , (75)

where R̂? =
(
(x? − xo)

2 + (y? − yo)
2
)1/2

is the target range. The point of expansion is normally taken to be the

deterministic component of the state prediction, i.e. x? = Ax′. �
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VII. EXPERIMENTS AND RESULTS

In this section we evaluate and compare the performance of the proposed multi-target tracking algorithms on a

challenging synthetic tracking problem. In what follows all location and distance measures are in metres, all angle

measures in radians, all time measures in seconds, and all velocity measures in metres per second. We will be

interested in tracking slowly manoeuvring targets in the xy plane. We model each target with the near constant

velocity model of Example 1, with σx = σy = 5 × 10−4 for all the targets. The discretisation time step for the

model is set to T = 1. We track the targets from two sensors of the form described in Example 2, with σR = 5,

σθ = 0.05, and Rmax = 150 for both sensors. The sensors are located at (−45,−45) and (45, 45), respectively.

We will consider tracking scenarios with K = 3 and K = 4 targets. For the three target scenario the initial

target positions and velocities are given by (−50, 50), (−50, 0), (−50,−50) and (1.0,−1.5), (1.0, 0.0), (1.0, 0.75),

respectively. For the four target scenario the first three targets are identical to the three target scenario, with the

initial position and velocity of the fourth target given by (0, 50) and (0.0,−1.5), respectively. For each scenario

we will evaluate the tracking algorithms under three sets of conditions, with increasing difficulty: an easy setting

(PD = 1.0, λC = 0.5), a medium setting (PD = 0.8, λC = 2.0), and a difficult setting (PD = 0.5, λC = 5.0). The

detection probability PD and the clutter rate λC are assumed to be the same for both sensors. For each setting we

generate L = 100 time steps of artificial data by simulating directly from the target and sensor models as specified

above.

For each setting we will run the algorithms with an increasing number of particles, i.e. N = 10, 50, 100, 200,

500, 1000, and repeat each experiment 20 times to get a statistical reflection of the behaviour of the algorithms.

We will benchmark the performance of the three multi-target tracking algorithms against the standard particle filter.

Gating is applied in the MC-JPDAF. All the algorithms are initialised with Gaussians around the true initial target

states. For all the algorithms the proposal distribution for the state is taken to be the approximately optimal proposal

of Example 3, with σx = σy = 5× 10−2 and the sensor parameters as before. The standard particle filter uses the

same association proposal as that for the SSPF defined in Section V-B.2, with the association proposal for the IPPF

defined in Section V-C. The resampling procedure, where applicable, is invoked as soon as the effective sample

size drops below half the actual sample size N . For the SSPF three forward runs were performed at each time step,

with the sample size reduced by half prior to each run. Using the particles we computed MMSE estimates for the

states and their covariances as

x̂t =

N∑

i=1

w
(i)
t x

(i)
t , Σ̂t =

N∑

i=1

w
(i)
t (x

(i)
t − x̂t)(x

(i)
t − x̂t)

T. (76)

Note that for the MC-JPDAF the MMSE estimates are computed individually for each of the targets using the

appropriate marginal weights.

The Root Mean Squared Error (RMSE) statistics are depicted in Figure 3. For each setting and a particular

number of particles the graphs show the mean and the standard deviation of the RMSE over the 20 repetitions of
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the experiment. The RMSE for a single experiment was computed as

RMSE =

√√√√ 1

L

L∑

t=1

‖x̂t − x?
t ‖

2, (77)

where x?
t is the true state at time t. As expected the error generally decreases with an increase in the number of

particles, and appears to converge to a fixed value. An exception occurs for the IPPF for the experiments on the

easy problem with K = 4 targets. Due to the PMHT assumption the IPPF was unable to disambiguate all the targets

despite an increase in the number of particles. This is further exemplified by the example trajectories in Figure 6

(third row, first column).

The standard particle filter, which searches directly in the joint space, is consistently outperformed by the other

algorithms. This is due to the fact that the other algorithms all partition the space in some way or another to reduce

the complexity of the search problem. The performance for the particle filtering strategies decreases as the problem

becomes more difficult, in that more particles are required to achieve the same estimation accuracy. Note also that

the relative performance of the IPPF rapidly degrades as the problem difficulty increases. For example, for K = 3

targets it performs as well as the MC-JPDAF on the easy problem, similar to the SSPF on the medium problem, and

just marginally better than the standard particle filter on the difficult problem. This provides further evidence that

the PMHT assumption required to obtain the IPPF has an increasingly harmful effect as the association problem

becomes more difficult.

The MC-JPDAF consistently outperforms the particle filtering strategies. What is even more remarkable is that

it converges for a relatively small number of samples (between 100 and 200), and its performance does not appear

to degrade significantly with an increase in the difficulty of the problem or the number of targets.

The average execution time statistics are depicted in Figure 4. These are for a single time step of non-optimised

Matlab implementations for each of the algorithms. All the algorithms exhibit the same exponential trend. However,

the slope is reasonably small, with the execution time increasing an order of magnitude for a two order of magnitude

increase in the number of particles. Furthermore, most of the algorithms achieve an acceptable error performance

while the average execution time per time step is well within the limits of practically realisable systems. The SSPF

is computationally the most expensive, with the performance of the other algorithms being roughly similar. The

computational complexity of the MC-JPDAF increases somewhat relative to the other algorithms as the difficulty

of the problem increases, due to the fact that more association hypotheses pass the gating test.

Some example trajectories for K = 3 and K = 4 targets are shown in Figures 5 and 6, respectively. In all

cases N = 200 particles were used. As expected the estimated trajectories become less accurate as the difficulty

of the problem increases. Note that the estimated target locations are more accurate closer to the observers. This is

especially evident for the blue target as it passes over the first observer. From the figure it appears as if the estimate

covariances are smaller for the standard particle filter compared to those for the other algorithms. This does not

imply that the standard particle filter yields more accurate estimates. Rather it is indicative of the sample depletion

that occurs due to the global resampling procedure employed by the standard particle filter. Note also that both the

IPPF and the MC-JPDAF are not always able to disambiguate all the targets.
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Fig. 3. RMSE error statistics. RMSE error (in metres) for the standard particle filter (blue circles), SSPF (green triangles), IPPF (red squares),

and MC-JPDAF (yellow upside-down triangles). The left column is for the easy problem (PD = 1.0, λC = 0.5), the middle column for the

medium problem (PD = 0.8, λC = 2.0), and the right column for the hard problem (PD = 0.5, λC = 5.0). The top row is for K = 3

targets and the bottom row is for K = 4 targets.

The sample depletion problem is further exemplified by the tracking snapshots in Figure 7. These results are for

K = 3 targets and N = 100 particles, with the target detection probability and clutter rate set to PD = 0.85 and

λC = 1.0, respectively. The global resampling procedure leads to a largely depleted sample representation for the

standard particle filter after as few as 10 time steps. Due to the resulting inaccuracy in the sample representation track

is lost and never fully recovered. The other particle filtering strategies are able to maintain richer representations,

allowing them to successfully track all the targets. The richest representation, however, is achieved by the MC-

JPDAF, for which the sample clouds consistently reflect the reasonable uncertainty in the problem, without being

adversely affected by the resampling procedure. Note also here the failure of the IPPF to disambiguate all the

targets (last row, third column).

VIII. CONCLUSIONS

In this paper we developed a number of strategies for multi-target tracking and data association. The methods are

applicable to general non-linear and non-Gaussian models. The first method is the Monte Carlo Joint Probabilistic

Data Association Filter (MC-JPDAF), for which the distributions of interest are the marginal filtering distributions for
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Fig. 4. Average execution time statistics. Average execution time (in seconds) per time step for the standard particle filter (blue circles), SSPF

(green triangles), IPPF (red squares), and MC-JPDAF (yellow upside-down triangles). The left column is for the easy problem (PD = 1.0,

λC = 0.5), the middle column for the medium problem (PD = 0.8, λC = 2.0), and the right column for the hard problem (PD = 0.5,

λC = 5.0). The top row is for K = 3 targets and the bottom row is for K = 4 targets.

each of the targets. As opposed to the standard JPDAF these are approximated with particles rather than Gaussians.

We also presented two extensions to the standard particle filtering methodology for tracking multiple targets. The

Sequential Sampling Particle Filter (SSPF) samples the individual targets sequentially by utilising a factorisation

of the importance weights. The Independent Partition Particle Filter (IPPF), on the other hand, further makes the

assumption that the associations are independent over the individual targets, leading to an efficient component-

wise sampling strategy to construct new joint particles. The proposed algorithms effectively combat the curse of

dimensionality by partitioning the state-space, leading to a sequence of easier estimation problems in each of the

resulting subspaces.

The algorithms were evaluated and benchmarked against the standard particle filter on a challenging synthetic

tracking problem. For all of the proposed algorithms the tracking accuracy was superior to that of the standard particle

filter, with a comparable computational cost. The performance of the IPPF degraded rapidly with an increase in the

difficulty of the association problem, signifying the harmful effect of the independence assumption under conditions

of a low detection probability and a high clutter rate. The MC-JPDAF outperformed the particle filtering strategies
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under all conditions. It consistently converged for a relatively small number of particles, and its performance did

not degrade significantly with an increase in the difficulty of the association problem or the number of targets.

A number of open questions remain, and various avenues are available for future research. Two very pertinent

problems are the modification of the algorithms to deal with an unknown and variable number of targets, and the

development of automatic initialisation (or detection) procedures. It may also be possible to improve the performance

of the SSPF by incorporating the temporal smoothing ideas of [45], [46]: after sampling the targets sequentially in

the forward direction, a backward smoothing run may be designed to further refine the sample representations for

the individual targets. The algorithms presented here can also be applied, with mild modifications, to the tracking

of multi-part or extended objects [36], [47], or objects whose motion exhibit some degree of mutual correlation.
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Fig. 5. Example trajectories for three targets. True (black stars) and estimated (coloured ellipses) trajectories for K = 3 targets and

N = 200 particles. The ellipses indicate the 2-σ region of the corresponding estimate covariances. The left column is for the easy problem

(PD = 1.0, λC = 0.5), the middle column for the medium problem (PD = 0.8, λC = 2.0), and the right column for the hard problem

(PD = 0.5, λC = 5.0). The top row is for the standard particle filter, the second row for the SSPF, the third row for the IPPF, and the bottom

row for the MC-JPDAF. The red dots indicate the observer locations.
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Fig. 6. Example trajectories for four targets. True (black stars) and estimated (coloured ellipses) trajectories for K = 4 targets and N = 200

particles. The ellipses indicate the 2-σ region of the corresponding estimate covariances. The left column is for the easy problem (PD = 1.0,

λC = 0.5), the middle column for the medium problem (PD = 0.8, λC = 2.0), and the right column for the hard problem (PD = 0.5,

λC = 5.0). The top row is for the standard particle filter, the second row for the SSPF, the third row for the IPPF, and the bottom row for the

MC-JPDAF. The red dots indicate the observer locations.
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Fig. 7. Tracking snapshots. Snapshots of the tracking for K = 3 targets and N = 100 particles. The detection probability and clutter rate were

set to PD = 0.85 and λC = 1.0, respectively. The left column is for the standard particle filter, the second column for the SSPF, the third column

for the IPPF, and the right column for the MC-JPDAF. From top to bottom the rows correspond to snapshots taken at t = 1, 10, 20, 35, 85, 100

in a simulation of 100 time steps. The red stars indicate the observer locations, the black stars, the true target locations, and the different

coloured dots, the particle clouds for the different targets, with each target allocated its own colour. The measurements are indicated with red

dots, and the corresponding line of sight from the observer with a black dotted line.
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