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Preface

The application of digital signal processing (DSP) to problems in audio
has been an area of growing importance since the pioneering DSP work
of the 1960s and 70s. In the 1980s, DSP micro-chips became sufficiently
powerful to handle the complex processing operations required for sound
restoration in real-time, or close to real-time. This led to the first commer-
cially available restoration systems, with companies such as CEDAR Audio
Ltd. in the UK and Sonic Solutions in the US selling dedicated systems
world-wide to recording studios, broadcasting companies, media archives
and film studios. Vast amounts of important audio material, ranging from
historic recordings of the last century to relatively recent recordings on
analogue or even digital tape media, were noise-reduced and re-released
on CD for the increasingly quality-conscious music enthusiast. Indeed, the
first restorations were a revelation in that clicks, crackles and hiss could
for the first time be almost completely eliminated from recordings which
might otherwise be un-releasable in CD format.

Until recently, however, digital audio processing has required high-powered
computational engines which were only available to large institutions who
could afford to use the sophisticated digital remastering technology. With
the advent of compact disc and other digital audio formats, followed by
the increased accessibility of home computing, digital audio processing is
now available to anyone who owns a PC with sound card, and will be of
increasing importance, in association with digital video, as the multimedia
revolution continues into the next millennium. Digital audio restoration
will thus find increasing application to sound recordings from the internet,
home recordings and speech, and high-quality noise-reducers will become
a standard part of any computer system and hifi system, alongside speech
recognisers and image processors.

In this book we draw upon extensive experience in the commercial world
of sound restoration1 and in the academic community, to give a compre-
hensive overview of the principles behind the current technology, as imple-
mented in the commercial restoration systems of today. Furthermore, if the
current technology can be regarded as a ‘first phase’ in audio restoration,
then the later chapters of the book outline a ‘second phase’ of more so-
phisticated statistical methods which are aimed at achieving higher fidelity
to the original recorded sound and at addressing problems which cannot
currently be handled by commercial systems. It is anticipated that new
methods such as these will form the basis of future restoration systems.

1Both authors were founding members of CEDAR (Computer Enhanced Digital Au-
dio Restoration), the Cambridge-based audio restoration company.
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LS least squares
MA moving average
MAP maximum a posteriori
MCMC Markov chain Monte Carlo
ML maximum likelihood
MMSE minimum mean squared error
MSE mean squared error
PDF probability density function
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RLS recursive least squares
SNR signal to noise ratio
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Notation

Obscure mathematical notation is avoided wherever possible. However,
the following glossary of basic notation, which is adopted unless otherwise
stated, may be a useful reference.

Scalars Lower/upper case, e.g. xt or E
Column vectors Bold lower case, e.g. x
Matrices Bold upper case, e.g. M
p(.) Probability distribution

(density or mass function)
f(.) Probability density function
F (.) Cumulative distribution function
E[ ] Expected value
N(µ, σ2) or N(θ|µ, σ2) Univariate normal distribution,

mean µ, covariance σ2

Nq(µ,C) or Nq(θ|µ,C) q-variate normal distribution
G(α, β) or G(v|α, β) Gamma distribution
IG(α, β) or IG(v|α, β) Inverted gamma distribution
θ ∼ p(θ) θ is a random sample from p(θ)
a = [a1 a2 . . . aP ]T Vector of autoregressive parameters
e = [eP eP+1 . . . eN−1]

T Vector of autoregressive excitation samples
σ2

e Variance of excitation sequence
σ2

vt
Variance of t th observation noise sample

y = [y0 y1 . . . yN−1]
T Observed (noisy) data vector

x = [x0 x1 . . . xN−1]
T Underlying signal vector

i = [i0 i1 . . . iN−1]
T Vector of binary noise indicator values

I The identity matrix
0n All zero column vector, length n
0n×m All zero (n×m)-dimensional matrix
1n All unity column vector, length n
trace() Trace of a matrix
T Transpose of a matrix
A = {a1, . . . , aM} the set A, containing M elements
A ∪B Union
A ∩B Intersection
Ac Complement
∅ Empty set
a ∈ A a is a member of set A
A ⊂ B A is a subset of B
[a, b] real numbers x such that a ≤ x ≤ b
(a, b) real numbers x such that a < x < b
< the real numbers: < = (−∞,+∞)
Z the integers: {−∞, . . . ,−1, 0, 1, . . . ,∞}
{ω : E} ‘All ω’s such that expression E is True’
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1

Introduction

The introduction of high quality digital audio media such as Compact Disc
(CD) and Digital Audio Tape (DAT) has dramatically raised general aware-
ness and expectations about sound quality in all types of recordings. This,
combined with an upsurge of interest in historical and nostalgic material,
has led to a growing requirement for the restoration of degraded sources
ranging from the earliest recordings made on wax cylinders in the nine-
teenth century, through disc recordings (78rpm, LP, etc.) and finally mag-
netic tape recording technology, which has been available since the 1950s.
Noise reduction may occasionally be required even in a contemporary dig-
ital recording if background noise is judged to be intrusive.

Degradation of an audio source will be considered as any undesirable
modification to the audio signal which occurs as a result of (or subsequent
to) the recording process. For example, in a recording made direct-to-disc
from a microphone, degradations could include noise in the microphone and
amplifier as well as noise in the disc cutting process. Further noise may be
introduced by imperfections in the pressing material, transcription to other
media or wear and tear of the medium itself. Examples of such noise can be
seen in the electron micrographs shown in figures 1.1-1.3. In figure 1.1 we
can clearly see the specks of dust on the groove walls and also the granu-
larity in the pressing material, which can be seen sticking out of the walls.
In figure 1.2 the groove wall signal modulation can be more clearly seen.
In figure 1.3, a broken record is seen almost end-on. Note the fragments of
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FIGURE 1.1. Electron micrograph showing dust and granular particles in the
grooves of a 78rpm gramophone disc.

broken disk which fill the grooves 1. We do not strictly consider any noise
present in the recording environment such as audience noise at a musical
performance to be degradation, since this is part of the ‘performance’. Re-
moval of such performance interference is a related topic which is considered
in other applications, such as speaker separation for hearing aid design. An
ideal restoration would then reconstruct the original sound source exactly
as received by the transducing equipment (microphone, acoustic horn, etc.).
Of course, this ideal can never be achieved perfectly in practice, and meth-
ods can only be devised which come close according to some suitable error
criterion. This should ideally be based on the perceptual characteristics of
the human listener.

1.1 The History of recording – a brief overview

The ideas behind sound recording2 began as early as the mid-nineteenth
century with the invention by Frenchman Léon Scott of the Phonautograph
in 1857, a device which could display voice waveforms on a piece of paper

1These photographs are reproduced with acknowledgement to Mr. B.C. Breton, Sci-
entific Imaging Group, CUED

2For a more detailed coverage of the origins of sound recording see, for example, Peter
Martland’s excellent book ‘Since Records Began: EMI, the First Hundred Years’[124].
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FIGURE 1.2. Electron micrograph showing signal modulation of the grooves of
a 78rpm gramophone disc.

FIGURE 1.3. Electron micrograph showing a breakage directly across a 78rpm
gramophone disc.
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via a recording horn which focussed sound onto a vibrating diaphragm.
It was not until 1877, however, that Thomas Edison invented the Phono-
graph, a machine capable not only of storing but of reproducing sound,
using a steel point stylus which cut into a tin foil rotating drum recording
medium. This piece of equipment was a laboratory tool rather than a com-
mercial product, but by 1885 Alexander Graham Bell, and two partners,
C.A. Bell and C.S. Tainter, had developed the technology sufficiently to
make it a commercial proposition, and along the way had experimented
with technologies which would later become the gramophone disc, mag-
netic tape and optical soundtracks. The new technology worked by cutting
into a beeswax cylinder, a method originally designed to bypass the 1878
patent of Edison. In 1888, commercial exploitation of this new wax cylinder
technology began, the same year that Emile Berliner demonstrated the first
flat disc record and gramophone at the Franklin Institute, using an acid
etching process to cut grooves into the surface of a polished zinc plate.

Cylinder technology was cumbersome in the extreme, and no cheap
method for duplicating cylinders became available until 1902. This meant
that artists had to perform the same pieces many times into multiple
recording horns in order to obtain a sufficient quantity for sale. Mean-
while Berliner developed the gramophone disc technology, discovering that
shellac, a material derived from the Lac beetle, was a suitable medium
for manufacturing records from his metal negative master discs. Shellac
was used for 78rpm recordings until vinyl was invented in the middle of
this century. By 1895 a catalogue of a hundred 7-inch records had been
produced by the Berliner Gramophone Company, but the equipment was
hand-cranked and primitive. Further developments led to a motor driven
gramophone, more sensitive soundbox and a new wax disc recording pro-
cess, which enabled the gramophone to become a huge commercial success.

Recording using a mechanical horn and diaphragm was a difficult and
unreliable procedure, requiring performers to crowd around the recording
horn in order to be heard, and some instruments could not be adequately
recorded at all, owing to the poor frequency response of the system (164Hz–
2000Hz). The next big development was the introduction in 1925, after
various experiments from 1920 onwards, of the Western Electric electrical
recording process into the Columbia studios, involving an electrical micro-
phone and amplifier which actuates a cutting tool. The electric process led
to great improvements in sound quality, including a bandwidth of 20Hz–
5000Hz and reduced surface noise. The technology was much improved by
Alan Blumlein, who also demonstrated the first stereo recording process in
1935. In the same year AEG in Germany demonstrated the precursor of
the magnetic tape recording system, a method which eliminates the clicks,
crackles and pops of disc recordings. Tape recording was developed to its
modern form by 1947, allowing for the first time a practical way to edit
recordings, including of course to ‘cut and splice’ the tape for restoration
purposes. In the late forties the vinyl LP and 45rpm single were launched.



1.2 Sound restoration – analogue and digital 5

In 1954 stereophonic tapes were first manufactured and in 1958 the first
stereo discs were cut. Around this time analogue electronic technology for
sound modification by filtering, limiting, compressing and equalisation was
being introduced, which allowed the filtering of recordings for reduction of
surface noise and enhancement of selective frequencies.

The revolution which has allowed the digital processing techniques of
this book to succeed is the introduction of digital sound, in particular in
1982 the compact disc (CD) format, a digital format which allows a stereo
signal bandwidth up to 20kHz with 16-bit resolution. Now of course we see
higher bandwidth (48kHz), better resolution (24-bit) formats being used
in the recording studio, but the CD has proved itself as the first practical
domestic digital format.

1.2 Sound restoration – analogue and digital

Analogue restoration techniques have been available for at least as long as
magnetic tape, in the form of manual cut-and-splice editing for clicks and
frequency domain equalisation for background noise (early mechanical disc
playback equipment will also have this effect by virtue of its poor response
at high frequencies). More sophisticated electronic click reducers were based
upon high pass filtering for detection of clicks, and low pass filtering to mask
their effect (see e.g. [34, 102])3. None of these methods was sophisticated
enough to perform a significant degree of noise reduction without interfering
with the underlying signal quality. For analogue tape recordings the pre-
emphasis techniques of Dolby [47] have been very successful in reducing the
levels of background noise in analogue tape, but of course the pre-emphasis
has to be encoded into the signal at the recording stages.

Digital methods allow for a much greater degree of flexibility in pro-
cessing, and hence greater potential for noise removal, although indiscrim-
inate application of inappropriate digital methods can be more disastrous
than analogue processing! Some of the earliest digital signal processing
work for audio restoration involved deconvolution for enhancement of a
solo voice (Caruso) from an acoustically recorded source (see Miller [132]
and Stockham et al. [171]). Since then, research groups from many places,
including Cambridge, Le Mans, Paris and the US, have worked in the area,
developing sophisticated techniques for treatment of degraded audio. For
a good overall text on the field of digital audio, including restoration [84],
see [25]. Another text which covers many enhancement techniques related
to those of this book is by Vaseghi [188]. On the commercial side, aca-
demic research has led to spin-off companies which manufacture computer

3The well known ‘Packburn’ unit achieved masking within a stereo setup by switching
between channels
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restoration equipment for use in recording studios, re-mastering houses and
broadcast companies. In Cambridge, CEDAR (Computer Enhanced Dig-
ital Audio Restoration) Ltd., founded in 1988 by Dr. Peter Rayner from
the Communications Group of the University’s Engineering Department
and the British Library’s National Sound Archive, is probably the best
known of these companies, providing equipment for automatic real-time
noise reduction, click and crackle removal, while the California-based Sonic
Solutions markets a well-known system called NoNoise. Now, with the rapid
increases in cheaply available computer performance, many computer edit-
ing packages include noise and click reduction as a standard add-on.

1.3 Classes of degradation and overview of the
book

There are several distinct types of degradation common in audio sources.
These can be broadly classified into two groups: localised degradations and
global degradations. Localised degradations are discontinuities in the wave-
form which affect only certain samples, including clicks, crackles, scratches ,
breakages and clipping. Global degradations affect all samples of the wave-
form and include background noise, wow and flutter and certain types of
non-linear distortion. Mechanisms by which all of these defects can occur
are discussed later. We distinguish the following classes of localised degra-
dation:

• Clicks - these are short bursts of interference random in time and
amplitude. Clicks are perceived as a variety of defects ranging from
isolated ‘tick’ noises to the characteristic ‘crackle’ associated with
78rpm disc recordings.

• Low frequency noise transients - usually a larger scale defect than
clicks and caused by very large scratches or breakages in the play-
back medium. These large discontinuities excite a low frequency res-
onance in the pickup apparatus which is perceived as a low frequency
‘thump’ noise. This type of degradation is common in gramophone
disc recordings and optical film sound tracks.

Global degradations affect all samples of the waveform and the following
categories may be identified:

• Broad band noise - this form of degradation is common to all record-
ing methods and is perceived as ‘hiss’.

• Wow and flutter - these are pitch variation defects which may be
caused by eccentricities in the playback system or motor speed fluc-
tuations. The effect is a very disturbing modulation of all frequency
components.
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• Distortion - This very general class covers a wide range of non-linear
defects from amplitude related overload (e.g. clipping) to groove wall
deformation and tracing distortion.

We describe methods in this text to address the majority of the above
defects (in fact all except non-linear distortion, which is a topic of current
research interest in DSP for audio). In the case of localised degradations
a major task is the detection of discontinuities in the waveform. In sec-
tion III we adopt a classification approach to this task which is based on
Bayes Decision Theory. Using a probabilistic model-based formulation for
the audio data and degradation we use Bayes’ theorem to derive optimal
detection estimates for the discontinuities. In the case of global degrada-
tions an approach based on probabilistic noise and data models is applied to
give estimates for the true (undistorted) data conditional on the observed
(noisy) data.

Note that all audio results and experimentation presented are performed
using audio signals sampled at the professional rates of 44.1kHz or 48kHz
and quantised to 16 bits.

The following gives a brief outline of the ensuing chapters.

Part I - Fundamentals

In the first part of the book we provide and overview of the basic theory
on which the rest of the book relies. These chapters are not intended to
be a complete tutorial for a reader completely unfamiliar with the area,
but rather a summary of the important results in a form which is easily
accessible. The reader is assumed to be quite familiar with linear systems
theory and continuous time spectral analysis. Much of the material in this
first section is based upon courses taught by the authors to undergraduates
at Cambridge University.

Chapter 2 - Digital Signal Processing

In this chapter we overview the basics of digital signal processing (DSP),
the theory of discrete time processing of sampled signals. We include an
introduction to sampling theory, convolution, spectrum analysis, the z-
transform and digital filters.

Chapter 3 - Probability Theory and Random Processes

Owing to the random nature of most audio signals it is necessary to have
a thorough grounding in random signal theory in order to design effective
restoration methods. Indeed, most of the restoration methods presented
in the text are based explicitly on probabilistic models for signals and
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noise. In this chapter we build up the theory of random processes, includ-
ing correlation functions, power spectra and linear systems analysis from
the fundamentals of probability theory for random variables and random
vectors.

Chapter 4 - Parameter Estimation, Classification and Model
Selection

This chapter introduces the fundamental concepts and techniques of param-
eter estimation and model selection, topics which are applied throughout
the text, with an emphasis upon the Bayesian Decision Theory perspec-
tive. A mathematical framework based on a linear parameter Gaussian
data model is used throughout to illustrate the methods. We then consider
some basic signal models which will be of use later in the text and describe
some powerful numerical statistical estimation methods:
expectation-maximisation (EM) and Markov chain Monte Carlo (MCMC).

Part II - Basic Restoration Procedures

Part II describes the basic methods for removing clicks and background
noise from disc and tape recordings. Much of the material is a review of
methods which might be used in commercial re-mastering environments,
however we also include some new material such as interpolation using the
autoregressive moving-average (ARMA) models. The reader who is new
to the topic of digital audio restoration will find this part of the book an
invaluable introduction to the wide range of methods which can be applied.

Chapter 5 - Removal of Clicks

Clicks are the most common form of artefact encountered in old recordings
and the first stage of processing in many cases will be a de-clicking pro-
cess. We describe firstly a range of techniques for interpolation of missing
samples in audio; this is the task required for replacing a click in the au-
dio waveform. We then discuss methods for detection of clicks, based upon
modelling the distinguishing features of audio signals and abrupt discon-
tinuities in the waveform (clicks). The methods are illustrated throughout
with graphical examples which contrast the performance of the various
schemes.

Chapter 6 - Hiss Reduction

All recordings, whatever their source, are inherently contaminated with
some degree of background noise, often perceived as ‘hiss’. This chapter
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describes the technology for hiss reduction, mostly based upon a frequency
domain attenuation principle. We then go on to describe how hiss reduction
can be carried out in a model-based setting.

Part III - Advanced Topics

In this section we describe some more recent and active research topics
in audio restoration. The research spans the period 1990-1998 and can be
considered to form a ‘second generation’ of sophisticated techniques which
can handle new problems such as ‘wow’ or potentially achieve improvements
in the basic areas such as click removal. These methods are generally not
implemented in the commercial systems of today, but are likely to form a
part of future systems as computers become faster and cheaper. Many of
the ideas for these research topics have come from the authors’ experience
in the commercial sound restoration arena.

Chapter 7 - Removal of Low Frequency Noise Pulses

Low frequency noise pulses occur in gramophone and optical film media
when the playback system is driven by step-like inputs such as groove break-
ages or large scratches. We firstly review the existing template-based meth-
ods for restoration of such defects, then present a new signal separation-
based approach in which both the audio signal and the noise pulse are mod-
elled as autoregressive (AR) processes. A separation algorithm is developed
which removes the noise pulse from the observed signal. The algorithm has
more general application than existing methods which rely on a ‘template’
for the noise pulse. Performance is found to be better than the existing
methods and the new process is more readily automated.

Chapter 8 - Restoration of Pitch Variation Defects

This chapter presents a novel technique for restoration of musical mate-
rial degraded by wow and other related pitch variation defects. An initial
frequency tracking stage extracts frequency tracks for all significant tonal
components of the music. This is followed by an estimation procedure which
identifies pitch variations which are common to all components, under the
assumption of smooth pitch variation with time. Restoration is then per-
formed by non-uniform resampling of the distorted signal. Results show
that wow can be virtually eliminated from musical material which has a
significant tonal component.
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Chapters 9-11 - A Bayesian Approach to Click Removal

In these chapters a new approach to click detection and replacement is de-
veloped. This approach is based upon Bayes decision theory as discussed
in chapter 4. A Gaussian autoregressive (AR) model is assumed for the
data and a Gaussian model is also used for click amplitudes. The detector
is shown to be equivalent under certain limiting constraints to the existing
AR model-based detectors currently used in audio restoration. In chapter
10 a novel sequential implementation of the Bayesian techniques is devel-
oped and in chapter 11 results are presented demonstrating that the new
methods can out-perform the methods described in chapter 5.

Chapter 12 - Fully Bayesian Restoration using EM and MCMC

The Bayesian methods of chapters 9-11 led to improvements in detection
and restoration of clicks. However, a disadvantage is that system parame-
ters must be known a priori or estimated in some ad hoc fashion from the
data. In this chapter we present more sophisticated statistical methodology
for solution of these limitations and for more realistic modelling of signal
and noise sources. We firstly present an expectation-maximisation (EM)
method for interpolation of autoregressive signals in non-Gaussian impul-
sive noise. We then present a Markov chain Monte Carlo (MCMC) tech-
nique which is capable of performing interpolation jointly with detection
of clicks. This is a significant advance and the drawback is a dramatic in-
crease in computational complexity for the algorithm. However, we believe
that with the rapid advances in computational power which are constantly
occurring, methods such as these will come to dominate complex statistical
signal processing problem-solving in the future. The chapter provides an
in-depth case study of EM and MCMC applied to click removal, but it is
noted that the methods can be applied with benefit to many of the other
problem areas described in the book.

1.4 A reader’s guide

This book is aimed at a wide range of readers, from the technically minded
audio enthusiast through to research scientists in industrial and academic
environments. For those who have little knowledge of statistical signal pro-
cessing the introductory chapters in Section I will be essential reading, and
it may be necessary to refer to some of the cited texts in addition as the
coverage is of necessity rather sparse. Part II will then provide the core
reading material on restoration techniques, with Part III providing some
interesting developments into areas such as wow and low frequency pulse
removal. For the reader with a research background in statistical signal
processing, Part I will serve only as a reference for notation and terminol-
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ogy, although chapter 4 may provide some useful insights into the Bayesian
methodology adopted for much of the book. Part II will then provide gen-
eral background reading in basic restoration methods, leading to Part III
which contains state-of-the-art research in the audio restoration area.

Chapters 5 and 9-12 may be read in conjunction for those interested
in click and crackle treatment techniques, while chapters 6, 7 and 8 form
stand-alone texts on the areas of hiss reduction, low frequency pulse removal
and wow removal, respectively.
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2

Digital Signal Processing

Digital signal processing (DSP) is a technique for implementing operations
such as signal filtering and spectrum analysis in digital form, as shown in
the block diagram of figure 2.1.

Analogue
input

x(t)

Analogue/
Digital

Converter

Digital
Processor

Digital/
Analogue
Converter

Analogue
output

y(t)x(nT) y(nT)

FIGURE 2.1. Digital signal processing system

There are many advantages in carrying out digital rather than analogue
processing; amongst these are flexibility and repeatability. The flexibility
stems from the fact that system parameters are simply numbers stored in
the processor. Thus for example, it is a trivial matter to change the cut-
off frequency of a digital filter whereas a lumped element analogue filter
would require a different set of passive components. Indeed the ease with
which system parameters can be changed has led to many adaptive tech-
niques whereby the system parameters are modified in real time according
to some algorithm. Examples of this are adaptive equalisation of transmis-
sion systems and adaptive antenna arrays which automatically steer the
nulls in the polar diagram onto interfering signals. Digital signal process-
ing enables very complex linear and non-linear processes to be implemented
which would not be feasible with analogue processing. For example it is
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difficult to envisage an analogue system which could be used to perform
spatial filtering of an image to improve the signal to noise ratio.

DSP has been an active research area since the late 1960s but applications
tended to be only in large and expensive systems or in non-real time where
a general purpose computer could be used. However, the advent of DSP
chips has enabled real-time processing to be performed at very low cost and
has enabled audio companies such as CEDAR Audio and Sonic Solutions
to produce real-time restoration systems for remastering studios and record
companies. The next few years will see the further integration of DSP into
domestic products such as television, radio, mobile telephones and of course
hi-fi equipment.

In this chapter we review the basic theory of digital signal processing
(DSP) as required later in the book. We consider firstly Nyquist sampling
theory, which states that a continuous time signal such as an audio signal
which is band-limited in frequency can be represented perfectly without
any information loss as a set of discrete digital sample values. The whole of
digital audio, including compact disc (CD) and digital audio tape (DAT)
relies heavily on the validity of this theory and so a strong understanding
is essential. The chapter then proceeds to describe signal manipulation in
the digital domain, covering such important topics as Fourier analysis and
the discrete Fourier transform (DFT), the z-transform, time domain data
windows and the fast Fourier transform (FFT). A basic level of knowledge
in continuous time linear systems, Laplace and Fourier analysis is assumed.
Much of the material is of necessity given a superficial coverage and for
more detailed descriptions the reader is referred to the texts by Roberts
and Mullis [164], Proakis and Manolakis [157] and Oppenheim and Schafer
[145].

2.1 The Nyquist sampling theorem

It is necessary to determine under what conditions a continuous signal g(t)
may be unambiguously represented by a series of samples taken from the
signal at uniform intervals of T . It is convenient to represent the sampling
process as that of multiplying the continuous signal g(t) by a sampling sig-
nal s(t) which is an infinite train of impulse functions δ(nT ). The sampled
signal gs(t) is:

gs(t) = g(t) s(t)

where:

s(t) =
∞
∑

n=−∞

δ(t− nT )
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Now the impulse train s(t) is a periodic function and may be represented
by a Fourier series:

s(t) =
∞
∑

p=−∞

cp e
jpω0t

where

cp =
1

T

∫ −T
2

−T
2

s(t) e−jpω0t dt =
1

T

and

ω0 =
2π

T

... gs(t) = g(t)
1

T

∞
∑

p=−∞

ejpω0t

The spectrum Gs(ω) of the sampled signal may be determined by taking
the Fourier transform of gs(t). This is most readily achieved by making use
of the frequency shift theorem which states that:

If g(t)
�
G(ω)

then g(t) ejω0t �G(ω − ω0)

Application of this theorem gives:

Gs(ω) =
1

T

∞
∑

p=−∞

G(ω − pω0) (2.1)

Spectrum of sampled signal

The above equation shows that the spectrum of the sampled signal is simply
the sum of the spectra of the continuous signal repeated periodically at
intervals of ω0 = 2π

T as shown in figure 2.2. Thus the continuous signal g(t)
may be perfectly recovered from the sampled signal gs(t) provided that the
sampling interval T is chosen so that:

2π

T
> 2 ωB
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|G(ω)|

ω-ωB ωB

|Gs(ω)|

ω
-ω0

- ωBω0+ ωB-ω0

ω0ωB-ωB

ω

|Gs(ω)|

ωB-ωB ω0-ω0

|Gs(ω)|

ωωB-ωB

ω0-ω0 − ωΒω0

- ωBω0

FIGURE 2.2. Sampled signal spectra for various different sampling frequencies
ω0
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where ωB is the bandwidth of the continuous signal g(t). If this condition
holds then there is no overlap of the individual spectra in the summation
of expression (2.1) and the original signal can be perfectly reconstructed
using a low-pass filter H(ω) with bandwidth ωB:

H(ω) =

{

1, |ω| < ωB

0, Otherwise

This theory underpins the whole of digital audio and means that a dig-
ital audio system can in principle be designed which loses none of the
information contained in the continuous domain signal g(t). Of course the
practicalities are rather different as a band-limited input signal is assumed
and the reconstruction filter H(ω), the A/D and D/A converters must be
ideal. For more detail of this procedure see for example [99]

2.2 The discrete time Fourier transform (DTFT)

We now proceed to calculate the sampled signal spectrum in an alterna-
tive way which leads to the discrete time Fourier transform (DTFT). The
sampled signal gs(t) is given by:

gs(t) = g(t)

∞
∑

p=−∞

δ(t− pT )

and the signal spectrum Gs(ω) can be obtained by taking the Fourier trans-
form directly:

Gs(ω) =

∫ ∞

−∞

gs(t) e
−jωt dt =

∫ ∞

−∞

g(t)

∞
∑

p=−∞

δ(t− pT ) e−jωt dt

... Gs(ω) =

∞
∑

p=−∞

gpe
−jωpT (2.2)

where we have defined gp = g(pT ). Note that this is a periodic function of
frequency and is usually written in the following form:

G(ejωT ) =

∞
∑

p=−∞

gp e
−jωpT (2.3)

Discrete time Fourier transform (DTFT)
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The signal sample values may be expressed in terms of the sampled signal
spectrum by noting that equation (2.3) has the form of a Fourier series
and the orthogonality of the complex exponential can be used to invert the
transform. Multiply each side of equation (2.3) by ejωnT and integrate:

∫ 2π

0

G(ejωT )ejnωT dωT =

∫ 2π

0

∞
∑

p=−∞

gp e
−jω(p−n)T dωT

=
∞
∑

p=−∞

gp

∫ 2π

0

e−jω(p−n)T dωT

but

∫ 2π

0

e−j(p−n)ωT dωT =

{

0, p 6= n
2π, p = n

}

The signal samples are thus obtained from the DTFT as:

gn =
1

2π

∫ 2π

0

G(ejωT ) ejnωT dωT (2.4)

Inverse DTFT

2.3 Discrete time convolution

Consider an analogue signal x(t) and its sampled representation

xs(t) = x(t)
∞
∑

n=−∞

δ(t− nT ) =
∞
∑

n=−∞

x(nT )δ(t− nT ).

If we apply xs(t) as the input to a linear time invariant (LTI) system with
impulse response h(t), then the output signal can be written as

y(t) =

∫ ∞

−∞

h(t− τ)

∞
∑

m=−∞

x(mT )δ(τ −mT ) dτ

=

∞
∑

m=−∞

h(t−mT )x(mT )
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If we now evaluate the output at times nT we have:

y(nT ) =

∞
∑

m=−∞

h((n−m)T )x(mT ) =

∞
∑

m=−∞

h(mT )x((n−m)T ) (2.5)

in which the impulse response needs only to be evaluated at integer multi-
ples of T . This discrete convolution can be evaluated in the digital domain
as shown in figure 2.3, where x(nT ) represents values from an analogue
signal x(t) sampled periodically at intervals of T and the outputs y(nT )
represent sample values which may be converted into an analogue signal
by means of a digital to analogue converter. We will denote the digitised
sequences from now on as xn = x(nT ) and yn = y(nT ), and the sampled
impulse response as hn = h(nT ), leading to the discrete time convolution
equations:

yn =

∞
∑

m=−∞

hn−mxm =

∞
∑

m=−∞

hmxn−m (2.6)

Discrete time convolution

Digital
input

x(nT)

Digital
Processor

Digital
output

y(nT)

FIGURE 2.3. Digital Signal Processor

The frequency domain relationship between the system input and output
may be developed from the convolution relationship as follows. Take the
DTFT of each side of equation (2.6):

Y (ejωT ) =

∞
∑

n=−∞

yn e
−jnωT =

∞
∑

n=−∞

{

∞
∑

p=−∞

xp hn−p

}

e−jnωT

... Y (ejωT ) =

∞
∑

p=−∞

xp

∞
∑

n=−∞

hn−pe
−jnωT

Let n− p = q, then
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Y (ejωT ) =

∞
∑

p=−∞

xp

∞
∑

q=−∞

hqe
−(q+p)ωT

=

{

∞
∑

p=−∞

xp e
−jpωT

}{

∞
∑

q=−∞

hq e
−jqωT

}

But
∑∞

p=−∞ xp e
−jpωT is the spectrum of the system input, X(ejωT ),

... Y (ejωT ) = X(ejωT )H(ejωT ) (2.7)

where

H(ejωT ) =
∞
∑

q=−∞

hq . e
−jqωT (2.8)

is the system frequency response.

The system frequency response could also have been derived directly
from equation (2.6) as follows. Let

xp = ejωpT

... yn =
∞
∑

p=−∞

hp . e
jω(n−p)T

... yn = ejωnT
∞
∑

p=−∞

hp . e
−jpωT

... H(ejωT ) ≡
∞
∑

p=−∞

hp e
−jpωT

2.4 The z-transform

The Laplace transform is an important tool in continuous system theory
as it enables one to deal with differential equations as algebraic equations,
since it transforms convolutive functions into multiplicative functions. How-
ever, the natural mathematical description of sampled data systems is in
terms of difference equations and it would be of considerable help to de-
velop a method whereby difference equations can be treated as algebraic
equations. The z-transform accomplishes this and is also a powerful tool
for general interpretation of discrete system behaviour.
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2.4.1 Definition

The two-sided z-transform is defined for a sampled signal {gn} as:

G(z) = Z{gn} =

∞
∑

p=−∞

gp z
−p (2.9)

2-sided z-transform

The z-transform exists for all z such that the summation converges abso-
lutely, i.e.

∞
∑

p=−∞

|gp z
−p| <∞

2.4.2 Transfer function and frequency response

We can see a similarity here with the DTFT, equation (2.3), in that the two-
sided z-transform is equal to the DTFT when z = ejωT . Equivalent results
can be shown to apply for the discrete-time convolution and frequency
response in the z-domain; specifically, if we obtain the z-transform of the
discrete time impulse response, H(z) =

∑∞
p=−∞ hp z

−p, then the input-
output relationships in the time domain and the z-domain are:

yn =

∞
∑

m=−∞

hmxn−m (time domain)
�

Y (z) = H(z)X(z) (z-domain)

where H(z) is known as the transfer function and Y (z) and X(z) are the z-
transforms of the output and input sequences, respectively. The frequency
response of the system is:

H(z)
∣

∣

z=ejωT

Another useful result is the time-shifting theorem for z-transforms, which
is used for handling difference equations and digital filters:

Z{gn−p} = z−pG(z) (2.10)

2.4.3 Poles, zeros and stability

If we suppose that the transfer function is a rational function of z, i.e. the
ratio of two polynomials in z, then H(z) can be factorised as:

H(z) = K

∏M
i=1(z − zi)

∏N
j=1(z − pj)
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in which the {zi} are known as the zeros and {pi} as the poles of the transfer
function. Then, a necessary and sufficient condition for the transfer function
to be bounded-input bounded-output (BIBO) stable1 is that all the poles
lie within the unit circle, i.e.

|pi| < 1, i = 1, . . . , N

There are many more mathematical and practical details of the z-transform,
but we omit these here as they are not used elsewhere in the text. The in-
terested reader is referred to [164] or one of the many other excellent texts
on the topic.

2.5 Digital filters

2.5.1 Infinite-impulse-response (IIR) filters

Consider a discrete time difference equation input-output relationship of
the form:

yn =
M
∑

i=0

bixn−i +
N
∑

j=1

ajyn−j

This can be straightforwardly implemented in hardware or software using
a network of delays, adders and multipliers and is known as an infinite-
impulse-response (IIR) filter. Taking z-transforms of both sides using result
(2.10) and rearranging, we obtain:

Y (z) =
B(z)

A(z)
X(z)

where

B(z) =

M
∑

i=0

biz
−i

and

A(z) = 1 −
N
∑

j=1

ajz
−j

The transfer function is H(z) = B(z)
A(z) , which is stable if and only if the zeros

of A(z) lie within the unit circle. Furthermore, the filter is invertible (this

1This means that no finite-amplitude input sequence {xn} can generate an infinite-
amplitude output
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means that a finite sequence {xn} can always be obtained from any finite
amplitude sequence {yn}) if and only if the zeros of B(z) also lie within the
unit circle. This type of filter is known as infinite-impulse-response because
in general the impulse response is of infinite duration even when M and N
are finite.

2.5.2 Finite-impulse-response (FIR) filters

An important special case of the IIR filter is the finite-impulse-response
(FIR) filter, in which N is set to zero in the general filter equation:

yn =

M
∑

i=0

bixn−i

This filter is unconditionally stable and has an impulse response equal to
b0, b1, . . . bM , 0, 0, . . . . The transfer function is given by:

H(z) = B(z)

2.6 The discrete Fourier transform (DFT)

The Discrete Time Fourier Transform (DTFT) expresses the spectrum of
a sampled signal in terms of the signal samples but is not computable on
a digital machine for two reasons:

1. The frequency variable ω is continuous.

2. The summation involves an infinite number of samples

The first problem may be overcome by simply choosing to evaluate the
spectrum at a set of discrete frequencies. These may be arbitrarily chosen
but it should be remembered that the spectrum is a periodic function of
frequency (see figure 2.2) so that it is only necessary to consider frequencies
in the range:

ωT = 0 → 2π

Although the frequencies may be arbitrarily chosen in this range, important
computational advantages are to be gained from choosing N uniformly
spaced frequencies, ie. at the frequencies:

ωT = p
2π

N
p ∈ {0, 1, . . . , N − 1}
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Thus equation (2.3) becomes:

G(ej 2π
N p) =

∞
∑

n=−∞

gn e
−j 2π

N np

Although the above equation is a function of only discrete variables the
problem remains of the infinite summation. If, however, the signal is non-
zero only for samples g0 to gM−1 then the equation becomes:

G(ej 2π
N p) =

M−1
∑

n=0

gn e
−j 2π

N np (2.11)

In general, of course, the signal will not be of finite duration. However,
if it is assumed that computing the transform of only M samples of the
signal will lead to a reasonable estimate of the spectrum of the infinite
duration signal then the above equation is computable in a finite time.
(The implications of this assumption are investigated in the next section
on data windowing.) Although the number of samples M is completely
independent of the number of frequency points N , there is a considerable
computational advantage to be gained from setting M = N and this will
become clear later when the fast Fourier transform (FFT) is considered.
Under this condition, equation (2.11) becomes:

G(ej 2π
N p) =

N−1
∑

n=0

gn e
−j 2π

N np (2.12)

It is often required to be able to compute the signal samples from the
spectral values and this may be achieved by making use of the orthogonal
properties of the discrete complex exponential as follows. Multiply each
side of equation (2.12) by ej 2π

N pq and sum over p = 0 to N − 1:

N−1
∑

p=0

G(ej 2π
N p) ej 2π

N pq =

N−1
∑

p=0

N−1
∑

n=0

gn e
−j 2π

N np ej 2π
N pq

=
N−1
∑

n=0

gn

N−1
∑

p=0

ej 2π
N (q−n)p

Note that:

N−1
∑

p=0

ej 2π
N (q−n)p =

{

N n = q
0 n 6= q

... gq =
1

N

N−1
∑

p=0

G(ej 2π
N p) ej 2π

N pq (2.13)
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Equations (2.12) and (2.13) are the discrete Fourier transform (DFT) pair,
summarised as:

G(p) =

N−1
∑

n=0

gn e
−j 2π

N np (2.14)

Discrete Fourier transform (DFT)

gn =
1

N

N−1
∑

p=0

G(p) ej 2π
N pn (2.15)

Inverse DFT

2.7 Data windows

In the previous section the discrete Fourier transform (DFT) was derived
for a signal {gn} which is non-zero only for n ∈ {0, 1, . . . , N − 1}. In most
Fourier transform applications the signal will not be of finite duration.
However we could force this condition by extracting a section of the signal
with duration Tw and hoping that the spectrum of the finite duration signal
would be a good approximation to the spectrum of the long duration signal.
This can be analysed carefully and leads on to the topic of window design.

2.7.1 Continuous signals

It will be helpful firstly to consider continuous signals. Let g(t) be a con-
tinuous signal defined over all time with Fourier transform G(ω):

g(t) ⇔ G(ω)

We wish to determine what relationship the spectrum of the windowed
signal gw(t), shown in figure 2.4, has to the spectrum of g(t), where gw(t) =
g(t)w(t)

Transforming to the frequency domain and using the standard convolu-
tion result for the transform of multiplied signals, we obtain

Gw(ω) =

∫ ∞

−∞

gw(t) e−jωt dt =
1

2π

∫ ∞

−∞

W (λ)G(ω − λ) dλ (2.16)
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g(t)

1

< >Tw

w(t)

gw(t)=g(t).w(t)  

FIGURE 2.4. Windowing a continuous-time signal

The spectrum of the windowed signal is thus the convolution of the win-
dow’s spectrum with the un-windowed signal’s spectrum. The spectrum of
the window is

W (ω) =

∫ ∞

−∞

w(t) . e−jωt dt =

∫
Tw
2

−Tw
2

e−jωt dt =
1

−jω
[

e−jω Tw
2 − ejω Tw

2

]

=
2 sin(ω Tw

2 )

ω
= Tw

sin(ω Tw

2 )

(ω Tw

2 )
(2.17)

as shown in figure 2.5. The effect of this convolution can be appreciated by
considering the signal:

g(t) = 1 + ejωot

ie. a d.c. offset added to a complex exponential with frequency ωo. The
Fourier transform of this signal is:

G(ω) = 2πδ(ω) + 2πδ(ω − ωo)

The spectrum of the windowed signal is then obtained as:

Gw(ω) =

∫ ∞

−∞

{

Tw

sin(λTw

2 )

(λTw

2 )

}

{δ(ω − λ) + δ(ω − λ− ω0)} dλ

= Tw

{

sin(ω Tw

2 )

(ω Tw

2 )
+

sin
[

(ω − ωo)
Tw

2

]

(ω − ω0)
Tw

2

}
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FIGURE 2.5. Spectral magnitude of rectangular window |W (ω)| plotted as a
function of normalised frequency ωTw/(2π)

This result is plotted in figure 2.6 and we see that there are two effects.

1. Smearing. The discrete frequencies (in this case d.c. and ω0) have
become ‘smeared’ into a band of frequencies.

2. Spectral leakage. The component at d.c. ‘leaks’ into the ω0 compo-
nent as a result of the sidelobes of W (f). This can be very trouble-
some when trying to measure the amplitude of a small component
in the presence of a large component at a nearby frequency. This is
illustrated for two complex exponentials with differing amplitudes in
figure 2.7.

The two effects are not independent but roughly speaking the width of the
lobes (or smearing) is an effect of the window duration but the sidelobes
are due to the discontinuous nature of the window. A technique commonly
used in spectral analysis is to employ a tapered window rather than the
rectangular window. One such window is the ‘cosine arch’ or Hanning win-
dow, given by:

w(t) =

{

1
2 [1 − cos(2πt

Tw
)], 0 ≤ t ≤ Tw

0, otherwise

and shown in figure 2.8 along with its spectrum, which has much reduced
sidelobes but wider central lobe than the rectangular window.
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Spectra of individual complex exponentials
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Spectrum for sum of complex exponentials

FIGURE 2.6. Top - spectra of individual d.c. component and exponential with
normalised frequency of 4; bottom - overall spectrum |Gw(ω)|.
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Spectrum for sum of complex exponentials

FIGURE 2.7. Top - spectra of two complex exponentials with normalised frequen-
cies 3 and 4, first component is 2/5 the amplitude of second; bottom - spectrum
of the sum, showing how the first component is completely lost owing to spectral
leakage.
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FIGURE 2.8. Hanning window (top) and its spectrum (bottom)

2.7.2 Discrete-time signals

Consider now the discrete case. We can go through the calculations for the
windowed spectrum in a manner analogous to the continuous-time case:

G(ejωT ) =

∞
∑

p=−∞

g(pT ) e−jpωT

Gw(ejωT ) =

∞
∑

p=−∞

{g(pT )w(pT )} e−jpωT

=
∞
∑

p=−∞

g(pT )

{

1

2π

∫ 2π

0

W (ejθ)ejpθdθ

}

e−jpωT

=
1

2π

∫ 2π

0

W (ejθ)

∞
∑

p=−∞

g(pT ) e−jp(ωT−θ) dθ

... Gw(ejωT ) =
1

2π

∫ 2π

0

W (ejθ)G(ej(ωT−θ)) dθ

Once again, the spectrum of the windowed signal is the convolution of the
infinite duration signal’s spectrum and the window’s spectrum. Note that
all spectra in the discrete case are periodic functions of frequency.
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As for the continuous case we can consider the use of tapered windows
and one class of window functions is the generalised Hamming window
given by

w(nT ) = α− (1 − α) cos

(

2π

N
n

)

n = 0, . . . , N − 1

A few specific values of α are given their own names, as follows,

α = 1 Rectangular window
α = 0.5 Hanning window (Cosine Arch)
α = 0.54 Hamming window

Figure 2.9 shows the window shapes and figure 2.10 the spectra (on a log-
arithmic scale) for several values of α. Other commonly used data windows
include the Kaiser, Bartlett and Parzen windows, each giving a different
trade-off in side-lobe and central lobe properties. Choice of windows will
depend upon the application, involving a suitable trade-off between side-
lobe height and central lobe width. Other commonly used windows include
the Bartlett, Tukey and Parzen windows.
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FIGURE 2.9. Discrete window functions
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2.8 The fast Fourier transform (FFT)

The Discrete Fourier transform (DFT) of a sequence of data {xn} and its
inverse is given by:

X(p) =

N−1
∑

n=0

xn e
−j 2π

N np (2.18)

xn =
1

N

N−1
∑

p=0

X(p)ej 2π
N np (2.19)

for n ∈ {0, N − 1} and p ∈ {0, N − 1}.

Computation of X(p) for p = 0, 1, . . . , N − 1 requires on the order of N2

complex multiplications and additions. The Fast Fourier Transform algo-
rithm reduces the required number of arithmetic operations to the order
of N

2 log2(N), which provides a critical degree of speed-up for applications
involving large N .

The first stage of the algorithm is to rewrite equation (2.18) in terms of
the even-indexed and odd-indexed data xn:

X(p) =

N
2 −1
∑

n=0

x2n e
−j 2π

N (2n)p +

N
2 −1
∑

n=0

x2n+1e
−j 2π

N (2n+1)p

=

N
2 −1
∑

n=0

x2ne
−j 2π

N/2
np + e−j 2π

N p

N
2 −1
∑

n=0

x2n+1e
−j 2π

N/2
np (2.20)

It can be seen that computation of the length N DFT has been reduced to
the computation of two length N

2 DFTs and an additional N complex mul-
tiplications for the complex exponential outside the second summation. It
would appear, at first sight, that it is necessary to evaluate equation (2.20)
for p = 0, 1, . . . , N − 1. However, this is not necessary as may be seen by
considering the equation for p ≥ (N

2 ):

X(p+N/2)

=

N
2 −1
∑

n=0

x2n e
−j 2π

N/2
n(p+ N

2 ) + e−j 2π
N (p+ N

2 )

N
2 −1
∑

n=0

x2n+1 e
−j 2π

N/2
n(p+ N

2 )

=

N
2 −1
∑

n=0

x2n e
−j 2π

N/2
np − e−j 2π

N p

N
2 −1
∑

n=0

x2n+1 e
−j 2π

N/2
np (2.21)
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Comparing equation (2.21) for X(p+ N
2 ) with equation (2.20) for X(p) it

can be seen that the only difference is the sign between the two summations.
Thus it is necessary to evaluate equation (2.20) only for p = 0, 1, . . . , N

2 −1,
storing the results of the two summations separately for each p. The values
of X(p) and X(p+ N

2 ) can then be evaluated as the sum and difference of
the two summations as indicated by equations (2.20) and (2.21).

Thus the computational load for an N -point DFT has been reduced from
N2 complex arithmetic operations to 2(N

2 )2 + N
2 , which is approximately

half the computation for large N . This is the first stage in the FFT deriva-
tion. The rest of the derivation proceeds by re-applying the same procedure
a number of times.

We now define the notation:

W = e−j 2π
N

and define the FFT butterfly to be as shown in figure 2.11

W
k

A + B.WA

B A  - B.W

k

k

FIGURE 2.11. The FFT butterfly

The flow chart for incorporating this decomposition into the computation
of an N = 8 point DFT is shown in figure 2.12. Assuming that (N

2 ) is

even, the same process can be carried out on each of the (N
2 )-point DFTs

to reduce the computation further. The flow chart for incorporating this
extra stage of decomposition into the computation of the N = 8 point DFT
is shown in figure 2.13.

It can be seen that if N = 2M then the process can be repeated M times to
reduce the computation to that of evaluating N single point DFTs. Thus
the flow chart for computing the N = 8 point DFT is as shown in fig-
ure 2.14.

Examination of the final chart shows that it is necessary to shuffle the order
of the input data. This data shuffle is usually termed bit-reversal for reasons
that are clear if the indices of the shuffled data are written in binary.
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FIGURE 2.13. Second Stage of FFT Decomposition
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FIGURE 2.14. Complete FFT Decomposition for N = 8

Binary Bit Decimal
Reverse

000 000 0

001 100 4
010 010 2

011 110 6

100 001 1

101 101 5

110 011 3
111 111 7

It has been shown that the process reduces, at each stage, the computation
by half but introduces an extra N

2 multiplications to account for the com-
plex exponential term outside the second summation term in the reduction.
Thus, for the condition N = 2M , the process can be repeated M times to
reduce the computation to that of evaluating N single point DFTs which
requires no computation. However, at each of the M stages of reduction an
extra N

2 multiplications are introduced so that the total number of arith-

metic operations required to evaluate an N -point DFT is N
2 log2(N).

The FFT algorithm has a further significant advantage over direct evalu-
ation of the DFT expression in that computation can be performed in-place.
This is best illustrated in the final flow chart where it can be seen that after
two data values have been processed by the butterfly structure, those data
are not required again in the computation and they may be replaced, in the
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computer memory, with the values at the output of the butterfly structure.

2.9 Conclusion

In this chapter we have briefly described the discrete time signal theory
upon which the rest of the book is based. The material thus far has con-
sidered only deterministic signals with known, fixed waveform. In the next
two chapters we will introduce the idea of signals drawn at random from
some large ensemble of possibilities according to the laws of probability.
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3

Probability Theory and Random
Processes

In this chapter the basic results of probability theory and random processes
are developed. These concepts are fundamental to most of the subsequent
chapters since our methodology is generally based upon probabilistic argu-
ments. It is recommended that this chapter is used as a reference rather
than for learning about probability from scratch as it comprises mostly
a list of results used later in the book without detailed discussion. The
material covered is sufficient for the purposes of this text, but for further
mathematical rigour and detail see for example Gray and Davisson [87],
Papoulis [148] or Doob [48].

3.1 Random events and probability

Probability theory is used to give a mathematical description of the be-
haviour of real-world systems which involve random events. Such a sys-
tem might be as simple as a coin-flipping experiment, in which we are
interested in whether ‘Heads’ or ‘Tails’ is the outcome, or it might be more
complex, as in the study of random errors in a coded digital datastream
(e.g. a CD recording or a digital mobile phone). Here we summarise the
main results and formalise the intuitive ideas of Events and the Axioms
of Probability into a Probability Space which encapsulates everything
we need to know about a system of random events.

The probability results given in this section are strictly event-based, since
it is relatively easy to obtain results which have all the desired properties of



40 3. Probability Theory and Random Processes

a probabilistic system. In later sections we will use these results as the basis
for study of more advanced topics in random signal theory which involve
random signals rather than individual events. We will see, however, that
random signal theory can be formulated in terms of event-based results or
as limiting cases of those results.

3.1.1 Frequency-based interpretation of probability

An intuitive interpretation of probability is as follows:

Suppose we observeM identical experiments whose outcome
is a member of the set Ω = {ω1, ω2, . . . , ωN}. The outcome is
ωi in Mi of the M experiments. The Probability of ωi is the
proportion of experiments in which ωi is the observed in the
limit as the total number of experiments tends to infinity:

Pr{ωi} = Lim
M→∞

Mi

M

3.2 Probability spaces

The term Random Experiment is used to describe any situation which has a
set of possible outcomes, each of which occurs with a particular Probability.

Any random experiment can be described completely by its Probability
Space, (Ω,F , P ):

1. Sample Space Ω = {ω1, ω2, . . . , ωN}, the set of possible ‘elemen-
tary’ outcomes of the experiment.

2. Event Space F : the space of events F for which a probability is
assigned, including ∅ (the empty set) and Ω. Events are collections
of elementary outcomes. New events can be obtained by set-theoretic
operations on other events, e.g.

H = F ∪G, H = F ∩G, H = F c

For our purposes, consider that F contains all ‘physically meaning-
ful’ events which can be obtained by set-theoretic operations on the
sample space.1

1There is a great deal of mathematics behind the generation of appropriate event
spaces, which are sometimes known as a sigma field or sigma algebra. In particular,
for continuous sample spaces it is possible (but difficult!) to generate events for which
a consistent system of probability cannot be devised. However, such events are not
physically meaningful and we can ignore them.
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3. Probability Measure P : A function, literally a ‘measure of prob-
ability’, defining the probability P (F ) of each member of the event
space. Interpret P as:

P (F ) = Pr{‘The outcome is in F ’} = Pr{ω ∈ F}

P must obey the axioms of probability:

(a) 0 ≤ P (F ) ≤ 1. The probability of any event must lie between 0
and 1.

(b) P (Ω) = 1. The probability of the outcome lying within the sam-
ple space is 1 (i.e. certain).

(c) P (F ∪ G) = P (F ) + P (G) for events F and G s.t. F ∩ G =
0 (‘mutually exclusive’). This means that for events F and G
in Ω with no elements in common the probability of F OR G
occurring is the sum of their individual probabilities.

Example. A simple example is the coin-flipping experiment for which we
can easily write down a probability space:

Ω = {H,T }
F = {{H}, {T },Ω, ∅}

P ({H}) =
1

2
, P ({T }) =

1

2
, P (Ω) = 1, P (∅) = 0

where ∅ denotes the empty set, i.e. no outcome whatsoever. The event
space F is chosen to contain all the events we might wish to consider: the
probability of heads (P (H) = 1/2), the probability of tails (P (T ) = 1/2),
the probability of heads OR tails (P (Ω = {H,T }) = 1, the certain event),
the probability of no outcome at all (P (∅) = 0).

The above is an example of a discrete probability space, in which the
sample space can be mapped with a one-to-one equivalence onto a subset of
the integers Z.2 In much of the ensuing work, however, we will be concerned
with continuous sample spaces which cannot be mapped onto the integers
in this way:

Example. Consider a random thermal noise voltage V measured across a
resistor. The sample space Ω would in this case be the real line:

Ω = < = (−∞,+∞)

which cannot be mapped onto the integers. The event space is now much
harder to construct mathematically. However, we can answer all ‘physically

2The number of elements in the sample space is then referred to as countable.
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meaningful’ questions such as “what is the probability that the voltage lies
between -1 and +1” by including in the event space all3 subsets F of the
real line.

The event probabilities can then be calculated by integrals of the prob-
ability density function (PDF) f(v) over the appropriate subset F of the
real line (see section on random variables):

P (F ) = Pr{V ∈ F} =

∫

v∈F

f(v) dv

e.g. for F = (a, b] we have

P (F ) = Pr{a < V ≤ b} =

∫ b

v=a+

f(v) dv

The notion of a probability space formalises our description of a random
experiment. In the examples given in this book we will not lay out prob-
lems in such a formal manner. Given a particular experiment with a given
sample space it will usually be possible to pose and solve problems without
explicitly constructing an event space. However, it is useful to remember
that a Probability Space (Ω,F , P ) can be devised which fully describes the
properties of any random system we are likely to encounter.

3.3 Fundamental results of event-based probability

3.3.1 Conditional probability

Consider events F and G in some probability space. Conditional probabil-
ity, denoted P (F |G), is defined as the probability that event F occurs given
the prior knowledge that event G has occurred. A formula for calculating
conditional probability can be obtained by reasoning from the axioms of
probability as:

P (F |G) =
P (F ∩G)

P (G)
, P (G) > 0 (3.1)

Conditional Probability

3with the exception of the difficult cases mentioned in a previous footnote, which we
ignore as before
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Note that conditional probability is undefined when P (G) = 0, since
event F |G is meaningless if G is impossible anyway! The event F ∩G has
the interpretation ‘the outcome is in F AND G’. Some readers may be
more familiar with the notation (F,G) which means the same thing.

3.3.2 Bayes rule

The equivalent formulation for G conditional upon F is clearly P (G|F ) =
P (G ∩ F )

P (F )
. Since P (F ∩ G) = P (G ∩ F ) we can substitute the resulting

expression for P (G∩F ) in place of P (F ∩G) in result (3.1) to obtain Bayes
Rule:

P (F |G) =
P (G|F )P (F )

P (G)

Bayes Rule

This equation is fundamental to many inferential procedures, since it tells
us how to proceed from a probabilistic description of an event G, which
has been directly observed, to some unobserved event F whose probability
we need to know. Within an inferential framework, P (F ) is known as the
prior or a priori probability since it reflects prior knowledge about event F
before event G has been observed; P (F |G) is known as the posterior or a
posteriori probability since it gives the probability of F after event G has
been observed; P (G|F ) is known as the likelihood and P (G) as the ‘total’
or ‘marginal’ probability for G.

3.3.3 Total probability

If the total probability P (G) is unknown for a particular problem it can
be calculated by forming a partition {F1, F2, . . . , Fn} of the sample space
Ω. By this we mean that we find a set of events from the event space F
which are mutually exclusive (i.e. there is no ‘overlap’ between any two
members of the partition) and whose union is the complete sample space.
For example, {1, 2, 3, 4, 5, 6} forms a partition in the die-throwing exper-
iment and {H,T } forms a partition of the coin-flipping experiment. The
total probability is then given by
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P (G) =

n
∑

i=1

P (G|Fi)P (Fi) (3.2)

Total probability

3.3.4 Independence

If one event has no effect upon the outcome of another event, and vice
versa, then the two events are termed independent . Mathematically this is
expressed in terms of the joint probability P (F ∩G) for the events, i.e. the
probability that the outcome is in both F and G. The joint probability is
expressed in the way one might expect, as the product of the individual
event probabilities:

P (F ∩G) = P (F )P (G) ⇐⇒ F and G independent

Independent events

Note that this formula, which forms the definition of independent events,
is a special case of the conditional probability expression (3.1) in which
P (F |G) = P (F ).

3.4 Random variables

A random variable is intuitively just a numerical quantity which takes on
a random value. However, in order to derive the properties of random vari-
ables they are defined in terms of an underlying probability space. Consider
a probability space (Ω,F , P ). The sample and event spaces for this prob-
ability space are in general defined in terms of abstract quantities such as
‘Heads’ and ‘Tails’ in the coin-tossing experiment, or ‘On’ and ‘Off’ in a
logic circuit. As seen in the last section, the laws of probability can be ap-
plied directly in this abstract domain. However, in many cases we will wish
to study the properties of a numerical outcome such as a random voltage
or current rather than these abstract quantities. A mapping X(ω) which
assigns a real numerical value to each outcome ω ∈ Ω is termed a Random
Variable. The theory of random variables will form the basis of much of
the work in this book. We consider only real-valued random variables, since
it is straightforward to extend the results to complex-valued variables.
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3.5 Definition: random variable

Given a probability space (Ω,F , P ), a random variable is a function X(ω)
which maps each element ω of the sample space Ω onto a point on the
real line. We will usually refer to the mapping X(ω) and the underlying
probability space simply as ‘random variable (or RV) X ’.

3.5.0.0.1 Example: Discrete random variable

If the mapping X(ω) can take on only a countable number of values on the
real line, the random variable is termed discrete.

For a logic gate with states ‘On’ and ‘Off’ define the random variable:

X(On) = 1, X(Off) = 0

However, if one wished to study the properties of a line transmission
system which transmits an ‘On’ as +1.5V and an ‘Off’ as -1.5V, then a
more natural choice of RV would be:

X(On) = +1.5, X(Off) = −1.5

3.5.0.0.2 Example: Continuous random variable

The random noise voltage V measured across a resistor R is a continuous
random variable. Since the sample space Ω is the measured voltage itself, i.e.
V (ω) = ω, the random variable V is termed ‘directly given’. Alternatively,
we may wish to consider the instantaneous power V 2/R across the resistor,
in which case we can define a RV W (ω) = ω2/R.

3.6 The probability distribution of a random
variable

The distribution PX of a RV X is simply a probability measure which
assigns probabilities to events on the real line. The distribution PX answers
questions of the form ‘what is the probability that X lies in subset F of
the real line?’. PX is obtained via the ‘inverse mapping’ method:

PX(F ) = Pr{X ∈ F} = P (X−1(F )) (3.3)

where the inverse mapping is defined mathematically as:

X−1(F ) = {ω : X(ω) ∈ F}, (F ⊂ <) (3.4)

In practice we will summarise PX by its Probability Mass Function (PMF,
discrete variables only), Cumulative Distribution Function (CDF) or Prob-
ability Density Function (PDF)
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3.6.1 Probability mass function (PMF) (discrete RVs)

Suppose the variable can take a set of M real values {x1, . . . , xi, . . . xM}.
Then the probability mass function (PMF) is defined as:

pX(xi) = Pr{X = xi} = PX({xi}),
M
∑

i=1

pX(xi) = 1

Probability mass function (PMF)

3.6.2 Cumulative distribution function (CDF)

The cumulative distribution function (CDF) can be used to describe dis-
crete, continuous or mixed discrete/continuous distributions:

FX(x) = Pr{X ≤ x } = PX( (−∞, x] )

Cumulative distribution function (CDF)

The following properties follow directly from the Axioms of Probability:

1. 0 ≤ FX(x) ≤ 1

2. FX(−∞) = 0, FX(∞) = 1

3. FX(x) is non-decreasing as x increases

4. Pr{x1 < X ≤ x2} = FX(x2) − FX(x1)

Note also that Pr{X > x} = 1 − FX(x).
Where there is no ambiguity we will usually drop the subscript ‘X ’ and

refer to the CDF as F (x).

3.6.3 Probability density function (PDF)

The probability density function (PDF) is defined as the derivative of the
CDF with respect to x:

fX(x) =
∂FX(x)

∂x
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Probability density function (PDF)

Again, its properties follow from the axioms of probability:

1. fX(x) ≥ 0

2.

∫ ∞

−∞

fX(x)dx = 1

3. FX(x) =

∫ x

−∞

fX(α)dα

4.

∫ x2

x1

fX(α)dα = Pr{x1 < X ≤ x2}

As for the CDF we will often drop the subscript and refer simply to f(x)
when no confusion can arise.

The PDF can be viewed as a continuous frequency histogram for the RV
since it represents the relative frequency with which a particular value is
observed in many trials under the same conditions.

From property 4 we can obtain the following important result for the
probability that X lies within a slice of infinitesimal width δx:

lim
δx→0

Pr{x < X ≤ x+ δx} = lim
δx→0

∫ x+δx

x

fX(α) dα

= fX(x) δx

Note that this probability tends to zero as δx goes to zero, provided that
fX contains no delta functions.

For purely discrete RVs:

fX(x) =

M
∑

i=1

piδ(x− xi)

where the pi’s are the PMF ‘weights’ for the discrete random variable.

3.7 Conditional distributions and Bayes rule

Conditional distributions and Bayes Rule are fundamental to inference in
general and in particular to the analysis of complex random systems. Many
technical questions will be of the form ‘what can I infer about parameter
a in a system given that I have made the related observation b?’. Such
questions can be answered using conditional probability.
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3.7.1 Conditional PMF - discrete RVs

The results for PMFs apply for discrete random variables and are defined
only at the values:

x ∈ {x1, . . . , xM}, y ∈ {y1, . . . , yN}
Since ‘X = xi’ is an event with non-zero probability for a discrete random

variable, we obtain conditional probability and related results directly from
event-based probability, conditioning upon either some arbitrary event G
or the value of a second random variable y:

p(x|G) = Pr{ (X = x) |G } =
P ( (X = x)ANDG )

P (G)

(Conditional upon arbitrary event G)

p(x|y) = Pr{ (X = x) | (Y = y) } =
p(x, y)

p(y)

(Conditional upon a second discrete RV Y = y)
Bayes rule and total probability for PMFs are then obtained directly as:

p(x|y) =
p(y|x)p(x)

p(y)

Bayes Rule (PMF)

p(y) =

M
∑

i=1

p(y|xi)p(xi)

Total Probability (PMF)

Note that p(x, y) is the joint PMF:

p(x, y) = Pr{ (X = x)AND (Y = y) }
Conditional and joint PMFs are positive and obey the same normalisa-

tion rules as ordinary PMFs:

M
∑

i=1

p(xi|y) = 1,

M
∑

i=1

N
∑

j=1

p(xi, yj) = 1
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3.7.2 Conditional CDF

Apply the same reasoning using events of the form ‘X ≤ x’ and ‘Y ≤ y’:

F (x|y) = Pr{ (X ≤ x)|(Y ≤ y)} =
F (x, y)

F (y)

This leads directly to Bayes rule for CDFs:

F (x|y) =
F (y|x)F (x)

F (y)

Bayes Rule (CDF)

F (x|y) is the conditional CDF and F (x, y) is the joint CDF:

F (x, y) = Pr{ (X ≤ x)AND (Y ≤ y)}

Conditional CDFs have similar properties to standard CDFs,
i.e. FX|Y (−∞|y) = 0, FX|Y (+∞|y) = 1, etc.

3.7.3 Conditional PDF

The conditional PDF is obtained as the derivative of the conditional CDF:

f(x|G) =
∂F (x|G)

∂x

It has similar properties and interpretation as the standard PDF (i.e.
f(x|G) > 0,

∫

f(x|G) dx = 1, P (X ∈ A|G) =
∫

A f(x|G) dx).
However, since the event ‘X = x’ has zero probability for continuous

random variables, the PDF conditional upon X = x is not directly defined.
We can obtain the required result as a limiting case:

Pr{G|X = x} = lim
δx→0

Pr{G|x < X ≤ x+ δx}

= lim
δx→0

Pr{x < X ≤ x+ δx|G}P (G)

Pr{x < X ≤ x+ δx}

= lim
δx→0

(F (x + δx|G) − F (x|G))P (G)

f(x)δx

= lim
δx→0

(

(F (x + δx|G) − F (x|G))

δx

)

P (G)

f(x)

=
f(x|G)P (G)

f(x)
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Now taking G as the event Y ≤ y:

F (y|X = x) = Pr{Y ≤ y|X = x}

=
f(x|Y ≤ y)F (y)

f(x)

=
∂
∂x(F (x|y))F (y)

f(x)

=
∂
∂x(F (x, y))

f(x)

from whence:

f(y|x) =
∂F (y|X = x)

∂y

=

∂2

∂x∂yF (x, y)

f(x)

=
f(x, y)

f(x)

where f(x, y) is the joint PDF, defined as:

f(x, y) =
∂2F (x, y)

∂x∂y

Joint PDF

The conditional probability rule for PDFs leads as before to Bayes Rule:

f(x|y) =
f(y|x) f(x)

f(y)

Bayes rule (PDF)

Total probability is obtained as an integral:
∫

f(y|x)f(x) dx =

∫

f(x|y) f(y)

f(x)
f(x) dx

=

(
∫

f(x|y) dx
)

f(y)

= f(y)
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i.e. the total probability f(y) is given by:

f(y) =

∫

f(y|x)f(x) dx =

∫

f(y, x) dx

Total Probability (PDF)

This important result is often referred to as the Marginalisation Integral
and f(y) as the Marginal Probability.

3.7.3.0.3 Example: the sum of 2 random variables

Consider the random variable Y formed as the sum of two independent
random variables X1 and X2:

Y = X1 +X2

X1 has PDF f1(x1) and X2 has PDF f2(x2).
We can write the joint PDF for y and x1 by rewriting the conditional

probability formula:

f(y, x1) = f(y|x1) f1(x1)

It is clear that the event ‘Y takes the value y conditional upon X1 = x1’
is equivalent to X2 taking a value y − x1 (since X2 = Y − X1). Hence
f(y|x1) = fX2|X1

(y− x1|x1) = f2(y− x1)
4 and f(y) is obtained as follows:

f(y) =

∫

f(y, x1) dx1

=

∫

f(y|x1) f1(x1) dx1

=

∫

f2(y − x1) f1(x1) dx1

= f1 ∗ f2

where ‘∗’ denotes the convolution operation. In other words, when two
independent random variables are added, the PDF of their sum equals the
convolution of the PDFs for the two original random variables.

4This ‘change of variables’ can be proved using results in a later section on functions
of random variables
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3.8 Expectation

Expectations form a fundamental part of random signal theory. Examples
of expectations are the mean and standard deviations of a random variable,
although the concept is much more general than this.

The mean of a random variable X is defined as:

E[X ] = X =

∫ +∞

x=−∞

x fX(x) dx

Mean value of X

If a second RV Y is defined to be a function Y = g(X) then the expec-
tation of Y is obtained as:

E[Y ] =

∫ +∞

x=−∞

g(x) fX(x) dx

Expectation of Y = g(X)

Expectation is a linear operator :

E[a g1(X) + b g2(X)] = aE[g1(X)] + bE[g2(X)]

Conditional expectations are defined in a similar way:

E[X |G] =

∫

x fX|G(x|G) dx, E[Y |G] =

∫

g(x) fX|G(x|G) dx

Conditional expectation
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Some important examples of expectation are as follows:

E[Xn] =

∫

xn fX(x) dx

nth order moment

E[(X −X)n] =

∫

(x−X)n fX(x) dx

Central moment

The central moment with n = 2 gives the familiar variance of a random
variable:

E[(X −X)2] =

∫

(x−X)2 fX(x) dx = E[X2] − (X)2

Variance

3.8.1 Characteristic functions

Another important example of expectation is the characteristic function
ΦX(ω) of a random variable X :

ΦX(ω) = E[ejωX ]

=

∫ +∞

−∞

ejωx fX(x) dx

which is equivalent to the Fourier transform of the PDF evaluated at ω′ =
−ω. Some of the properties of the Fourier Transform can be applied usefully
to the characteristic function, in particular:
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1. Convolution - (sums of independent RVs) We know that for
sums of random variables the distribution is obtained by convolving
the distributions of the component parts:

Y =
N
∑

i=1

Xi

and

fY = fX1 ∗ fX2 . . . ∗ fXN

=⇒ ΦY (ω) =

N
∏

i=1

ΦXi(ω)

This result allows the calculation of the characteristic function for
sums of independent random variables as the product of the compo-
nent characteristic functions.

2. Inversion In order to invert back from the characteristic function
to the PDFwe apply the inverse Fourier transform with frequency
negated:

fX(x) =
1

2π

∫ +∞

−∞

e−jωx ΦX(ω) dω

3. Moments

∂nΦX(ω)

∂ωn
=

∫ +∞

−∞

(jx)n ejωx fX(x) dx

=⇒ E[Xn] = 1/jn ∂
nΦX(ω)

∂ωn

∣

∣

ω=0

This result shows how to calculate moments of a random variable
from its characteristic function.

3.9 Functions of random variables

Consider a random variable Y which is generated as a function Y = g(X),
where X has a known distribution PX(x). We can obtain the distribution
for Y , the transformed random variable, directly by the ‘inverse image
method’:
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FY (y) = Pr{Y ≤ y} = PX({x : g(x) ≤ y})

Derived CDF for Y = g(X)

3.9.1 Differentiable mappings

If the mapping g(X) is differentiable then a simple formula can be obtained
for the derived distribution of Y . Suppose that the equation y = g(x) has
M solutions for a particular value of x:

g(x1) = y, g(x2) = y, . . . , g(xM ) = y

Defining g′(x) = ∂g(x)
∂x , it can be shown that the derived PDF of Y is

given by:

fY (y) =
M
∑

i=1

fX(x)

|g′(x)|

∣

∣

∣

∣

x=xi

PDF of Y = g(X)

3.9.1.0.4 Example: Y = X2.

Suppose that X is a Gaussian random variable with mean zero:

fX(x) =
1√

2πσ2
e−

x2

2σ2 (3.5)

The solutions of the equation y = x2 are

x1 = +y1/2, x2 = −y1/2

and the modulus of the function derivative is

|g′(x)| = 2|x| = 2y1/2
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Substituting these into the formula for fY (y), we obtain:

fY (y) =

2
∑

i=1

fX(x)

|g′(x)|

∣

∣

∣

∣

x=xi

=
fX(y1/2)

2y1/2
+
fX(−y1/2)

2y1/2

=
1

√

2πσ2y
e−

y

2σ2

which is the Chi-squared density with one degree of freedom.

3.10 Random vectors

A Vector random variable can be thought of simply as a collection of single
random variables which will in general be interrelated statistically. As for
single random variables it is conceptually useful to retain the idea of a
mapping from an underlying Probability Space (Ω,F , P ) onto a real-valued
random vector:

X(ω) =











X1(ω)
X2(ω)

...
XN (ω)











, ω ∈ Ω, X(ω) ∈ <N

i.e. the mapping is from the (possibly highly complex) sample space Ω
onto <N , the space of N -dimensional real vectors.

A vector cumulative distribution function can be defined by extension of
the single random variable definition:

FX(x1, x2, . . . , xN ) = FX(x) = Pr{X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xn}

Vector (joint) cumulative distribution function (CDF)

i.e. FX(x) is the probability that X1 ≤ x1 AND X2 ≤ x2 AND . . .
XN ≤ xN . The vector CDF has the following properties:

1. 0 ≤ FX(x) ≤ 1

2. FX(x1, . . . ,−∞, . . . , xN ) = 0, FX(∞, . . . ,∞, . . . ,∞) = 1
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3. FX(x) is non-decreasing as any element xi increases

4. Total Probability - e.g. for N = 4:

F (x1, x3) = Pr{X1 ≤ x1, X2 ≤ +∞, X3 ≤ x3, X4 ≤ +∞}
= F (x1,+∞, x3,+∞)

In a similar fashion the vector PDF is defined as:

fX(x1 x2 . . . xN ) = fX(x) =
∂NFX(x)

∂x1∂x2 . . . ∂xN

Vector (joint) probability density function (PDF)

The vector PDF has the following properties:

1. fX(x) ≥ 0

2.

∫ +∞

x1=−∞

. . .

∫ +∞

xN=−∞

fX(x) dx1dx2 . . . dxN =

∫

x

fX(x) dx = 1

3. Pr{X ∈ V} =

∫

V

fX(x) dx

4. Expectation:

E[x] =

∫

x

x fX(x) dx, E[g(x)] =

∫

x

g(x)fX(x) dx

5. Probability of small volumes:

Pr{x1 < X1 ≤ x1 + δx1, . . . , xN < XN ≤ xn + δxn}
≈ fX(x1, x2, . . . , xN ) δx1δx2 . . . δxN

for small δxi.

6. Marginalisation - integrate over unwanted components, e.g.

f(x1, x3) =

∫ ∞

x2=−∞

∫ ∞

x4=−∞

f(x1, x2, x3, x4) dx2dx4
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3.11 Conditional densities and Bayes rule

These again are obtained as a direct generalisation of the results for single
random variables. We treat only the case of PDFs for continuous random
vectors as the discrete and mixed cases follow exactly the same form.

fX|Y(x|y) =
fX,Y(x,y)

fY(y)

Conditional probability (random vector)

fX|Y(x|y) =
fY|X(y|x)fX(x)

fY(y)

Bayes rule (random vector)

3.12 Functions of random vectors

Consider a vector function of a vector random variable:

Y =











g1(X)
g2(X)

...
gN(X)











= g(X), g(X) ∈ <N

What is the derived PDF fY(y) given fX(x) and g()?
Assuming that g() is one-to-one, invertible and differentiable, the derived

PDF is obtained as:

fY(y) =
1

| det(J)| fX(x)|x=g−1(y)
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where the Jacobian | det(J)| gives the ratio between the infinitesimal N -
dimensional volumes in the x space and y space, with J defined as:

J =
∂g(x)

∂x
=













∂g1(x)
∂x1

∂g1(x)
∂x2

· · · ∂g1(x)
∂xN

∂g2(x)
∂x1

∂g2(x)
∂x2

· · · ∂g2(x)
∂xN

...
...

...
...

∂gN (x)
∂x1

∂gN (x)
∂x2

· · · ∂gN (x)
∂xN













When the mapping is not one-to-one, the derived PDF can be found as
a summation of terms for each root of the equation y = g(x), as for the
univariate case.

3.13 The multivariate Gaussian

We will firstly present the multivariate Gaussian with independent elements
and then use the derived PDF result to derive the general case.

Consider N independent random variables Xi with ‘standard’ (i.e. with
mean zero and unity standard deviation) normal distributions:

f(xi) = N(0, 1) =
1√
2π
e−

1
2x2

i

Since the Xi’s are independent we can immediately write the joint (vec-
tor) PDF for all N RVs as:

f(x1, x2, . . . , xN ) = f(x1)f(x2) . . . f(xN )

=
N
∏

i=1

1√
2π
e−

1
2 x2

i

=
1

√
2π

N
exp

(

−1

2

N
∑

i=1

x2
i

)

=
1

√
2π

N
exp

(

−1

2
||x||22

)

Now apply the general linear (invertible) matrix transformation to the
vector random variable X:

Y = g(X) = AX + b, where A is an invertible N ×N matrix
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We wish to determine the derived PDF fY(y). Firstly find the Jacobian,

|J| =
∣

∣

∣

∂g(x)
∂x

∣

∣

∣
:

yi =

N
∑

j=1

[A]ijxj + bi

... [J]ij =
∂yi

∂xj
= [A]ij

... J = A

... | det(J)| = | det(A)|

The matrix transformation is invertible, so we can write:

x = g−1(y) = A−1(y − b)

Hence:

fY(y) =
1

| det(J)| fX(x)|x=g−1(y)

=
1

| det(A)|
1

√
2π

N
exp

(

−1

2
||g−1(y)||22

)

=
1

| det(A)|
1

√
2π

N
exp

(

−1

2
||A−1(y − b)||22

)

=
1

| det(A)|
1

√
2π

N
exp

(

−1

2
(y − b)T (AT A)−1(y − b)

)

Now define CY = ATA, and hence | det(A)| = | det(CY)| 12 . Substituting
CY = ATA and µ = b we obtain finally:

fY(y) =
1

√
2π

N
det(CY)

1
2

exp

(

−1

2
(y − µ)TCY

−1(y − µ)

)

Multivariate Gaussian PDF

where µ = E[Y] is the mean vector and CY = E[(Y −µ)(Y−µ)T ] is the
Covariance Matrix (since [CY]ij = cYiYj the covariance between elements
Yi and Yj). Note that fX(x), the PDF of the original independent data,
is a special case of the multivariate Gaussian with CY = I, the identity
matrix. The multivariate Gaussian will be used extensively throughout the
remainder of this book. See figures 3.12 and 3.12 for contour and 3-D plots
of an example of the 2-dimensional Gaussian density.
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3.14 Random signals

In this section we extend the ideas of previous sections to model the prop-
erties of Random Signals , i.e. waveforms which are of infinite duration and
which can take on random values at all points in time.

Consider an underlying Probability Space (Ω,F , P ), as before. However,
instead of mapping from the Sample Space Ω to a finite point or set of
points such as a random variable or random vector, each member ω of the
Sample Space now maps onto a real-valued waveform X(t, ω), with values
possibly defined for all times t.

We can imagine a generalisation of our previous ideas about random
experiments so that the outcome of an experiment can be a ‘Random Ob-
ject’, an example of which is a waveform chosen at random (according to
a Probability Measure P ) from a set of possible waveforms, which we term
an Ensemble.
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FIGURE 3.1. Example of the bivariate Gaussian PDF fX1,X2(x1, x2). Top - 3-D
mesh plot, bottom - contour plot
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FIGURE 3.2. Ensemble representation of a random process
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3.15 Definition: random process

Given a probability space (Ω,F , P ), a Random Process {X(t, ω)} is a func-
tion which maps each element ω of the sample space Ω onto a real-valued
function of time, see figure 3.14 The mapping is defined at times t belonging
to some set T (a more rigorous notation would thus be {X(t, ω); t ∈ T }).
If T is a continuous set, e.g. < or [0,∞), then the process is termed a
Continuous Time Random Process. If T is a discrete set of time values,
e.g. Z, the integers, the process is termed Discrete Time or a Time Series.
We will be concerned mainly with discrete time processes in this book. As
for random variables we will usually drop the explicit dependence on ω for
notational convenience, referring simply to ‘Random Process {X(t)}’. If
we consider the process {X(t)} at one particular time t = t1 then we have
a Random Variable X(t1). If we consider the process {X(t)} at N time
instants {t1, t2, . . . , tN} then we have a Random Vector:

X =











X(t1)
X(t2)

...
X(tN)











We can study the properties of a Random Process by considering the
behaviour of random variables and random vectors extracted from the pro-
cess at times ti. We already have the means to achieve this through the
theory of random variables and random vectors.

We will limit our discussion here to discrete time random processes or
time series defined at time instants T = {t−∞, . . . , t−1, t0, t1, . . . , t∞},
where usually (although this is not a requirement) the process is uniformly
sampled , i.e. tn = nT where T is the sampling interval. We will use the
notation Xn = X(tn) for random variables extracted at the ith time point
and the whole discrete time process will be referred to as {Xn}.

3.15.1 Mean values and correlation functions

The mean value of a discrete time random process is defined as:

µn = E[Xn]

Mean value of random process

and the discrete autocorrelation function is:
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rXX(n,m) = E[XnXm]

Autocorrelation function of random process

The cross-correlation function between two processes {Xn} and {Yn} is:

rXY (n,m) = E[XnYm]

Cross-correlation function

3.15.2 Stationarity

A stationary process has the same statistical characteristics irrespective of
time shifts along the axis. To put it another way, an observer looking at the
process from time ti would not be able to tell the difference in the statistical
characteristics of the process if he moved to a different time tj . This idea
is formalised by considering the Nth order density for the process:

fXn1 , Xn2 , ... ,XnN
(xn1 , xn2 , . . . , xnN )

N th order density for a random process

which is the joint probability density function for N arbitrarily chosen time
indices {n1, n2, . . . nN}. Since the probability distribution of a random
vector contains all the statistical information about that random vector,
we would expect the probability distribution to be unchanged if we shifted
the time axis any amount to the left or the right. This is the idea behind
strict-sense stationarity for a discrete random process.
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A random process is strict-sense stationary if, for any finite c, N and
{n1, n2, . . . nN}:

fXn1 , Xn2 , ... , XnN
(xn1 , xn2 , . . . , xnN )

= fXn1+c, Xn2+c, ... , XnN+c(xn1 , xn2 , . . . , xnN )

Strict-sense stationarity for a random process

A less stringent condition which is nevertheless very useful for practi-
cal analysis is wide-sense stationarity which only requires first and second
order moments to be invariant to time shifts.

A random process is wide-sense stationary if:

1. µn = E[Xn] = µ, (mean is constant)

2. rXX(n,m) = rXX(n − m), (autocorrelation function depends only
upon the difference between n and m).

Wide-sense stationarity for a random process

Note that strict-sense stationarity implies wide-sense stationarity, but not
vice versa.

3.15.3 Power spectra

For a wide-sense stationary random process {Xn}, the power spectrum
is defined as the discrete-time Fourier transform (DTFT) of the discrete
autocorrelation function:

SX(ω) =

∞
∑

m=−∞

rXX(m) e−jmωT (3.6)

Power spectrum for a random process

and the autocorrelation function can thus be found from the power spec-
trum by inverting the transform:
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rXX(m) =
1

2π

∫ π

−π

SX(ω) ejmωT dωT (3.7)

Autocorrelation function from power spectrum

The power spectrum is a real, even and periodic function of frequency.
The power spectrum can be interpreted as a density spectrum in the sense
that the expected power at the output of an ideal band-pass filter with
lower and upper cut-off frequencies of ωl and ωu is given by

1

π

∫ ωu

ωl

SX(ω) dω

3.15.4 Linear systems and random processes

When a wide-sense stationary discrete random process {Xn} is passed
through a linear time invariant (LTI) system with pulse response {hn},
the output process {Yn} is also wide-sense stationary and we can express
the output correlation functions and power spectra in terms of the input
statistics and the LTI system:

rY Y (l) =

∞
∑

k=−∞

∞
∑

i=−∞

hk hi rXX(l + i− k) (3.8)

Autocorrelation function at the output of a LTI system

SY (ω) = |H(ejωT )|2SX(ω) (3.9)

Power spectrum at the output of a LTI system

3.16 Conclusion

We have provided a brief survey of results from probability theory and
random signal theory on which the remaining chapters are based. The next
chapter describes the theory of detection and estimation.
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4

Parameter Estimation, Model
Selection and Classification

In this chapter we review the fundamental techniques and principles behind
estimation of unobserved variables from observed data (‘parameter estima-
tion’) and selection of a classification or form of model to represent the
observed data (‘classification’ and ‘model selection’). The term parameter
estimation is used in a very general sense here. For example, we will treat
both the interpolation of missing data samples in a digitised waveform and
the more obvious task of coefficient estimation for some parametric data
model as examples of parameter estimation. Classification is traditionally
concerned with choosing from a set of possible classes the class which best
represents the observed data. This concept will be extended to include
directly analogous tasks such as identifying which samples in a data se-
quence are corrupted by some intermittent noise process. Model selection
is another type of classification in which the classes are a number of differ-
ent model-based formulations for data and it is required to choose the best
model for the observed data.

The last sections of the chapter introduce two related topics which will
be important in later work. The first is Sequential Bayesian Classification
in which classification estimates are updated sequentially with the input
of new data samples. The second is autoregressive (AR) modelling consid-
ered within a Bayesian framework, which will be a fundamental part of
subsequent chapters. We then discuss state-space models and the Kalman
filter, an efficient means for implementing many of the sequential schemes,
and finally introduce some sophisticated methods for exploration of poste-
rior distributions: the expectation-maximisation and Markov chain Monte
Carlo methods.
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In all of our work parameters and models are treated as random vari-
ables or random vectors. We are thus prepared to specify prior information
concerning the processes in a probabilistic form, which leads to a Bayesian
approach to the solution of these problems. The chapter is thus primarily
concerned with developing the principles of Bayesian Decision Theory and
Estimation as applied to signal processing. We do not intend to provide a
complete review of non-Bayesian techniques, although traditional methods
are referenced and described and the relationship of Bayesian methods to
Maximum Likelihood (ML) and Least Squares (LS) is discussed.

4.1 Parameter estimation

In parameter estimation we suppose that a random process {Xn} depends
in some well-defined stochastic manner upon an unobserved parameter vec-
tor θ. If we observe N data points from the random process, we can form a
vector x = [x1 x2 . . . xN ]T . The parameter estimation problem is to deduce
the value of θ from the observations x. In general it will not be possible to
deduce the parameters exactly from a finite number of data points since the
process is random, but various schemes will be described which achieve dif-
ferent levels of performance depending upon the amount of data available
and the amount of prior information available regarding θ.

4.1.1 The general linear model

We now define a general parametric model which will be referred to fre-
quently in this and subsequent chapters. In this model it is assumed that
the data x are generated as a function of the parameters θ with an additive
random modelling error term en:

xn = gn(θ) + en

where gn(.) is a deterministic and possibly non-linear function. For most
of the models we will consider, gn(.) is a linear function of the parameters
so we may write

xn = gT
nθ + en

where gn is a P -dimensional column vector, and the expression may be
written for the whole vector x as

x = Gθ + e (4.1)

General linear model
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where

G =











gT
1

gT
2
...

gT
N











The columns of G form a fixed basis vector representation of the data, for
example sinusoids of different frequencies in a signal which is known to be
made up of pure frequency components in noise. A variant of this model
will be seen later in the chapter, the autoregressive (AR) model, in which
previous data points are used to predict the current data point xn. The
error sequence e will usually (but not necessarily) be assumed drawn from
an independent, identically distributed (i.i.d. ) noise distribution, that is,

p(e) = pe(e1).pe(e2). . . . .pe(eN )

where pe(.) denotes some noise distribution which is identical for all n.1

{en} can be viewed as a modelling error, innovation or observation noise,
depending upon the type of model. We will encounter the linear form (4.1)
and its variants throughout the book, so it is used as the primary example
in the subsequent sections of this chapter.

4.1.2 Maximum likelihood (ML) estimation

The first method of estimation considered is the maximum likelihood (ML)
estimator which treats the parameters as unknown constants about which
we incorporate no prior information. The observed data x is, however,
considered random and we can often then obtain the PDFfor x when the
value of θ is known. This PDFis termed the likelihood L(x;θ), which is
defined as

L(x;θ) = p(x | θ) (4.2)

The likelihood is of course implicitly conditioned upon all of our modelling
assumptions M, which could be expressed as p(x | θ,M). We do not adopt
this convention, however, for reasons of notational simplicity.

The ML estimate for θ is then that value of θ which maximises the
likelihood for given observations x:

1Whenever the context makes it unambiguous we will adopt from now on a notation
p(.) to denote both probability density functions (PDFs) and probability mass functions
(PMFs) for random variables and vectors.
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θ
ML = argmax

�
{p(x | θ)} (4.3)

Maximum likelihood (ML) estimator

The rationale behind this is that the ML solution corresponds to the
parameter vector which would have generated the observed data x with
highest probability. The maximisation task required for ML estimation can
be achieved using standard differential calculus for well-behaved and differ-
entiable likelihood functions, and it is often convenient analytically to max-
imise the log-likelihood function l(x;θ) = log(L(x;θ)) rather than L(x;θ)
itself. Since log is a monotonically increasing function the two solutions are
identical.

In data analysis and signal processing applications the likelihood func-
tion is arrived at through knowledge of the stochastic model for the data.
For example, in the case of the general linear model (4.1) the likelihood
can be obtained easily if we know the form of p(e), the joint PDFfor the
components of the error vector. The likelihood px|� is then found from a
transformation of variables e → x where e = x − Gθ. The Jacobian (see
section 3.12) for this transformation is unity, so the likelihood is:

L(x;θ) = p(x | θ) = pe(x − Gθ) (4.4)

The elements of the error vector e are often assumed to be i.i.d. and
Gaussian. If the variance of the Gaussian is σ2

e then we have:

pe(e) =
1

(2πσ2
e)

N/2
exp

(

− 1

2σ2
e

eTe

)

Such an assumption is a reflection of the fact that many naturally occurring
processes are Gaussian and that many of the subsequent results are easily
obtained in closed form. The likelihood is then

L(x;θ) = pe(x − Gθ) =
1

(2πσ2
e)N/2

exp

(

− 1

2σ2
e

(x − Gθ)T (x − Gθ)

)

(4.5)

which leads to the following log-likelihood expression:

l(x;θ) = −(N/2) log(2πσ2
e) − 1

2σ2
e

(x − Gθ)T (x − Gθ)

= −(N/2) log(2πσ2
e) − 1

2σ2
e

N
∑

n=1

(xn − gT
nθ)

2
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Maximisation of this function w.r.t. θ is equivalent to minimising the sum-
squared of the error sequence E =

∑N
n=1(xn − gT

nθ)
2. This is exactly

the criterion which is applied in the familiar least squares (LS) estimation
method. The ML estimator is obtained by taking derivatives w.r.t. θ and
equating to zero:

θML = (GT G)−1GT x (4.6)

Maximum likelihood for the general linear model

which is, as expected, the familiar linear least squares estimate for model
parameters calculated from finite length data observations. Thus we see
that the ML estimator under the i.i.d. Gaussian error assumption is exactly
equivalent to the least squares (LS) solution.

4.1.3 Bayesian estimation

Recall that ML methods treat parameters as unknown constants. If we are
prepared to treat parameters as random variables it is possible to assign
prior PDFs to the parameters. These PDFs should ideally express some
prior knowledge about the relative probability of different parameter val-
ues before the data are observed . Of course if nothing is known a priori
about the parameters then the prior distributions should in some sense ex-
press no initial preference for one set of parameters over any other. Note
that in many cases a prior density is chosen to express some highly qualita-
tive prior knowledge about the parameters. In such cases the prior chosen
will be more a reflection of a degree of belief [97] concerning parameter
values than any true modelling of an underlying random process which
might have generated those parameters. This willingness to assign priors
which reflect subjective information is a powerful feature and also one of
the most fundamental differences between the Bayesian and ‘classical’ in-
ferential procedures. For various expositions of the Bayesian methodology
and philosophy see, for example [97, 23, 15]. We take here a pragmatic view-
point: if we have prior information about a problem then we will generally
get better results through careful incorporation of that information. The
precise form of probability distributions assigned a priori to the parame-
ters requires careful consideration since misleading results can be obtained
from erroneous priors, but in principle at least we can apply the Bayesian
approach to any problem where statistical uncertainty is present.

Bayes rule is now stated as applied to estimation of random parameters
θ from a random vector x of observations, known as the posterior or a
posteriori probability for the parameter:
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p(θ | x) =
p(x | θ) p(θ)

p(x)
(4.7)

Posterior probability

Note that all of the distributions in this expression are implicitly condi-
tioned upon all prior modelling assumptions, as was the likelihood function
earlier. The distribution p(x | θ) is the likelihood as used for ML estima-
tion, while p(θ) is the prior or a priori distribution for the parameters.
This term is one of the critical differences between Bayesian and ‘classical’
techniques. It expresses in an objective fashion the probability of various
model parameters values before the data x has been observed. As we have
already observed, the prior density may be an expression of highly sub-
jective information about parameter values. This transformation from the
subjective domain to an objective form for the prior can clearly be of great
significance and should be considered carefully.

The term p(θ | x), the posterior or a posteriori distribution, expresses the
probability of θ given the observed data x. This is now a true measure of
how ‘probable’ a particular value of θ is, given the observations x. p(θ | x)
is in a more intuitive form for parameter estimation than the likelihood,
which expresses how probable the observations are given the parameters .
The generation of the posterior distribution from the prior distribution
when data x is observed can be thought of as a refinement to any previ-
ous (‘prior’) knowledge about the parameters. Before x is observed p(θ)
expresses any information previously obtained concerning θ. Any new in-
formation concerning the parameters contained in x is then incorporated
to give the posterior distribution. Clearly if we start off with little or no
information about θ then the posterior distribution is likely to obtain in-
formation obtained almost solely from x. Conversely, if p(θ) expresses a
significant amount of information about θ then x will contribute less new
information to the posterior distribution.

The denominator p(x), sometimes referred to as the ‘evidence’ because
of its interpretation in model selection problems (see later), is constant for
any given observation x and so may be ignored if we are only interested in
the relative posterior probabilities of different parameters. In fact, Bayes
rule is often stated in the form:
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p(θ | x) ∝ p(x | θ) p(θ) (4.8)

Posterior probability (proportionality)

p(x) may be calculated, however, by integration:

p(x) =

∫

p(x | θ)p(θ) dθ (4.9)

and this effectively serves as the normalising constant for the posterior
density (in this and subsequent results the integration would be replaced
by a summation in the case of a discrete random vector θ).

4.1.3.1 Posterior inference and Bayesian cost functions

The posterior distribution gives the probability for any chosen θ given ob-
served data x, and as such optimally combines our prior information about
θ and any additional information gained about θ from observing x. We
may in principle manipulate the posterior density to infer any required
statistic of θ conditional upon x. This is an advantage over ML and least
squares methods which strictly give us only a single estimate of θ, known
as a ‘point estimate’. However, by producing a posterior PDFwith values
defined for all θ the Bayesian approach gives a fully interpretable probabil-
ity distribution. In principle this is as much as one could ever need to know.
In signal processing problems, however, we usually require a single point
estimate for θ, and a suitable way to choose this is via a ‘cost function’
C(θ̂,θ) which expresses objectively a measure of the cost associated with

a particular parameter estimate θ̂ when the true parameter is θ (see e.g.
[51, 15]). The form of cost function will depend on the requirements of a
particular problem. A cost of 0 indicates that the estimate is perfect for our
requirements (this does not necessarily imply that θ̂ = θ) while positive
values indicate poorer estimates. The risk associated with a particular es-
timator is then defined as the expected posterior cost associated with that
estimate:

R(θ̂) = E[C(θ̂,θ)] =

∫

x

∫

�
C(θ̂,θ) p(θ | x) p(x) dθ dx. (4.10)

We require the estimation scheme which chooses θ̂ to minimise the risk. The
minimum risk is known as the ‘Bayes risk’. For non-negative cost functions
it is sufficient to minimise only the inner integral

I(θ̂) =

∫

�
C(θ̂,θ) p(θ | x) dθ (4.11)
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for all θ̂. Typical cost functions are the quadratic cost function | θ̂ − θ |2
and the uniform cost function, defined for arbitrarily small ε as

C(θ̂,θ) =

{

1, | θ̂ − θ |> ε
0 otherwise

(4.12)

The quadratic cost function leads to the minimum mean-squared error
(MMSE) estimator and as such is reasonable for many examples of param-
eter estimation, where we require an estimate representative of the whole
posterior density. The MMSE estimate can be shown to equal the mean of
the posterior distribution:

θ̂ =

∫

�
θ p(θ | x) dθ. (4.13)

Where the posterior distribution is symmetrical about its mean the poste-
rior mean can in fact be shown to be the minimum risk solution for any
cost function which is a convex function of | θ̂ − θ | [186].

The uniform cost function is useful for the ‘all or nothing’ scenario where
we wish to attain the correct parameter estimate at all costs and any other
estimate is of no use. Therrien [174] cites the example of a pilot landing
a plane on an aircraft carrier. If he does not estimate within some small
finite error he misses the ship, in which case the landing is a disaster. The
uniform cost function for ε→ 0 leads to the maximum a posteriori (MAP)

estimate, the value of θ̂ which maximises the posterior distribution:

θMAP = argmax
�

{p(θ | x)} (4.14)

Maximum a posteriori (MAP) estimator

Note that for Gaussian posterior distributions the MMSE and MAP so-
lutions coincide, as indeed they do for any distribution symmetric about
its mean with its maximum at the mean. The MAP estimate is thus appro-
priate for many common estimation problems, including those encountered
in this book.

We now work through the MAP estimation scheme for the general linear
model (4.1). Suppose that the prior on parameter vector θ is the multivari-
ate Gaussian (A.2):

p(θ) =
1

(2π)P/2 | C� |1/2
exp

(

−1

2
(θ − m�)TC�−1(θ − m�)

)

(4.15)
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where m� is the parameter mean vector, C� is the parameter covariance
matrix and P is the number of parameters in θ. If the likelihood p(x | θ)
takes the same form as before (4.5), the posterior distribution is as follows:

p(θ | x) ∝ 1

(2π)P/2 | C� |1/2

1

(2πσ2
e)N/2

exp

(

− 1

2σ2
e

(x − Gθ)T (x − Gθ)

− 1

2
(θ − m�)T C�−1(θ − m�)

)

and the MAP estimate θMAP is obtained by differentiation of the log-
posterior as:

θMAP =
(

GTG + σ2
e C−1�

)−1 (
GTx + σ2

e C�−1m�
)

(4.16)

MAP estimator - general linear model

In this expression we can clearly see the ‘regularising’ effect of the prior
density on the ML estimate of (4.6). As the prior becomes more ‘diffuse’,
i.e. the diagonal elements of C� increase both in magnitude and relative
to the off-diagonal elements, we impose ‘less’ prior information on the es-
timate. In the limit the prior tends to a uniform (‘flat’) prior with all θ
equally probable. In this limit C−1� = 0 and the estimate is identical to the
ML estimate (4.6). This important relationship demonstrates that the ML
estimate may be interpreted as the MAP estimate with a uniform prior
assigned to θ. The MAP estimate will also tend towards the ML estimate
when the likelihood is strongly ‘peaked’ around its maximum compared
with the prior. Once again the prior will have little influence on the esti-
mate. It is in fact well known [97] that as the sample size N tends to infinity
the Bayes solution tends to the ML solution. This of course says nothing
about small sample parameter estimates where the effect of the prior may
be very significant.

4.1.3.2 Marginalisation for elimination of unwanted parameters

In many cases we can formulate a likelihood function for a particular prob-
lem which depends on more unknown parameters than are actually wanted
for estimation. These will often be ‘scale’ parameters such as unknown noise
or excitation variances but may also be unobserved (‘missing’) data values
or unwanted system parameters. A full ML procedure requires that the
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likelihood be maximised w.r.t. all of these parameters and the unwanted
values are then simply discarded to give the required estimate.2 However,
this may not in general be an appropriate procedure for obtaining only the
required parameters - a cost function which depends only upon a certain
subset of parameters leads to an estimator which only depends upon the
marginal probability for those parameters. The Bayesian approach allows
for the interpretation of these unwanted or ‘nuisance’ parameters as random
variables, for which as usual we can specify prior densities. The marginali-
sation identity can be used to eliminate these parameters from the posterior
distribution, and from this we are able to obtain a posterior distribution in
terms of only the desired parameters. Consider an unwanted parameter φ
which is present in the modelling assumptions. The unwanted parameter is
now eliminated from the posterior expression by marginalisation:

p(θ|x) =

∫

�
p(θ,φ|x) dφ

∝
∫

�
p(x|θ,φ)p(θ,φ) dφ (4.17)

4.1.3.3 Choice of priors

One of the major criticisms levelled at Bayesian techniques is that the
choice of priors can be highly subjective and, as mentioned above, the
inclusion of inappropriate priors could give misleading results. There is
clearly no problem if the prior statistics are genuinely known. Difficulties
arise, however, when an attempt is made to choose prior densities to ex-
press some very subjective piece of prior knowledge or when nothing at all
appears to be known beforehand about the parameters.

In many engineering applications we may have genuine prior belief in
terms of the observed long term behaviour of a particular parameter before
the current data were observed. In these cases there is clearly very little
problem with the Bayesian approach. In other cases subjective information
may be available, such as an approximate range of feasible values, or a
rough idea of the parameter’s likely value. In these cases a pragmatic ap-
proach can be adopted: choose a prior with convenient analytical properties
which expresses the type of information available to us. We have already
seen an example of such a prior in the Gaussian prior assigned to the linear
parameter vector (4.15). If an approximate value for θ were known, this
could be chosen as the mean vector m� of the Gaussian. If we can quan-
tify our uncertainty about this mean value then this can be incorporated
into the prior covariance matrix. To take another example, the variance of

2Although in time series likelihood-based analysis it is common to treat missing and
other unobserved data in a Bayesian fashion, see [91] and references therein.
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the error σ2
e might be unknown. However, physical considerations for the

system might lead us to expect that a certain range of values is more likely
than others. A suitable prior for this case might be the inverted Gamma
distribution (A.11), which is defined for positive random variables and can
be assigned a mean and variance. In either of these cases the Bayesian anal-
ysis of the linear model remains analytically tractable and such priors are
termed conjugate priors (see [15, appendix A.2] for a comprehensive list of
likelihood functions and their associated conjugate priors).

In cases where no prior information can be assumed we will wish to
assign a prior which does not bias the outcome of the inference procedure.
Such priors are termed non-informative and detailed discussions can be
found in Box and Tiao [23] and Bernardo and Smith [15]. We do not detail
the construction of non-informative priors here, but give two important
examples which are much used. Firstly, a non-informative prior which is
commonly used for the linear ‘location’ parameters θ in the general linear
model (4.1) is the uniform prior. Secondly, the standard non-informative
prior for a ‘scale’ parameter such as σ2

e in the linear model, is the Jeffreys’
prior [97] which has the form p(σ2) = 1

σ2 . These priors are designed to
give invariance of the inferential procedure to re-scaling of the data. A
troublesome point, however, is that both are unnormalised, which means
they are not proper densities. Furthermore, there are some models for which
it is not possible to construct a non-informative prior.

4.1.4 Bayesian Decision theory

As for Bayesian parameter estimation we consider the unobserved variable
(in this case a classification state si) as being generated by some random
process whose prior probabilities are known. These prior probabilities are
assigned to each of the possible classification states using a probability mass
function (PMF) p(si), which expresses the prior probability of occurrence
of different states given all information available except the data x. The
required form of Bayes rule for this discrete estimation problem is then

p(si | x) =
p(x | si) p(si)

p(x)
(4.18)

p(x) is constant for any given x and will serve to normalise the posterior
probabilities over all i in the same way that the ‘evidence’ normalised the
posterior parameter distribution (4.7). In the same way that Bayes rule
gave a posterior distribution for parameters θ, this expression gives the
posterior probability for a particular state given the observed data x. It
would seem reasonable to choose the state si corresponding to maximum
posterior probability as our estimate for the true state (we will refer to this
state estimate as the MAP estimate), and this can be shown to have the
desirable property of minimum classification error rate PE (see e.g. [51]),
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that is, it has minimum probability of choosing the wrong state. Note that
determination of the MAP state vector will usually involve an exhaustive
search of p(si | x) for all feasible i, although sub-optimal schemes are
developed for specific applications encountered later.

These ideas are formalised by consideration of a ‘loss function’ λ(αi | sj)
which defines the penalty incurred by taking action αi when the true state
is sj . Action αi will usually refer to the action of choosing state si as the
state estimate.

The expected risk associated with action αi (known as the conditional
risk) is then expressed as

R(αi | x) =

Ns
∑

j=1

λ(αi | sj) p(sj | x). (4.19)

It can be shown that it is sufficient to minimise this conditional risk in order
to achieve the optimal decision rule for a given problem and loss function.

Consider a loss function which is zero when i = j and unity otherwise.
This ‘symmetric’ loss function can be viewed as the equivalent of the uni-
form cost function used for parameter estimation (4.12). The conditional
risk is then given by:

R(αi | x) =

Ns
∑

j=1, (j 6=i)

p(sj | x) (4.20)

= 1 − p(si | x) (4.21)

The second line here is simply the conditional probability that action αi

is incorrect, and hence minimisation of the conditional risk is equivalent to
minimisation of the probability of classification error, PE . It is clear from
this expression that selection of the MAP state is the optimal decision rule
for the symmetric loss function.

Cases where minimum classification error rate may not be the best cri-
terion are encountered and discussed later. However, alternative loss func-
tions will not in general lead to estimators as simple as the MAP estimate.

4.1.4.1 Calculation of the evidence, p(x | si)

The term p(x | si) is equivalent to the ‘evidence’ term p(x) which was
encountered in the parameter estimation section, since p(x) was implicitly
conditioned on a particular model structure or state in that scheme.

If one uses a uniform state prior p(si) = 1
Ns

, then, according to equation
(4.18), it is only necessary to compare values of p(x | si) for model selection
since the remaining terms are constant for all models. p(x | si) can then be
viewed literally as the relative ‘evidence’ for a particular model, and two
candidate models can be compared through their Bayes Factor:
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BFij =
p(x | si)

p(x | sj)

Typically each model or state si will be expressed in a parametric form
whose parameters θi are unknown. As for the parameter estimation case it
will usually be possible to obtain the state conditional parameter likelihood
p(x | θi, si). Given a state-dependent prior distribution for θi the evidence
may be obtained by integration to eliminate θi from the joint probability
p(x,θi | si). The evidence is then obtained using result (4.17) as

p(x | si) =

∫

�
i

p(x | θi, si) p(θi | si) dθi (4.22)

If the general linear model of (4.1) is extended to the multi-model sce-
nario we obtain:

x = Giθi + ei (4.23)

where Gi refers to the state-dependent basis matrix and ei is the cor-
responding error sequence. For this model the state dependent parameter
likelihood p(x | θi, si) is (see (4.5)):

p(x | θi, si) =
1

(2πσ2
ei

)N/2
exp

(

− 1

2σ2
ei

(x − Giθi)
T (x − Giθi)

)

(4.24)

and assuming the same Gaussian form for the state conditional parame-
ter prior p(θi | si) (with Pi parameters) as we used for p(θ) in (4.15) the
evidence is then given by:

p(x | si) =

∫

�
i

1

(2π)Pi/2 | C�
i
|1/2

1

(2πσ2
ei

)N/2

exp

(

− 1

2σ2
ei

(x − Giθi)
T (x − Giθi)

− 1

2
(θi − m�

i)
T C�i

−1(θi − m�
i)

)

dθi (4.25)

This multivariate Gaussian integral can be performed after some rearrange-
ment using result (A.5) to give:

p(x | si) =
1

(2π)Pi/2 | C�
i
|1/2 | Φ |1/2 (2πσ2

ei
)(N−Pi)/2

exp

(

− 1

2σ2
ei

(xT x + σ2
ei
m�

i

TC�
i

−1m�
i
− ΘTθMAP

i )

)

(4.26)
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with terms defined as

θ
MAP

i = Φ−1Θ (4.27)

Φ = Gi
TGi + σ2

ei
C�

i

−1 (4.28)

Θ = Gi
Tx + σ2

ei
C�

i

−1m�
i

(4.29)

Notice that θMAP

i is simply the state dependent version of the MAP param-
eter estimate given by (4.16).

This expression for the state evidence is proportional to the joint proba-
bility p(x,θi | si) with the MAP value θMAP

i substituted for θi. This is easily
verified by substitution of θMAP

i into the integrand of (4.25) and comparing
with (4.26). The following relationship results:

p(x | si) =
(2πσ2

ei
)Pi/2

| Φ |1/2
p(x,θi | si) |�i=

�MAP
i

. (4.30)

Thus within this all-Gaussian framework the only difference between sub-
stituting in MAP parameters for θi and performing the full marginalisation

integral is a multiplicative term
(2πσ2

ei
)Pi/2

|Φ|1/2 .

In the case where the state dependent likelihood is expressed in terms of
unknown scale parameters (e.g. σ2

ei
) it is sometimes possible to marginalise

these parameters in addition to the system parameters θi, depending upon
the prior structure chosen. The same conjugate prior as proposed in section
4.1.3.3, the inverted-gamma distribution, may be applied. If we wished to
eliminate σ2

ei
from the evidence result of (4.26) then one prior structure

which leads to analytic results is to reparameterise the prior covariance
matrix for θi as C′�

i
= C�

i
/σ2

ei
in order to eliminate the dependency of Θ

and Φ on σ2
ei

. Such a reparameterisation becomes unnecessary if a uniform

prior is assumed for θi, in which case C�i

−1 → 0 and Θ and Φ no longer
depend upon σ2

ei
.

4.1.4.2 Determination of the MAP state estimate

Having obtained expressions for the state evidence and assigned the prior
probabilities Psi the posterior state probability (4.18) may then be evalu-
ated for all i in order to identify the MAP state estimate. For large num-
bers of states Ns this can be highly computationally intensive, in which case
some sub-optimal search procedure must be devised. This issue is addressed
in later chapters for Bayesian click removal.

4.1.5 Sequential Bayesian classification

Sequential classification is concerned with updating classification estimates
as new data elements are input. Typically x will contain successive data
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samples from a time series, and an example is a real-time signal process-
ing application in which new samples are received from the measurement
system one-by-one and we wish to refine some classification of the data as
more data is received. Say we have observed k samples which are placed in
vector xk. The decision theory of previous sections can be used to calculate
the posterior state probability p(si | xk) for each state si. The sequential
classification problem can then be stated as follows: given some state es-
timate for the first k data samples of xk a sequence, form a revised state
estimate when a new data sample xk+1 is observed.

The optimal Bayes decision procedure requires minimisation of the con-
ditional risk (4.19) and hence evaluation of all the state posterior proba-
bilities p(si | xk). Considering (4.18), the prior state probabilities p(si) do
not change as more data is received, and hence the problem is reduced to
that of updating the evidence term p(x | si) for each possible state with
each incoming data sample. This update is specified in recursive form:

p(xk+1 | si) = g(p(xk | si), xk+1) (4.31)

where g(.) is the sequential updating function. Simple application of the
product rule for probabilities gives the required update in terms of the
distribution p(xk+1 | xk, si):

p(xk+1 | si) = p(xk+1 | xk, si) p(xk | si). (4.32)

In some simple cases it is possible to write down this distribution directly
from modelling considerations (for example in classification for known fixed
parameter linear models). For the general multivariate Gaussian distribu-
tion with known mean vector mx and covariance matrix Cx, the required
update can be derived by considering the manner in which Cx and its in-
verse are modified by the addition of a new element to x (see [173, pp.157-
160]).

Here we consider the linear Gaussian model with unknown parameters
(4.23) which leads to an evidence expression with the form (4.26). The
simplest update is obtained by consideration of how the term θMAP

i , the
MAP parameter estimate for a particular state or model, is modified by
the input of new data point xk+1. The ‘i’ notation indicating a particular
state si is dropped from now on since the update for each state si can be
treated as a separate problem. Subscripts now refer to the number of data
samples (i.e. k or (k + 1)).

For a given model it is assumed that the basis matrix Gk corresponding
to data xk is updated to Gk+1 with the input of xk+1 by the addition of a
new row gk

T :

Gk+1 =





Gk

− −
gk

T



 (4.33)
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Note that even though gk is associated with time instant k+ 1 we write it
as gk for notational simplicity.

The MAP parameter estimate with k samples of input is given by θMAP

k =
Φk

−1Θk (4.27). The first term in Φk (4.28) is Gk
TGk. A recursive update

for this term is obtained by direct multiplication using (4.33):

Gk+1
TGk+1 = Gk

TGk + gk gk
T . (4.34)

The second term of Φk (4.28) is σ2
eC

−1� . This remains unchanged with
the input of xk+1 since it contains parameters of the prior modelling as-
sumptions which are independent of the input data samples. The recursive
update for Φk is thus given by

Φk+1 = Φk + gk gk
T . (4.35)

Now consider updating Θk (4.29). The first term is Gk
Txk. Clearly xk+1

is given by

xk+1 =





xk

− −
xk+1



 , (4.36)

and hence by direct multiplication:

Gk+1
Txk+1 = Gk

Txk + gk xk+1. (4.37)

As for Φk, the second term of Θk (4.29) is unchanged with the input of
xk+1, so the recursive update for Θ is

Θk+1 = Θk + gk xk+1. (4.38)

The updates derived for Φk (4.35) and Θk (4.38) are now in the form
required for the extended RLS formulae given in appendix B. Use of these
formulae, including the determinant updating formula for | Φk | give the
following update for the evidence (note that P = Φ−1):

kk+1 =
Pk gk

1 + gk
TPk gk

αk+1 = xk+1 − θMAP

k
T
gk

θ
MAP

k+1 = θ
MAP

k + kk+1 αk+1

Pk+1 = Pk − kk+1 gk
TPk

p(xk+1 | s) = p(xk | s) 1

(2πσ2
e)1/2

1

(1 + gk
TPk gk)

1/2

exp

(

− 1

2σ2
e

αk+1

(

xk+1 − θMAP

k+1
T
gk

)

)

(4.39)
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where of course all of the terms are implicitly dependent upon the particu-
lar state s. This update requires at each stage storage of the inverse matrix
Pk, the MAP parameter estimate θMAP

k and the state probability p(xk | si).
Computation of the update requires O(P 2) multiplications and additions
(recall that P is the number of unknown parameters in the current state or
model), although significant savings can be made in special cases where gk

contains zero-valued elements. The MAP parameter estimates are obtained
as a by-product of the update scheme, and this will be used in cases where
joint estimation of state or model and parameters is required.

The sequential algorithms developed later in the Bayesian de-clicking
chapters will be similar to the form summarised here. They not only allow
for reasonably efficient real-time operation but will also help in the de-
velopment of sub-optimal classification algorithms for the cases where the
number of states is too large for evaluation of the evidence for all states si.

4.2 Signal modelling

The general approach of this book for solving problems in audio is the model
based approach, in which an attempt is made to formulate a statistical
model for the data generation process. The model chosen is considered as
part of the prior information about the problem in a similar way to the prior
distribution assumed in Bayesian methods. When the model formulated
is an accurate representation of the data we can expect to be rewarded
with improved processing performance. We have already to seen how to
deal with statistical model uncertainty between a set of candidate models
(or system ‘states’) within a Bayesian framework earlier in this chapter.
The general linear model has been used as an example until now. Such a
model applies to a time series when the data can be thought of as being
composed of a finite number of basis functions (in additive noise). More
typically, however, we may wish to include random inputs into the model.
One parametric model which achieves this is the ARMA (autoregressive
moving-average) model, in which the observed data are generated through
the following general linear difference equation:

xn =

P
∑

i=1

aixn−i +

Q
∑

j=0

bjen−j (4.40)

ARMA model
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The transfer function for this model is

H(z) =
B(z)

A(z)

where B(z) =
∑Q

j=0 bjz
−j and A(z) = 1 −∑P

i=1 aiz
−i.

The model can be seen to consist of applying an IIR filter (see 2.5.1) to
the ‘excitation’ or ‘innovation’ sequence {en}, which is i.i.d. noise. General-
isations to the model could include the addition of additional deterministic
input signals (the ARMAX model [114, 21]) or the inclusion of linear basis
functions in the same way as for the general linear model:

y = x + Gθ

An important special case of the ARMA model is the autoregressive (AR)
or ‘all-pole’ (since the transfer function has poles only) model in which
B(z) = 1. This model is used considerably throughout the text and is
considered in the next section.

4.3 Autoregressive (AR) modelling

A time series model which is fundamental to much of the work in this book
is the autoregressive (AR) model, in which the data is modelled as the
output of an all-pole filter excited by white noise. This model formulation
is a special case of the innovations representation for a stationary random
signal in which the signal {Xn} is modelled as the output of a linear time-
invariant filter driven by white noise. In the AR case the filtering operation
is restricted to a weighted sum of past output values and a white noise
innovations input {en}:

xn =

P
∑

i=1

aixn−i + en. (4.41)

The coefficients {ai; i = 1...P} are the filter coefficients of the all-pole
filter, henceforth referred to as the AR parameters, and P , the number of
coefficients, is the order of the AR process. The AR model formulation is
closely related to the linear prediction framework used in many fields of
signal processing (see e.g. [174, 119]). AR modelling has some very useful
properties as will be seen later and these will often lead to simple analytical
results where a more general model such as the ARMA model (see previous
section) does not. In addition, the AR model has a reasonable basis as
a source-filter model for the physical sound production process in many
speech and audio signals [156, 187].
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4.3.1 Statistical modelling and estimation of AR models

If the probability distribution function pe(en) for the innovation process
is known, it is possible to incorporate the AR process into a statistical
framework for classification and estimation problems. A straightforward
change of variable xn to en gives us the distribution for xn conditional on
the previous P data values as

p(xn | xn−1, xn−2, . . . , xn−P ) = pe(xn −
P
∑

i=1

aixn−i) (4.42)

Since the excitation sequence is i.i.d. we can write the joint probability for
a contiguous block of N −P data samples xP+1...xN conditional upon the
first P samples x1...xP as

p(xP+1, xP+2, ..., xN | x1, x2, ..., xP ) =

N
∏

n=P+1

pe(xn −
P
∑

i=1

aixn−i) (4.43)

This is now expressed in matrix-vector notation. The data samples x1, ..., xN

and parameters a1, a2, ..., aP−1, aP are written as column vectors of length
N and P , respectively:

x = [x1 x2 ... xN ]T , a = [a1 a2 ...aP−1 aP ]T (4.44)

x is partitioned into x0, which contains the first P samples x1, ..., xP , and
x1 which contains the remaining (N − P ) samples xP+1...xN :

x0 = [x1 x2 ... xP ]T , x1 = [xP+1 ... xN ]T (4.45)

The AR modelling equation of (4.41) is now rewritten for the block of N
data samples as

x1 = G a + e (4.46)

where e is the vector of (N − P ) excitation values and the ((N − P ) × P )
matrix G is given by

G =















xP xP−1 · · · x2 x1

xP+1 xP · · · x3 x2

...
. . .

...
xN−2 xN−3 · · · xN−P xN−P−1

xN−1 xN−2 · · · xN−P+1 xN−P















(4.47)

The conditional probability expression (4.43) now becomes

p(x1 | x0,a) = pe(x1 − Ga) (4.48)
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and in the case of a zero-mean Gaussian excitation we obtain

p(x1 | x0,a) =
1

(2πσ2
e)

N−P
2

exp

(

− 1

2σ2
e

(x1 − Ga)T (x1 − Ga)

)

(4.49)

Note that this introduces a variance parameter σ2
e which is in general

unknown. The PDFgiven is thus implicitly conditional on σ2
e as well as a

and x0.
The form of the modelling equation of (4.46) looks identical to that of the

general linear parametric model used to illustrate previous sections (4.1).
We have to bear in mind, however, that G here depends upon the data
values themselves, which is reflected in the conditioning of the distribution
of x1 upon x0. It can be argued that this conditioning becomes an insignifi-
cant ‘end-effect’ for N >> P [155] and we can then make an approximation
to obtain the likelihood for x:

p(x|a) ≈ p(x1|a,x0), N >> P (4.50)

How much greater than P N must be will in fact depend upon the pole
positions of the AR process. Using this result an approximate ML estimator
for a can be obtained by maximisation w.r.t. a, from which we obtain the
well-known covariance estimate for the AR parameters,

aCov = (GT G)−1GT x1 (4.51)

which is equivalent to a minimisation of the sum-squared prediction er-
ror over the block, E =

∑N
i=P+1 e

2
i , and has the same form as the ML

parameter estimate in the general linear model.
Consider now an alternative form for the vector model equation (4.46)

which will be used in subsequent work for Bayesian detection of clicks and
interpolation of AR data:

e = Ax (4.52)

where A is the ((N − P ) × (N)) matrix defined as

A =



















−aP · · · −a1 1 0 0 · · · 0 0
0 −aP · · · −a1 1 0 0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

· · · 0 0 −aP · · · −a1 1 0 0
0 · · · 0 0 −aP · · · −a1 1 0
0 0 · · · 0 0 −aP · · · −a1 1



















(4.53)

The conditional likelihood for white Gaussian excitation is then rewritten
as:

p(x1 | x0,a) =
1

(2πσ2
e)

N−P
2

exp

(

− 1

2σ2
e

xT AT A x

)

(4.54)



4.3 Autoregressive (AR) modelling 89

In order to obtain the exact (i.e. not conditional upon x0) likelihood we
need the distribution p(x0|a), since

p(x|a) = p(x1|x0,a)p(x0|a)

In appendix C this additional term is derived, and the exact likelihood
for all elements of x is shown to require only a simple modification to the
conditional likelihood, giving:

p(x | a) =
1

(2πσ2
e)

N
2 | Mx0 |1/2

exp

(

− 1

2σ2
e

xT Mx
−1 x

)

(4.55)

where

Mx
−1 = AT A +

[

Mx0

−1 0
0 0

]

(4.56)

and Mx0 is the autocovariance matrix for P samples of data drawn from
AR process a with unit variance excitation. Note that this result relies on
the assumption of a stable AR process. As seen in the appendix, Mx0

−1

is straightforwardly obtained in terms of the AR coefficients for any given
stable AR model a. In problems where the AR parameters are known be-
forehand but certain data elements are unknown or missing, as in click
removal or interpolation problems, it is thus simple to incorporate the true
likelihood function in calculations. In practice it will often not be neces-
sary to use the exact likelihood since it will be reasonable to fix at least
P ‘known’ data samples at the start of any data block. In this case the
the conditional likelihood (4.54) is the required quantity. Where P samples
cannot be fixed it will be necessary to use the exact likelihood expression
(4.55) as the conditional likelihood will perform badly in estimating missing
data points within x0.

While the exact likelihood is quite easy to incorporate in missing data or
interpolation problems with known a, it is much more difficult to use for AR
parameter estimation since the functions to maximise are non-linear in the
parameters a. Hence the linearising approximation of equation (4.50) will
usually be adopted for the likelihood when the parameters are unknown.

In this section we have shown how to calculate exact and approximate
likelihoods for AR data, in two different forms: one as a quadratic form
in the data x and another as a quadratic (or approximately quadratic)
form in the parameters a. This likelihood will appear on many subsequent
occasions throughout the book.
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4.4 State-space models, sequential estimation and
the Kalman filter

Most of the models encountered in this book, including the AR and ARMA
models, can be expressed in state space form:

yn = Zαn + vn (Observation equation) (4.57)

αn+1 = Tαn +Hen (State update equation) (4.58)

In the top line, the observation equation, the observed data yn is expressed
in terms of an unobserved state αn and a noise term vn. vn is uncorrelated
(i.e. E[vnv

T
m] = 0 for n 6= m) and zero mean, with covariance Cv. In the

second line , the state update equation, the state αn is updated to its new
value αn at time n+ 1 and a second noise term en. en is uncorrelated (i.e.
E[ene

T
m] = 0 for n 6= m) and zero mean, with covariance Ce, and is also

uncorrelated with vn. Note that in general the state αn, observation yn and
noise terms en / vn can be column vectors and the constants Z, T and H
are then matrices of the implied dimensionality. Also note that all of these
constants can be made time index dependent without altering the form of
the results given below.

Take, for example, an AR model {xt} observed in noise {vn}, so that the
equations in standard form are:

yn = xn + vn

xn =

P
∑

i=1

aixn−i + en

One way to express this in state-space form is as follows:

αn =
[

xn xn−1 xn−2 . . . xn−P+1

]T

T =















a1 a2 . . . aP

1 0 . . . 0
0 1 . . . 0
...

. . .
. . . 0

0 0 . . . 1















H =
[

1 0 . . . 0
]T

Z = HT

Ce = σ2
e

Cv = σ2
v

The state-space form is useful since some elegant results exist for the
general form which can be applied in many different special cases. In par-
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ticular, we will use it for sequential estimation of the state αn. In prob-
abilistic terms this will involve updating the posterior probability for αn

with the input of a new observation yn+1:

p(αn+1|yn+1) = g(p(αn|yn), yn+1)

where yn = [y1, . . . , yn]T and g(.) denotes the sequential updating function.
Suppose that the noise sources en and vn are Gaussian. Assume also that

an initial state probability or prior p(α0) exists and is Gaussian N(m0, C0).
Then the posterior distributions are all Gaussian themselves and the pos-
terior distribution for αn is fully represented by its sufficient statistics : its
mean an = E[αn|y0, . . . , yn] and covariance matrix Pn = E[(αn−an)(αn−
an)T | y0, . . . , yn]. The Kalman filter [100, 5, 91] performs the update effi-
ciently, as follows:

1. Initialise: a0 = m0, P0 = C0

2. Repeat for n = 1 to N :

(a) Prediction:

an|n−1 = Tan−1

Pn|n−1 = TPn−1T
T + HCeH

T

(b) Correction:

an = an|n−1 + Kn(yn − Zan|n−1)

Pn = (I −KnZ)Pn|n−1

where

Kn = Pn|n−1Z
T (ZPn|n−1Z

T
n + Cv)

−1 (Kalman Gain)

Here an|n−1 is the predictive mean E[αn|yn−1], Pn|n−1 the predictive
covariance E[(αn − an|n−1)(αn − an|n−1)

T |yn−1] and I denotes the (ap-
propriately sized) identity matrix.

We have thus far given a purely probabilistic interpretation of the Kalman
filter for normally distributed noise sources and initial state. A more gen-
eral interpretation is available [100, 5, 91]: the Kalman filter gives the best
possible linear estimator for the state in a mean-squared error sense (MSE),
whatever the probability distributions.

4.4.1 The prediction error decomposition

One remarkable property of the Kalman filter is the prediction error decom-
position which allows exact sequential evaluation of the likelihood function
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for the observations. If we suppose that the model depends upon some
hyperparameters θ, then the Kalman filter updates sequentially, for a par-
ticular value of θ, the density p(αn|yn, θ). We define the likelihood for θ in
this context to be:

p(yn|θ) =

∫

p(αn, yn|θ) dαn

from which the ML or MAP estimator for θ can be obtained by optimi-
sation. The prediction error decomposition [91, pp.125-126] calculates this
term from the outputs of the Kalman filter:

log(p(yn|θ)) = −Mn

2
log(2π) − 1

2

n
∑

t=1

log |Ft| −
1

2

n
∑

t=1

wT
t F

−1
t wt (4.59)

where

Ft = ZPt|t−1Z
T + Cv

wt = yt − Zat|t−1

and where M is the dimension of the observation vector yn.

4.4.2 Relationships with other sequential schemes

The Kalman filter is closely related to other well known schemes such as
recursive least squares (RLS) [94], which can be obtained as a special case
of the Kalman filter when T = I, the identity matrix, and Ce = 0 (i.e. a
system with non-dynamic states - an example of this would be the general
linear model used earlier in the chapter, using a time dependent observation
vector Zn = gT

n ).

4.5 Expectation-maximisation (EM) for MAP
estimation

The Expectation-maximisation (EM) algorithm [43] is an iterative pro-
cedure for finding modes of a posterior distribution or likelihood function,
particularly in the context of ‘missing data’. EM has been used quite exten-
sively in the signal processing literature for maximum likelihood parameter
estimation, see e.g. [59, 195, 136, 168]. Within the audio field Veldhuis [192,
appendix E.2] derives the EM algorithm for AR parameter estimation in
the presence of missing data, which is closely related to the audio interpola-
tion problems of subsequent chapters. The notation used here is essentially
similar to that of Tanner [172, pp.38-57].
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The problem is formulated in terms of observed data y, parameters θ
and unobserved (‘latent’ or ‘missing’) data x. EM will be useful in certain
cases where it is straightforward to manipulate the conditional posterior
distributions p(θ|x,y) and p(x|θ,y), but perhaps not straightforward to
deal with the marginal distributions p(θ|y) and p(x|y). This will be the
case in many of the model-based interpolation and estimation schemes of
subsequent chapters. We will typically wish to estimate missing or noisy
data x in the audio restoration tasks of this book, so we consider a slightly
unconventional formulation of EM which treats θ as ‘nuisance’ parameters
and forms the MAP estimate for x:

xMAP = argmax
x

{p(x|y)} = argmax
x

{
∫

�
p(x,θ|y)dθ

}

The basic EM algorithm can be summarised as:

1. Expectation step:

Given the current estimate xi, calculate:

Q(x,xi) =

∫

�
log(p(x|y,θ)) p(θ|xi,y)dθ

= E[log(p(x|y,θ))|xi,y] (4.60)

2. Maximisation step:

xi+1 = argmax
x

{Q(x,xi)} (4.61)

These two steps are iterated until convergence is achieved. The algorithm
is guaranteed to converge to a stationary point of p(x|y), although we must
beware of convergence to local maxima when the posterior distribution
is multimodal. The starting point x0 determines which posterior mode is
reached and can be critical in difficult applications.

4.6 Markov chain Monte Carlo (MCMC)

Rapid increases in available computational power over the last few years
have led to a revival of interest in Markov chain Monte Carlo (MCMC) sim-
ulation methods [131, 92]. The object of these methods is to draw samples
from some target distribution π(ω) which may be too complex for direct
estimation procedures. The MCMC approach sets up an irreducible, aperi-
odic Markov chain whose stationary distribution is the target distribution
of interest, π(ω). The Markov chain is then simulated from some arbitrary
starting point and convergence in distribution to π(ω) is then guaranteed
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under mild conditions as the number of state transitions (iterations) ap-
proaches infinity [175]. Once convergence is achieved, subsequent samples
from the chain form a (dependent) set of samples from the target distri-
bution, from which Monte Carlo estimates of desired quantities related to
the distribution may be calculated.

For the statistical reconstruction tasks considered in this book, the tar-
get distribution will be the joint posterior distribution for all unknowns,
p(x,θ|y), from which samples of the unknowns x and θ will be drawn
conditional upon the observed data y. Since the joint distribution can be
factorised as p(x,θ|y) = p(θ|x,y)p(x|y) it is clear that the samples in x
which are extracted from the joint distribution are equivalent to samples
from the marginal posterior p(x|y). The sampling method thus implicitly
performs the (generally) analytically intractable marginalisation integral
w.r.t. θ.

The Gibbs Sampler [64, 63] is perhaps the most popular form of MCMC
currently in use for the exploration of posterior distributions. This method,
which can be derived as a special case of the more general Metropolis-
Hastings method [92], requires the full specification of conditional poste-
rior distributions for each unknown parameter or variable. Suppose that
the reconstructed data and unknown parameters are split into (possibly
multivariate) subsets x = {x0, x1, . . . , xN−1} and θ = {θ1, θ2 . . . , θq}. Ar-
bitrary starting values x0 and θ0 are assigned to the unknowns. A single
iteration of the Gibbs Sampler then comprises sampling each variable from
its conditional posterior with all remaining variables fixed to their current
sampled value. The (i+ 1)th iteration of the sampler may be summarised
as:

θi+1
1 ∼ p(θ1|θi

2 . . . , θ
i
q, x

i
0, x

i
1, . . . , x

i
N−1,y)

θi+1
2 ∼ p(θ2|θi+1

1 , . . . , θi
q, x

i
0, x

i
1, . . . , x

i
N−1,y)

...

θi+1
q ∼ p(θq|θi+1

1 , θi+1
2 . . . , xi

0, x
i
1, . . . , x

i
N−1,y)

xi+1
0 ∼ p(x0|θi+1

1 , θi+1
2 . . . , θi+1

q , xi
1, . . . , x

i
N−1,y)

xi+1
1 ∼ p(x1|θi+1

1 , θi+1
2 . . . , θi+1

q , xi+1
0 , xi

2, . . . , x
i
N−1,y)

...

xi+1
N−1 ∼ p(xN−1|θi+1

1 , θi+1
2 . . . , θi+1

q , xi+1
0 , xi+1

1 , . . . , xi+1
N−2,y)

where the notation ‘∼’ denotes that the variable to the left is drawn as
a random independent sample from the distribution to the right.

The utility of the Gibbs Sampler arises as a result of the fact that the
conditional distributions, under appropriate choice of parameter and data
subsets (θi and xj), will be more straightforward to sample than the full
posterior. Multivariate parameter and data subsets can be expected to lead
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to faster convergence in terms of number of iterations (see e.g. [113, 163]),
but there may be a trade-off in the extra computational complexity in-
volved per iteration. Convergence properties are a difficult and important
issue and concrete results are as yet few and specialised. However, geomet-
ric convergence rates can be found in the important case where the pos-
terior distribution is Gaussian or approximately Gaussian (see [162] and
references therein). Numerous (but mostly ad hoc) convergence diagnostics
have been devised for more general scenarios and a review may be found
in [40].

Once the sampler has converged to the desired posterior distribution, in-
ference can easily be made from the resulting samples. One useful means of
analysis is to form histograms of any parameters of interest. These converge
in the limit to the true marginal posterior distribution for those parame-
ters and can be used to estimate MAP values and Bayesian confidence
intervals, for example. Alternatively a Monte Carlo estimate can be made
for the expected value of any desired posterior functional f(.) as a finite
summation:

E[f(x)|y] ≈
∑Nmax

i=N0+1 f(xi)

Nmax −N0
(4.62)

where N0 is the convergence (‘burn in’) time and Nmax is the total num-
ber of iterations. The MMSE, for example, is simply the posterior mean,
estimated by setting f(x) = x in (4.62).

MCMC methods are highly computer-intensive and will only be appli-
cable when off-line processing is acceptable and the problem is sufficiently
complex to warrant their sophistication. However, they are currently un-
paralleled in ability to solve the most challenging of modelling problems.

4.7 Conclusions

We have used this chapter to review and develop the principles of parameter
estimation and classification with an emphasis on the Bayesian framework.
We have considered a linear Gaussian parametric model by way of illus-
tration since the results obtained are closely related to those of some later
sections of the book. The autoregressive model which is also fundamental
to later chapters has been introduced and discussed within the Bayesian
scheme and sequential estimation has been introduced. The Kalman filter
was seen to be an appropriate method for implementation of such sequen-
tial schemes. Finally some more advanced methods for exploration of a pos-
terior distribution were briefly described: the EM algorithm and MCMC
methods, which find application in the last chapter of the book.
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5

Removal of Clicks

The term ‘clicks’ is used here to refer to a generic localised type of degra-
dation which is common to many audio media. We will classify all finite
duration defects which occur at random positions in the waveform as clicks.
Clicks are perceived in a number of ways by the listener, ranging from tiny
‘tick’ noises which can occur in any recording medium, including modern
digital sources, through to the characteristic ‘scratch’ and ‘crackle’ noise
associated with most analogue disc recording methods. For example, a poor
quality 78rpm record might typically have around 2,000 clicks per second
of recorded material, with durations ranging from less than 20µs up to 4ms
in extreme cases. See figure 5.11 for a typical example of a recorded music
waveform degraded by localised clicks. In most examples at least 90% of
samples remain undegraded, so it is reasonable to hope that a convincing
restoration can be achieved.

There are many mechanisms by which clicks can occur. Typical examples
are specks of dirt and dust adhering to the grooves of a gramophone disc
or granularity in the material used for pressing such a disc (see figures
1.1-1.3). Further click-type degradation may be caused through damage to
the disc in the form of small scratches on the surface. Similar artefacts are
encountered in other analogue media, including optical film sound tracks
and early wax cylinder recordings, although magnetic tape recordings are
generally free of clicks. Ticks can occur in digital recordings as a result of
poorly concealed digital errors and timing problems.

Peak-related distortion, occurring as a result either of overload during
recording or wear and tear during playback, can give rise to a similar per-
ceived effect to clicks, but is really a different area which should receive
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separate attention, even though click removal systems can often go some
way towards alleviating the worst effects.

5.1 Modelling of clicks

Localised defects may be modelled in many different ways. For example, a
defect may be additive to the underlying audio signal, or it may replace the
signal altogether for some short period. An additive model has been found
to be acceptable for most surface defects in recording media, including
small scratches, dust and dirt. A replacement model may be appropriate
for very large scratches and breakages which completely obliterate any un-
derlying signal information, although such defects usually excite long-term
resonances in mechanical playback systems and must be treated differently
(see chapter 7). Here we will consider primarily the additive model, al-
though many of the results are at least robust to replacement noise.

An additive model for localised degradation can be expressed as:

yt = xt + it nt (5.1)

where xt is the underlying audio signal, nt is a corrupting noise process and
it is a 0/1 ‘switching’ process which takes the value 1 only when the localised
degradation is present. Clearly the value of nt is irrelevant to the output
when the switch is in position 0 and should thus be regarded only as a
conceptual entity which makes the representation of (5.1) straightforward.
The statistics of the switching process it thus govern which samples are
degraded, while the statistics of nt determine the amplitude characteristics
of the corrupting process.

The model is quite general and can account for a wide variety of noise
characteristics encountered in audio recordings. It assumes for the moment
that there is no continuous background noise degradation at locations where
it = 0. It assumes also that the degradation process does not interfere
with the timing content of the original signal, as observed in yt. This is
reasonable for all but very severe degradations, which might temporarily
upset the speed of playback, or actual breakages in the medium which have
been mechanically repaired (such as a broken disc recording which has been
glued back together).

Any procedure which is designed to remove localised defects in audio
signals must take account of the typical characteristics of these artefacts.
Some important features which are common to many click-degraded audio
media include:

• Degradation tends to occur in contiguous ‘bursts’ of corrupted sam-
ples, starting at random positions in the waveform and of random
duration (typically between 1 and 200 samples at 44.1 kHz sampling
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rates). Thus there is strong dependence between successive samples
of the switching process it, and the noise cannot be assumed to fol-
low a classical impulsive noise pattern in which single impulses occur
independently of each other (the Bernoulli model). It is considerably
more difficult to treat clusters of impulsive disturbance than single
impulses, since the effects of adjacent impulses can cancel each other
in the detection space (‘missed detections’) or add constructively to
give the impression of more impulses (‘false alarms’).

• The amplitude of the degradation can vary greatly within the same
recorded extract, owing to a range of size of physical defects. For ex-
ample, in many recordings the largest click amplitudes will be well
above the largest signal amplitudes, while the smallest audible de-
fects can be more than 40dB below the local signal level (depending
on psychoacoustical masking by the signal and the amount of back-
ground noise). This leads to a number of difficulties. In particular,
large amplitude defects will tend to bias any parameter estimation
and threshold determination procedures, leaving smaller defects un-
detected. As we shall see in section 5.3.1, threshold selection for some
detection schemes becomes a difficult problem in this case.

Many approaches are possible for the restoration of such defects. It is
clear, however, that the ideal system will process only on those samples
which are degraded, leaving the others untouched in the interests of fidelity
to the original source. Two tasks can thus be identified for a successful click
restoration system. The first is a detection procedure in which we estimate
the values of the noise switching process it, that is decide which samples
are corrupted. The second is an estimation procedure in which we attempt
to reconstruct the underlying audio data when corruption is present. A
method which assumes that no useful information about the underlying
signal is contained in the degraded samples will involve a pure interpola-
tion of the audio data based on the value of the surrounding undegraded
samples, while more sophisticated techniques will attempt in addition to
extract information from the degraded sample values using some degree of
explicit noise modelling.

5.2 Interpolation of missing samples

At the heart of most click removal methods is an interpolation scheme which
replaces missing or corrupted samples with estimates of their true value.
It is usually appropriate to assume that clicks have in no way interfered
with the timing of the material, so the task is then to fill in the ‘gap’
with appropriate material of identical duration to the click. As discussed
above, this amounts to an interpolation problem which makes use of the
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good data values surrounding the corruption and possibly takes account
of signal information which is buried in the corrupted sections of data. An
effective technique will have the ability to interpolate gap lengths from one
sample up to at least 100 samples at a sampling rate of 44.1kHz.

The interpolation problem may be formulated as follows. Consider N
samples of audio data, forming a vector x. The corresponding click-degraded
data vector is y, and the vector of detection values it is i (assumed known
for the time being). The audio data x may be partitioned into two sub-
vectors, one containing elements whose value is known (i.e. it = 0), denoted
by x

−(i), and the second containing unknown elements which are corrupted
by noise (it = 1), denoted by x(i). Consider, for example, the case where a
section of data of length l samples starting at sample number m is known to
be missing or irrevocably corrupted by noise. The data is first partitioned
into three sections: the unknown section x(i) = [xm, xm+1, . . . , xm+l−1]

T ,
the m samples to the left of the gap x

−(i)a = [x1, x2, . . . , xm−1]
T and the

remaining known samples to the right of the gap x
−(i)b = [xm+l, . . . , xN ]T :

x =
[

x
−(i)a

T x(i)
T x

−(i)b
T
]T

(5.2)

We then form a single vector of known samples x
−(i) =

[

x
−(i)a

T x
−(i)b

T
]T

.
For more complicated patterns of missing data a similar but more elabo-
rate procedure is applied to obtain vectors of known and unknown samples.
Vectors y and i are partitioned in a similar fashion. The replacement or
interpolation problem requires the estimation of the unknown data x(i),
given the observed (corrupted) data y. Interpolation will be a statistical
estimation procedure for audio signals, which are stochastic in nature, and
estimation methods might be chosen to satisfy criteria such as minimum
mean-square error (MMSE), maximum likelihood (ML), maximum a pos-
teriori (MAP) or some perceptually based criterion.

Numerous methods have been developed for the interpolation of cor-
rupted or missing samples in speech and audio signals. The ‘classical’ ap-
proach is perhaps the median filter [184, 151] which can replace corrupted
samples with a median value while retaining detail in the signal waveform.
A suitable system is described in [101], while a hybrid autoregressive predic-
tion/ median filtering method is presented in [143]. Median filters, however,
are too crude to deal with gap lengths greater than a few samples. Other
techniques ‘splice’ uncorrupted data from nearby into the gap [115, 152] in
such a manner that there is no signal discontinuity at the start or end of
the gap. These methods rely on the periodic nature of many speech and
music signals and also require a reliable estimate of pitch period.

The most effective and flexible methods to date have been model-based,
allowing for the incorporation of reasonable prior information about signal
characteristics. A good coverage is given by Veldhuis [192], and a number
of interpolators suited to speech and audio signals is presented. These are
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based on minimum variance estimation under various modelling assump-
tions, including sinusoidal, autoregressive and periodic.

We present firstly a general framework for interpolation of signals which
can be considered as Gaussian. There then follows a detailed description of
some of the more successful techniques which can be considered as special
cases of this general framework.

5.2.1 Interpolation for Gaussian signals with known
covariance structure

We derive firstly a general result for the interpolation of zero mean Gaussian
signals with known covariance matrix. Many of the interpolators presented
in subsequent sections can be regarded as special cases of this interpolator
with particular constrained forms for the covariance matrix. The case of
non-zero mean signals can be obtained as a straightforward extension of the
basic result, but is not presented here as it is not used by the subsequent
schemes.

Suppose that a block of N data samples x is partitioned according to
known and unknown samples x

−(i) and x(i). As indicated above, the un-
known samples can be specified at arbitrary positions in the block and not
necessarily as one contiguous missing chunk. We can express x in terms of
its known and unknown components as:

x = U x(i) + K x
−(i). (5.3)

Here U and K are ‘rearrangement’ matrices which reassemble x from the
partitions x(i) and x

−(i). U and K form a columnwise partition of the
(N ×N) identity matrix: U contains all the columns of I for which it = 1
while V contains the remaining columns, for which it = 0.

Then the PDFfor the unknown samples conditional upon the known
samples is given, using the conditional probability results of chapter 3, by:

p(x(i) | x−(i)) =
p(x)

p(x
−(i))

(5.4)

=
px(U x(i) + K x

−(i))

p(x
−(i))

(5.5)

Given the posterior distribution for the unknown samples we can now
design an estimator based upon some appropriate criterion. The MAP in-
terpolation, for example, is then the vector x(i) which maximises p(U x(i) +
K x

−(i)) for a given x
−(i), since the denominator term in (5.5) is a con-

stant. This posterior probability expression is quite general and applies to
any form of PDFfor the data vector x. For the case of Gaussian random
vectors it is well known that the MAP estimator corresponds exactly to
the MMSE estimator, hence we derive the MAP estimator as a suitable
general purpose interpolation scheme for Gaussian audio signals.
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The data block x is now assumed to be a random zero mean Gaussian
vector with autocorrelation matrix Rx = E[x xT ] which is strictly pos-
itive definite. Then p(x) is given by the general zero-mean multi-variate
Gaussian (A.2) as:

p(x) =
1

(2π)N/2 | Rx |1/2
exp

(

−1

2
xT Rx

−1x

)

(5.6)

Rewriting x as in (5.3) gives for two times minus the exponent:

xTRx
−1x = (U x(i) + K x

−(i))
TRx

−1(U x(i) + K x
−(i)) (5.7)

Since the exponential function is monotonically increasing in its argument,
the vector x(i) which minimises this term is the MAP interpolation. We can
use the results of vector-matrix differentiation to solve for the minimum,
which is given by:

xMAP

(i) = −M(i)(i)
−1M(i)−(i) x

−(i) (5.8)

where

M(i)(i) = UT Rx
−1U and M(i)−(i) = UT Rx

−1K (5.9)

are submatrices of Rx
−1 defined by the pre- and post-multipliers U and K.

These select particular column and row subsets of Rx
−1 according to which

samples of x are known or missing. It can readily be shown that this inter-
polator is also the minimum mean-square error linear interpolator for any
signal vector, Gaussian or non-Gaussian, with known finite autocorrelation
matrix.

Thus for a Gaussian signal an interpolation can be made based simply
on autocorrelation values up to lag N or their estimates. Wide-sense sta-
tionarity of the process would imply a Toeplitz structure on the matrix.
Non-stationarity could in principle be incorporated by allowing Rx to be
non-Toeplitz, hence allowing for an autocorrelation function which evolves
with time in some known fashion, although estimation of the non-stationary
autocorrelation function is a separate issue not considered here.

This interpolation scheme can be viewed as a possible practical interpo-
lation method in its own right, allowing for the incorporation of high lag
correlations which would not be accurately modelled in all but a very high
order AR model, for example. We have obtained some very impressive re-
sults with this interpolator in signals with significant long-term correlation
structure. The autocorrelation function is estimated from sections of un-
corrupted data immediately prior to the missing sections. We do however
require the inverse correlation matrix Rx

−1, which can be a highly com-
puter intensive calculation for largeN . In the stationary case the covariance
matrix is Toeplitz and its inverse can be calculated in O(N2) operations
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using Trench’s algorithm [86] (which is similar to the Levinson recursion),
but computational load may still be too high for many applications if N is
large.

We will see that several of the interpolators of subsequent sections are
special cases of this scheme with constrained forms substituted for Rx

−1.
In many of these cases the constrained forms for Rx

−1 will lead to spe-
cial structures in the solution, such as Toeplitz equations, which can be
exploited to give computational efficiency.

5.2.1.1 Incorporating a noise model

We have assumed in the previous section that the corrupted data sam-
ples are discarded as missing. However, there may be useful information
in the corrupted samples as well, particularly when the click amplitude is
very small, which can improve the quality of interpolation compared with
the ‘missing data’ interpolator. Re-examining our original model for click-
degraded samples,

yt = xt + it nt (5.10)

we see that the interpolation method described so far did not include a
model for the additive noise term nt and we have discarded all observed
samples for which it = 1. This can be remedied by including a model for
nt which represents the click amplitudes present on a particular recording
and performing interpolation conditional upon the complete vector y of ob-
served samples. The simplest assumption for the noise model is i.i.d. Gaus-
sian with variance σ2

v . The basic MAP interpolator is now modified to:

xMAP

(i)
= −

(

M(i)(i) +
1

σ2
v

I

)−1(

M(i)−(i) x
−(i) − 1

σ2
v

y(i)

)

(5.11)

We can see that this version of the interpolator now explicitly uses the
values of the corrupted samples y(i) in the interpolation. The assumption
of an i.i.d. Gaussian noise process for the click amplitudes is rather crude
and may lead to problems since the click amplitudes are generally drawn
from some heavy-tailed non-Gaussian distribution. Furthermore, we have
considered the noise variance σ2

v as known. However, more realistic non-
Gaussian noise modelling can be achieved by the use of iterative techniques
which maintain the Gaussian core of the interpolator in a similar form
to (5.11) while producing interpolations which are based upon the more
realistic heavy-tailed noise distribution. See chapter 12 and [83, 80, 82,
73, 72, 81] for the details of these noise models in the audio restoration
problem using Expectation-maximisation (EM) and Markov chain Monte
Carlo (MCMC) methods.

Noise models will be considered in more detail in the section on AR
model-based interpolators and the chapter on Bayesian click detection.
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5.2.2 Autoregressive (AR) model-based interpolation

An interpolation procedure which has proved highly successful is the au-
toregressive (AR) model-based method. This was devised first by Janssen
et al. [96] for the concealment of uncorrectable errors in CD systems, but
was independently derived and applied to the audio restoration problem
by Vaseghi and Rayner [190, 187, 191]. As for the general Gaussian case
above we present the algorithm in a matrix/vector notation in which the
locations of missing samples can be arbitrarily specified within the data
block through a detection switching vector i. The method can be derived
from least-squares (LS) or maximum a posteriori (MAP) principles and we
present both derivations here, with the least squares derivation first as it
has the simplest interpretation.

5.2.2.1 The least squares AR (LSAR) interpolator

Consider first a block of data samples x drawn from an AR process with
parameters a. As detailed in (4.52) and (4.53) we can write the excitation
vector e in terms of the data vector:

e = Ax (5.12)

= A(U x(i) + K x
−(i)) (5.13)

where x has been re-expressed in terms of its partition as before. We now
define A(i) = AU and A

−(i) = AK, noting that these correspond to a
columnwise partition of A corresponding to unknown and known samples,
respectively, to give:

e = A
−(i)x−(i) + A(i)x(i) (5.14)

The sum squared of the prediction errors over the whole data block is
given by:

E =

N
∑

n=P+1

e2n = eTe

The least squares (LS) interpolator is now obtained as the interpolated
data vector x(i) which minimises the sum squared prediction error E, since
E can be regarded as a measure of the goodness of ‘fit’ of the data to the
AR model. In other words, the solution is found as that unknown data
vector x(i) which minimises E:

xLS

(i)
= argmin

x(i)

{E}.
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E can be expanded and differentiated using standard vector-matrix cal-
culus to find its minimum:

E = eTe

∂E

∂x(i)

= 2eT ∂e

∂x(i)

= 2 (A
−(i)x−(i) + A(i)x(i))

T A(i) = 0

Hence, solving for x(i), we obtain:

xLS

(i)
= −(A(i)

TA(i))
−1A(i)

T A
−(i) x

−(i) (5.15)

This solution for the missing data involves solution of a set of l linear
equations, where l is the number of missing samples in the block. When
there are at least P known samples either side of a single contiguous burst
of missing samples the LSAR estimate can be efficiently realised in O(l2)
multiplies and additions using the Levinson-Durbin recursion [52, 86] since
the system of equations is Toeplitz. The computation is further reduced if
the banded structure of (A(i)

T A(i)) is taken into account. In more general
cases where missing samples may occur at arbitrary positions within the
data vector it is possible to exploit the Markovian structure of the AR
model using the Kalman Filter [5] by expressing the AR model in state
space form (see section 5.2.3.5).

5.2.2.2 The MAP AR interpolator

We now derive the maximum a posteriori (MAP) interpolator and show
that under certain conditions it is identical to the least squares interpolator.
If the autoregressive process for the audio data is assumed Gaussian then
(5.8) gives the required result. The inverse autocorrelation matrix of the
data, R−1

x , is required in order to use this result and can be obtained from
the results in appendix C as:

R−1
x =

M−1
x

σ2
e

=
1

σ2
e

(

ATA +

[

Mx0

−1 0
0 0

])

The required submatrices M(i)(i) and M(i)−(i) are thus:

M(i)(i) = UT Rx
−1U =

1

σ2
e

(

AT
(i)

A(i) + UT

[

Mx0

−1 0
0 0

]

U

)

and

M(i)−(i) = UT Rx
−1K =

1

σ2
e

(

AT
(i)A−(i) + UT

[

Mx0

−1 0
0 0

]

K

)
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Noting that the operation of pre-multiplying a matrix by UT is equiv-
alent to extracting the rows of that matrix which correspond to unknown
samples, we can see that the second term in each of these expressions be-
comes zero when there are no corrupted samples within the first P samples
of the data vector. In this case the least squares and MAP interpolators
are exactly equivalent to one another:

xMAP

(i)
= xLS

(i)
= −(A(i)

T A(i))
−1A(i)

TA
−(i) x

−(i)

This equivalence will usually hold in practice, since it will be sensible
to choose a data vector which has a reasonably large number of uncor-
rupted data points before the first missing data point if the estimates are
to be reliable. The least squares interpolator is found to perform poorly
when missing data occurs in the initial P samples of x, which can be ex-
plained in terms of its divergence from the true MAP interpolator under
that condition.

5.2.2.3 Examples of the LSAR interpolator

See figure 5.1 for examples of interpolation using the LSAR method applied
to a music signal. A succession of interpolations has been performed, with
increasing numbers of missing samples from left to right in the data (gap
lengths increase from 25 samples up to more than 100). The autoregressive
model order is 60. The shorter length interpolations are almost indistin-
guishable from the true signal (left-hand side of figure 5.1(a)), while the
interpolation is much poorer as the number of missing samples becomes
large (right-hand side of figure 5.1(b)). This is to be expected of any in-
terpolation scheme when the data is drawn from a random process, but
the situation can often be improved by use of a higher order autoregressive
model. Despite poor accuracy of the interpolant for longer gap lengths,
good continuity is maintained at the start and end of the missing data
blocks, and the signal appears to have the right ‘character’. Thus effective
removal of click artefacts in typical audio sources can usually be achieved.

5.2.2.4 The case of unknown AR model parameters

The basic formulation given in (5.15) assumes that the AR parameters
are known a priori . In practice we may have a robust estimate of the
parameters obtained during the detection stage (see section 5.3.1). This,
however, is strictly sub-optimal since it will be affected by the values of the
corrupted samples and we should perhaps consider interpolation methods
which treat the parameters as unknown a priori . There are various possible
approaches to this problem. The classical time series maximum likelihood
method would integrate out the unknown data x(i) to give a likelihood
function for just the parameters (including the excitation variance), which
can then be maximised to give the maximum likelihood solution:
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FIGURE 5.1. AR-based interpolation, P=60, classical chamber music, (a) short
gaps, (b) long gaps
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(a, σ2
e )ML = argmax

a,σ2
e

{

p(x
−(i)|a, σ2

e) =

∫

x(i)

p(x|a, σ2
e) dx(i)

}

.

The integral can be performed analytically for the Gaussian case either
directly or by use of the prediction error decomposition and the Kalman
filter (see section 4.4 and [91] for details). The maximisation would be per-
formed iteratively by use of some form of gradient ascent or the expectation-
maximisation (EM) algorithm [43] (see section 4.5). A simpler iterative ap-
proach, proposed by Janssen, Veldhuis and Vries [96], performs the follow-
ing steps until convergence is achieved according to some suitable criterion:

1. Initialise a and x(i)

2. Estimate a by least squares from x with the current estimate of x(i)

substituted.

3. Estimate x(i) by least squares interpolation using the current estimate
of a.

4. Goto 2.

This simple procedure is quite effective but sensitive to the initialisa-
tion and prone sometimes to convergence to local maxima. We note that
σ2

e does not appear as steps 2. and 3. are independent of its value. More
sophisticated approaches can be applied which are based upon Bayesian
techniques and allow for a prior distribution on the parameters. This so-
lution can again be obtained by numerical techniques, see chapter 12 and
[129, 168] for Bayesian interpolation methods using EM and Markov chain
Monte Carlo (MCMC) simulation.

In general it will not be necessary to perform an extensive iterative
scheme, since a robust initial estimate for the AR parameters can eas-
ily be obtained from the raw data, see e.g. [104, 123] for suitable methods.
One or two iterations may then be sufficient to give a perceptually high
quality restoration.

5.2.3 Adaptations to the AR model-based interpolator

The basic AR model-based interpolator performs well in most cases. How-
ever, certain classes of signal which do not fit the modelling assumptions
(such as periodic pulse-driven voiced speech) and very long gap lengths
can lead to an audible ‘dulling’ of the signal or unsatisfactory masking of
the original corruption. Increasing the order of the AR model will usually
improve the results; however, several developments to the method which
are now outlined can lead to improved performance in some scenarios.



5.2 Interpolation of missing samples 111

5.2.3.1 Pitch-based extension to the AR interpolator

Vaseghi and Rayner [191] propose an extended AR model to take account of
signals with long-term correlation structure, such as voiced speech, singing
or near-periodic music. The model, which is similar to the long term pre-
diction schemes used in some speech coders, introduces extra predictor
parameters around the pitch period T , so that the AR model equation is
modified to:

xt =

P
∑

i=1

xn−i ai +

Q
∑

j=−Q

xn−T−j bj + et, (5.16)

where Q is typically smaller than P . Least squares/ML interpolation using
this model is of a similar form to the standard LSAR interpolator, and pa-
rameter estimation is straightforwardly derived as an extension of standard
AR parameter estimation methods (see section 4.3.1). The method gives a
useful extra degree of support from adjacent pitch periods which can only
be obtained using very high model orders in the standard AR case. As a
result, the ‘under-prediction’ sometimes observed when interpolating long
gaps is improved. Of course, an estimate of T is required, but results are
quite robust to errors in this. Veldhuis [192, chapter 4] presents a special
case of this interpolation method in which the signal is modelled by one
single ‘prediction’ element at the pitch period (i.e. Q = 0 and P = 0 in the
above equation).

5.2.3.2 Interpolation with an AR + basis function representation

A simple extension of the AR-based interpolator modifies the signal model
to include some deterministic basis functions, such as sinusoids or wavelets.
Often it will be possible to model most of the signal energy using the de-
terministic basis, while the AR model captures the correlation structure of
the residual. The sinusoid + residual model, for example, has been applied
successfully by various researchers, see e.g. [169, 158, 165, 66]. The model
for xn with AR residual can be written as:

xn =

Q
∑

i=1

ciψi[n] + rn where rn =

P
∑

i=1

airn−i + en

Here ψi[n] is the nth element of the ith basis vector ψi and rn is the
residual, which is modelled as an AR process in the usual way. For example,
with a sinusoidal basis we might take ψ2i−1[n] = cos(ωinT ) and ψ2i[n] =
sin(ωinT ), where ωi is the ith sinusoid frequency. Another simple example
of basis functions would be a d.c. offset or polynomial trend. These can
be incorporated within exactly the same model and hence the interpolator
presented here is a means for dealing also with non-zero mean or smooth
underlying trends.
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Brass orchestral extract

FIGURE 5.2. Original (uncorrupted) audio extract
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FIGURE 5.3. Audio extract with missing sections (shown as zero amplitude)
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FIGURE 5.4. Sin+AR interpolated audio: dotted line - true original; solid line -
interpolated
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FIGURE 5.5. AR interpolated audio: dotted line - true original; solid line - in-
terpolated
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FIGURE 5.6. Comparison of both methods

If we assume for the moment that the set of basis vectors {ψi} is fixed
and known for a particular data vector x then the LSAR interpolator can
easily be extended to cover this case. The unknowns are now augmented
by the basis coefficients, {ci}. Define c as a column vector containing the
ci’s and a (N ×Q) matrix G such that x = Gc + r, where r is the vector
of residual samples. The columns of G are the basis vectors, i.e. G =
[ψ1 . . .ψQ]. The excitation sequence can then be written in terms of x and
c as e = A(x − Gc), which is the same form as for the general linear
model (see section 4.1). As before the solution can easily be obtained from
least squares, ML and MAP criteria, and the solutions will be equivalent
in most cases. We consider here the least squares solution which minimises
eTe as before, but this time with respect to both x(i) and c, leading to the
following estimate:

[

x(i)

c

]

=

[

AT
(i)

A(i) −AT
(i)

AG
−GTAT A(i) GT ATAG

]−1 [ −AT
(i)

A
−(i)x−(i)

GT ATA
−(i)x−(i)

]

(5.17)

This extended version of the interpolator reduces to the standard in-
terpolator when the number of basis vectors, Q, is equal to zero. If we
back-substitute for c in (5.17), the following expression is obtained for x(i)
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alone:

x(i) = −
(

A(i)
T
(

I − AG(GT AT AG)−1GTAT
)

A(i)

)−1

(

A(i)
TA

−(i) x
−(i) − A(i)AG(GT ATAG)−1GT ATA

−(i)x−(i)

)

These two representations are equivalent to both the maximum likelihood
(ML) and maximum a posteriori (MAP)1 interpolator under the same con-
ditions as the standard AR interpolator, i.e. that no missing samples occur
in the first P samples of the data vector. In cases where missing data does
occur in the first P samples, a similar adaptation to the algorithm can be
made as for the pure AR case. The modified interpolator involves some
extra computation in estimating the basis coefficients, but as for the pure
AR case many of the terms can be efficiently calculated by utilising the
banded structure of the matrix A.

We do not address the issue of basis function selection here. Multiscale
and ‘elementary waveform’ representations such as wavelet bases may cap-
ture the non-stationary nature of audio signals, while a sinusoidal basis is
likely to capture the character of voiced speech and the steady-state section
of musical notes. Some combination of the two may well provide a good
match to general audio. Procedures have been devised for selection of the
number and frequency of sinusoidal basis vectors in the speech and audio
literature [127, 45, 66] which involve various peak tracking and selection
strategies in the discrete Fourier domain. More sophisticated and certainly
more computationally intensive methods might adopt a time domain model
selection strategy for selection of appropriate basis functions from some
large ‘pool’ of candidates. A Bayesian approach would be a strong possi-
bility for this task, employing some of the powerful Monte Carlo variable
selection methods which are now available [65, 108]. Similar issues of iter-
ative AR parameter estimation apply as for the standard AR interpolator
in the AR plus basis function interpolation scheme.

5.2.3.2.1 Example: sinusoid+AR residual interpolation

As a simple example of how the inclusion of deterministic basis vectors can
help in restoration performance we consider the interpolation of a short
section of brass music, which has a strongly ‘voiced’ character, see figure
5.2. Figure 5.3 shows the same data with three missing sections, each of
length 100 samples. This was used as the initialisation for the interpola-
tion algorithm. Firstly a sinusoid + AR interpolation was applied, using
25 sinusoidal basis frequencies and an AR residual with order P = 15. The
algorithm used was iterative, re-estimating the AR parameters, sinusoidal
frequencies and missing data points at each step. The sinusoidal frequencies

1assuming a uniform prior distribution for the basis coefficients
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are estimated rather crudely at each step by simply selecting the 25 fre-
quencies in the DFT of the interpolated data which have largest magnitude.
The number of iterations was 5. Figure 5.4 shows the resulting interpolated
data, which can be seen to be a very effective reconstruction of the original
uncorrupted data. Compare this with interpolation using an AR model of
order 40 (chosen to match the 25+15 parameters of the sin+AR interpo-
lation), as shown in figure 5.5, in which the data is under-predicted quite
severely over the missing sections. Finally, a zoomed-in comparison of the
two methods over a short section of the same data is given in figure 5.6,
showing more clearly the way in which the AR interpolator under-performs
compared with the sin+AR interpolator.

5.2.3.3 Random sampling methods

A further modification to the LSAR method is concerned with the charac-
teristics of the excitation signal. We notice that the LSAR procedure seeks
to minimise the excitation energy of the signal, irrespective of its time
domain autocorrelation. This is quite correct, and desirable mathematical
properties result. However, figure 5.8 shows that the resulting excitation
signal corresponding to the corrupted region can be correlated and well
below the level of surrounding excitation. As a result, the ‘most probable’
interpolants may under-predict the true signal levels and be over-smooth
compared with the surrounding signal. In other words, ML/MAP proce-
dures do not necessarily generate interpolants which are typical for the
underlying model, which is an important factor in the perceived effect of
the restoration. Rayner and Godsill [161] have devised a method which
addresses this problem. Instead of minimising the excitation energy, we
consider interpolants with constant excitation energy. The excitation en-
ergy may be expressed as:

E = (x(i) − xLS

(i)
)T A(i)

TA(i) (x(i) − xLS

(i)
) + ELS, E > ELS, (5.18)

where ELS is the excitation energy corresponding to the LSAR estimate
xLS

(i) . The positive definite matrix A(i)
T A(i) can be factorised into ‘square

roots’ by Cholesky or any other suitable matrix decomposition [86] to give
A(i)

TA(i) = MTM, where M is a non-singular square matrix. A trans-
formation of variables u = M (x(i) − xLS

(i)) then serves to de-correlate the
missing data samples, simplifying equation (5.18) to:

E = uTu + ELS, (5.19)

from which it can be seen that the (non-unique) solutions with con-
stant excitation energy correspond to vectors u with constant L2-norm.
The resulting interpolant can be obtained by the inverse transformation
x(i) = M−1u + xLS

(i) .
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FIGURE 5.7. Original signal and excitation (P=100)
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(b) LSAR excitation sequence

FIGURE 5.8. LSAR interpolation and excitation (P = 100)
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(a) Sampled interpolation

550 600 650 700 750 800 850 900 950 1000 1050
−100

−50

0

50

100

sample number

am
pl

itu
de

(b) Sampled excitation sequence

FIGURE 5.9. Sampled AR interpolation and excitation (P=100)

One suitable criterion for selecting u might be to minimise the autocor-
relation at non-zero lags of the resulting excitation signal, since the exci-
tation is assumed to be white noise. This, however, requires a non-linear
minimisation, and a practical alternative is to generate u as Gaussian white
noise with variance (E − ELS)/l, where l is the number of corrupted sam-
ples. The resulting excitation will have approximately the desired energy
and uncorrelated character. A suitable value for E is the expected exci-
tation energy for the AR model, provided this is greater than ELS, i.e.
E = max(ELS, N σ2

e).
Viewed within a probabilistic framework, the case when E = ELS + lσ2

e ,
where l is the number of unknown sample values, is equivalent to drawing a
sample from the posterior density for the missing data, p(x(i) | x−(i),a, σ

2
e).

Figures 5.7-5.9 illustrate the principles involved in this sampled interpo-
lation method. A short section taken from a modern solo vocal recording
is shown in figure 5.7, alongside its estimated autoregressive excitation.
The waveform has a fairly ‘noise-like’ character, and the corresponding ex-
citation is noise-like as expected. The standard LSAR interpolation and
corresponding excitation is shown in figure 5.8. The interpolated section
(between the dotted vertical lines) is reasonable, but has lost the random
noise-like quality of the original. Examination of the excitation signal shows
that the LSAR interpolator has done ‘too good’ a job of minimising the
excitation energy, producing an interpolant which, while optimal in a mean-
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square error sense, cannot be regarded as typical of the autoregressive pro-
cess. This might be heard as a momentary change in sound quality at the
point of interpolation. The sampling-based interpolator is shown in figure
5.9. Its waveform retains the random quality of the original signal, and like-
wise the excitation signal in the gap matches the surrounding excitation.
Hence the sub-optimal interpolant is likely to sound more convincing to
the listener than the LSAR reconstruction.

Ó Ruanaidh and Fitzgerald [146, 166] have successfully extended the
idea of sampled interpolates to a full Gibbs’ Sampling framework [64, 63] in
order to generate typical interpolates from the marginal posterior density
p(x(i) | x

−(i)). The method is iterative and involves sampling from the
conditional posterior densities of x(i), a and σ2

e in turn, with the other
unknowns fixed at their most recent sampled values. Once convergence has
been achieved, the interpolation used is the last sampled estimate from
p(x(i) | x

−(i),a, σ
2
e). See chapter 12 for a more detailed description and

extensions to these methods.

5.2.3.4 Incorporating a noise model

If we incorporate an i.i.d. Gaussian noise model as in (5.11) then the mod-
ified AR interpolator, assuming no corrupted samples within the first P
elements of y, is:

xMAP

(i) = −
(

A(i)
TA(i) +

σ2
e

σ2
v

I

)−1(

A(i)
T A

−(i) x−(i) − σ2
e

σ2
v

y(i)

)

, (5.20)

(see chapter 9), where σ2
v is the variance of the corrupting noise, which is

assumed independent and Gaussian. This interpolator has been found to
give higher perceived restoration quality, particularly in the case of clicks
with small amplitude. The assumed model and the resulting interpolator
form a part of the Bayesian restoration schemes discussed in chapters 9-
12. With this form of interpolator we now have the task of estimating the
(unknown) noise variance σ2

v in addition to the AR parameters and the
excitation variance σ2

e . This can be performed iteratively within the same
type of framework as for the standard AR interpolator (section 5.2.2.4) and
details of EM and MCMC based methods can be found in [83, 80, 82, 73,
72, 81, 129] and chapter 12.

5.2.3.5 Sequential methods

The preceding algorithms all operate in a batch mode; that is, a whole
vector of data is processed in one single operation. It will often be more
convenient to operate in a sequential fashion, at each step inputing one new
data point and updating our interpolation in the light of the information
given by the new data point. The Kalman filter (see section 4.4) can be
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used to achieve this. We first write the AR model in state space form:

yn = Znαn + un

αn+1 = Tαn +Hen

where

αn =
[

xn xn−1 xn−2 . . . xn−P+1

]T

T =















a1 a2 . . . aP

1 0 . . . 0
0 1 . . . 0
...

. . .
. . . 0

0 0 . . . 1















H =
[

1 0 . . . 0
]T

Here as before for the Kalman filter we have dropped our usual bold-face
notation for matrices and vectors for the sake of simplicity, the dimension-
ality of each term being clear from its definition.

We allow the term Zn to be time dependent in order to account for
missing observations in a special way. For an uncorrupted data sequence
with no missing data, Zn = HT for all n and the variance of un is zero,
i.e. all the data points are exactly observed without error. For the case of a
discarded or missing data point, we can set yn = 0 and Zn = 0 to indicate
that the data point is not observed. The standard Kalman filter can then
be run across the entire data sequence, estimating the states αn (and hence
the interpolated data sequence xn) from the observed data y0, . . . , yn. The
recursion is summarised as:

1. Initialise: a0, P0.

2. Repeat for n = 1 to N :

(a) Prediction:

an|n−1 = Tan−1

Pn|n−1 = TPn−1T
T + Hσ2

eH
T

(b) Correction:

an = an|n−1 + Kn(yn − Znan|n−1)

Pn = (I −KnZn)Pn|n−1

where

Kn = Pn|n−1Z
T
n (ZnPn|n−1Z

T
n + E[u2

n])−1 (Kalman Gain)
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The observation noise variance E[u2
n] is zero for the missing data case

considered so far, but we leave it in place for later inclusion of a Gaussian
observation noise model. Assuming the AR model to be stable, the initiali-
sation is given by a0 = E[α0] = 0 and P0 = E[α0α

T
0 ], where the latter term

is the covariance matrix for P samples of the AR process (see appendix C).
Note that many of the calculations in this recursion are redundant and
can be eliminated by careful programming, since we know immediately
that xn = yn for any uncorrupted samples with in = 0. This means that
elements of Pm which involve such elements xn can immediately be set
to zero. Taking account of this observation the Kalman filter becomes a
computationally attractive means of performing interpolation, particularly
when missing samples do not occur in well spaced contiguous bursts so that
the Toeplitz structure is lost in the batch based AR interpolator.

A straightforward sequential interpolator would extract at each time
point the last element of an, which equals E[xn−P+1|y1, . . . , yn], since this
is the element with the greatest degree of ‘lookahead’ or ‘smoothing’. This
degree of lookahead may not be sufficient, especially when there are long
bursts of corrupted samples in the data. To overcome the problem an aug-
mented state space model can be constructed in which extra lagged data
points are appended to the state αn. The Kalman filter equations retain
the same form as above but interpolation performance is improved, owing
to the extra lookahead in the estimated output.

We have shown how to implement a sequential version of the basic AR
interpolator. By suitable modifications to the state transition and observa-
tion equations, which we do not detail here, it is possible also to implement
using the Kalman filter all of the subsequent modifications to the AR in-
terpolator discussed in later sections of the chapter, including the sampled
versions and the AR plus basis function version.

5.2.3.5.1 The Kalman Smoother

The Kalman filter may also be used to perform efficient batch-based inter-
polation. The filter is run forwards through the data exactly as above, but is
followed by a backwards ‘smoothing’ pass through the data. The smooth-
ing pass is a backwards recursion which calculates E[αn|y1, . . . , yN ] for
n = N − 1, N − 2, . . . 1, i.e. the estimate of the state sequence conditional
upon the whole observed data sequence. We do not give the details of the
smoother here but the reader is referred for example to the texts by Ander-
son and Moore [5] and Harvey [91]. It should be noted that the results of
such a procedure are then mathematically identical to the standard batch
based AR interpolation.
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5.2.3.5.2 Incorporating a noise model into the Kalman filter

We have assumed thus far that the observation noise is always zero, i.e.
E[u2

n] = 0. If we allow this term to be non-zero then a Gaussian noise model
can be incorporated, exactly as for the batch based algorithms. Setting
Zn = HT for all n, E[u2

n] = 0 when it = 0 and E[u2
n] = σ2

v when it = 1
achieves the same noise model as in section 5.2.3.4. Interpolators based
upon other noise models which allow some degree of noise at all sampling
instants can be used to remove background noise and clicks jointly. These
ideas have been applied in [141, 142] and will be returned to in the chapters
concerning Bayesian restoration.

5.2.4 ARMA model-based interpolation

A natural extension to the autoregressive interpolation models is the au-
toregressive moving-average (ARMA) model (see section 4.2). In this model
we extend the AR model by including a weighted sum of excitation samples
as well as the usual weighted sum of output samples:

xt =
P
∑

i=1

aixn−i +

Q
∑

j=0

bjen−j

with b0 = 1. Here the {bi} are the moving-average (MA) coefficients, which
introduce zeros into the model as well as poles. This can be expected to
give more accurate modelling of the spectral shape of general audio signals
with fewer coefficients, although it should be noted that a very high order
AR model can approximate any ARMA model arbitrarily well.

In this section we present an interpolator for ARMA signals which is
based on work in a recent M.Eng. dissertation by Soon Leng Ng [140]. We
adopt a MAP procedure, since the probability of the initial state vector is
more crucial in the ARMA case than in the pure AR case. In principle we
can express the ARMA interpolator for Gaussian signals within the earlier
framework for Gaussian signals with known correlation structure, but there
is some extra work involved in the calculation of the inverse covariance
matrix for the ARMA case [21]. In order to obtain this covariance matrix
we re-parameterise the ARMA process in terms of a ‘latent’ AR process
{un} cascaded with a moving-average filter:

un =

P
∑

i=1

aiun−i + en (5.21)

xn =

Q
∑

j=0

bjun−j (5.22)

A diagrammatic representation is given in figure 5.10.
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Order P

en un MAAR
Order Q

xn

FIGURE 5.10. Equivalent version of ARMA model

The derivation proceeds by expressing the probability for {xt} in terms
of the probability of {un}, which we already have since it is an AR pro-
cess. The linear transformation implied by (5.22) has unity Jacobian and
hence the result is achieved by a straightforward change of variables. We
then need only to account for the initial values of the latent process u0 =
[u−P+1 · · · u−1 u0]

T which is carried out using the results of appendix
C. Similar calculations can be found in time series texts, see e.g. [21, Ap-
pendix A7.3], although Box et al. derive their likelihoods in terms of initial
states of both AR and MA components whereas we show that only the AR
initial conditions are required. We then proceed to derive the MAP data
interpolator in a similar fashion to the AR case.

For a data block with N samples equations (5.21) and (5.22) can be
expressed in matrix form as follows:

e = Au (5.23)

x = Bu (5.24)

where:

x = [x1 · · · xN ]T , e=[e1 · · · eN ]T , (5.25)

u = [u−P+1 · · · u−1 u0 u1 · · · uN ]T , (5.26)

A is the N×(N+P) matrix :

A=











−aP · · · −a1 1 0 · · · 0
0 −aP · · · −a1 1 0 . . .
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −aP · · · −a1 1











(5.27)

and B is the N×(N+P) matrix:

B =



















0 · · · 0 bQ · · · b1 b0 0 · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 · · · 0 bQ · · · b1 b0 0 · · · 0
0 0 · · · 0 · · · 0 bQ · · · b1 b0 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 0 · · · 0 · · · 0 bQ · · · b1 b0



















(5.28)
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Suppose that u is partitioned into u0, which contains the first P samples,
and u1 which contains the remaining N samples:

u0 = [u−P+1 u−P+2 · · · u0]
T (5.29)

u1 = [u1 u2 · · · uN ]T (5.30)

We can now partition the equations for e and x correspondingly:

e = A0u0 + A1u1 (5.31)

x = B0u0+B1u1 (5.32)

where A = [A0 A1] and B = [B0 B1] are columnwise partitions of A and
B.

B1 is invertible since it is a lower triangular square matrix and b0 = 1.
Thus we can rewrite equation (5.32) as:

u1 = B−1
1 (x − B0u0) (5.33)

and back-substitute into (5.31) to give:

e = Cu0 + Dx (5.34)

where

C=A0 −A1B
−1
1 B0 and D=A1B

−1
1 (5.35)

The probability of u1 given u0, the conditional probability for the latent
AR process (see appendix C), is:

p(u1|u0) ∝ exp

(

− 1

2σ2
e

eTe

)
∣

∣

∣

∣

e=Au

(the conditioning upon ARMA parameters a and b is implicit from here
on). Since B1 is lower triangular with unity diagonal elements (b0 = 1)
the Jacobian of the transformation from u1 to x conditioned upon u0, as
defined by (5.33), is unity and we can write immediately:

p(x|u0) ∝ exp

(

− 1

2σ2
e

eTe

)∣

∣

∣

∣

e=Cu0+Dx

We have also the probability of u0, again from appendix C:

p(u0) ∝ exp

(

− 1

2σ2
e

uT
0 M−1

0 u0

)

where M0 is the covariance matrix for P samples of the AR process with
unity excitation variance. Hence the joint probability is:

p(x,u0) = p(x|u0)p(u0)

∝ exp

(

− 1

2σ2
e

(

(Cu0 + Dx)T (Cu0 + Dx) + uT
0 M−1

0 u0

)

)

.
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p(x) is now obtained by integration over the unwanted component u0:

p(x) =

∫

u0

p(x,u0)du0

∝ exp

(

− 1

2σ2
e

(

xTDT (I − C(CT C + M−1
0 )−1CT )Dx

)

)

where the integral is performed using the multivariate Gaussian integral
result (see appendix A.5). The resulting distribution is multivariate Gaus-
sian, as expected, and by comparison with the general case (A.2) we obtain
the inverse covariance matrix as:

σ2
eR

−1
x = DT (I − C(CTC + M−1

0 )−1CT )D

We can now substitute this expression for the inverse covariance matrix
into the general expression of equation (5.8) to find the MAP ARMA in-
terpolator. The interpolation involves significantly more calculations than
the AR-based interpolator (equation 5.15) although it should be noted that
calculation of B−1

1 , which is required in (5.35), takes only NQ/2 flops since
B1 is Toeplitz, banded and lower triangular. Furthermore, many of the
matrix multiplication operations such as A1 can be realised using simple
filtering operations. There is always, however, the overhead of inverting the
(P × P ) matrix (CT C + M−1

0 ).
As an alternative to the batch based method outlined above, the ARMA

interpolator can be realised sequentially using the Kalman filter in a very
similar way to the AR case (see section 5.2.3.5). The ARMA model can
be expressed in state space form (see e.g. [5, 91]) and having done so the
Kalman filter recursions follow exactly as before on the modified state space
model.

5.2.4.1 Results from the ARMA interpolator

5.2.4.1.1 Synthetic ARMA process

The performance of the ARMA model-based interpolator is evaluated here
using two audio signals, each of length roughly 10 seconds: a piece of fast
moving piano music (‘fast’) and a section of solo vocal singing (‘diner’).
Both signals were sampled at 44.1 kHz and sections of data were removed
at periodic intervals from the original signal. Each missing section was 50
samples long and approximately 10% of the data was removed. The AR
interpolator assumed an AR order of 15 while the ARMA interpolator as-
sumed an ARMA order of (15, 5). The model parameters in both cases were
estimated using MATLAB’s in-built ARMA function ‘armax’ operating on
the uncorrupted input data, allowing the parameters to change once every
1000 data points. The mean squared error (MSE) and maximum absolute
deviation (MAD) in each section were calculated and the average values
are tabulated in table 5.1.
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Signal Average Average
MSE MAD

‘fast’ AR 6.6428×105 923.74
ARMA 6.4984×105 911.26

‘diner’ AR 3.6258×105 844.52
ARMA 3.0257×105 790.59

TABLE 5.1. Comparison of error performance for tracks ‘fast’ and ‘diner’.

The errors show that the ARMA interpolator performs better than the
LSAR interpolator for both types of audio signals under these conditions,
although the difference is by no means dramatic. The signals restored by the
ARMA interpolator were also subjectively evaluated by informal listening
tests and in both cases the differences from the original (clean) audio signals
were almost inaudible, but the differences between the two interpolation
methods were also extremely subtle. These results indicate that it may not
be worthwhile using extra computation to interpolate using ARMA models.

5.2.5 Other methods

Several transform-domain methods have been developed for click replace-
ment. Montresor, Valière and Baudry [135] describe a simple method for
interpolating wavelet coefficients of corrupted audio signals, which involves
substituting uncorrupted wavelet coefficients from nearby signal according
to autocorrelation properties. This, however, does not ensure continuity of
the restored waveform and is not a localised operation in the signal do-
main. An alternative method, based in the discrete Fourier domain, which
is aimed at restoring long sections of missing data is presented by Maher
[118]. In a similar manner to the sinusoidal modelling methods of McAulay
and Quatieri [126, 158, 127], this technique assumes that the signal is com-
posed as a sum of sinusoids with slowly varying frequencies and amplitudes.
Spectral peak ‘tracks’ from either side of the gap are identified from the
Discrete Fourier Transform (DFT) of successive data blocks and interpo-
lated in frequency and amplitude to generate estimated spectra for the
intervening material. The inverse DFTs of the missing data blocks are then
inserted back into the signal. The method is reported to be successful for
gap lengths of up to 30ms, or well over 1000 samples at audio sampling
rates. A method for interpolation of signals represented by the multiple
sinusoid model is given in [192, Chapter 6].

Godsill and Rayner [77, 70] have derived an interpolation method which
operates in the frequency domain. This can be viewed as an alternative to
the LSAR interpolator (see section 5.2.2) in which power spectral density
(PSD) information is directly incorporated in the frequency domain. Real
and imaginary DFT components are modelled as independent Gaussians
with variance proportional to the PSD at each frequency. These assump-
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tions of independence are known to hold exactly for periodic random pro-
cesses [173], so the method is best suited to musical signals with strongly
tonal content which are close to periodic. The method can, however, also
be used for other stationary signals provided that a sufficiently long block
length is used (e.g. 500-2000 samples) since the assumptions also improve
as block length increases [148]. The Maximum a posteriori solution is of a
similar form and complexity to the LSAR interpolator, and is potentially
useful as an alternative to the other methods when the signal has a quasi-
periodic or tonal character. A robust estimate is required for the PSD, and
this can usually be obtained through averaged DFTs of the surrounding
clean data, although iterative methods are also possible, as in the case of
the LSAR estimator.

5.3 Detection of clicks

In the last section we discussed methods for interpolation of corrupted
samples. All of these methods assumed complete knowledge of the position
of click-type corruption in the audio waveform. In practice of course this
information is completely unknown a priori and some kind of detection
procedure must be applied in order to extract the timing of the degradation.
There are any number of ways by which click detection can be performed,
ranging from entirely ad hoc filtering methods through to model based
probabilistic detection algorithms, as described in later chapters. In this
section we describe some simple techniques which have proved extremely
effective in most gramophone environments. The discussion cannot ever
be complete, however, as these algorithms are under constant development
and it is always possible to devise some clever trick which will improve
slightly over the current state of the art!

Click detection for audio signals involves the identification of samples
which are not drawn from the underlying clean audio signal; in other words
they are drawn from some spurious ‘outlier’ distribution. There are close
relationships between click detection and work in robust parameter esti-
mation and treatment of outliers in data analysis, from fields as diverse as
medical signal processing, underwater signal processing and statistical data
analysis. In the statistical field in particular there has been a vast amount
of work in the treatment of outliers (see e.g. [13, 12] for extensive review
material, and further references in the later chapters on statistical click
removal techniques). Various criteria for detection are possible, including
minimum probability of error and related concepts, but strictly speaking
the aim of any audio restoration scheme is to remove only those artefacts
which are audible to the listener. Any further processing is not only un-
necessary but will increase the chance of distorting the perceived signal
quality. Hence a truly optimal system should take into account the trade-
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off between the audibility of artefacts and perceived distortion as a result
of processing, and will involve consideration of complex psychoacoustical
effects in the human ear (see e.g. [137]). Such an approach, however, is dif-
ficult both to formulate and to realise, so we limit discussion here only to
criteria which are currently well understood in a mathematical sense. This
is not to say that new algorithms should not strive to attain the higher
target of a perceptually optimal restoration.

The simplest click detection methods involve a high-pass filtering oper-
ation on the signal, the assumption being that most audio signals contain
little information at high frequencies, while clicks, like impulses, have spec-
tral content at all frequencies. Clicks are thus enhanced relative to the
signal by the high-pass filtering operation and can easily be detected by
thresholding the filtered output. The method has the advantage of being
simple to implement and having no unknown system parameters (except
for a detection threshold). This principle is the basis of most analogue de-
clicking equipment [34, 102] and some simple digital click detectors [101].
Of course, the method will fail if the audio signal itself has strong high fre-
quency content or the clicks are band-limited. Along similar lines, wavelets
and multiresolution methods in general [3, 37, 38] have useful localisation
properties for singularities in signals (see e.g. [120]), and a Wavelet filter
at a fine resolution can be used for the detection of clicks. Such methods
have been studied and demonstrated successfully by Montresor, Valière et
al. [185, 135].

Other methods attempt to incorporate prior information about signal
and noise into a model-based detection procedure. We will focus upon such
methods since we believe that the best results can be achieved through
the use of all the prior information which is available about the problem.
We will describe techniques based upon AR modelling assumptions for the
audio signal, the principles of which can easily be extended to some of the
other models already encountered.

5.3.1 Autoregressive (AR) model-based click detection

Techniques for detection and removal of impulses from autoregressive (AR)
signals have been developed in other fields of signal processing from robust
filtering principles (see e.g. [9, 53]). These methods apply non-linear func-
tions to the autoregressive excitation sequence in order to make parameter
estimates robust in the presence of impulses and allow detection of im-
pulses.

Autoregressive detection methods in the audio restoration field origi-
nated with Vaseghi and Rayner [190, 187, 191]. A sub-frame of the under-
lying audio data {xt; t = 1, ..., N} is assumed to be drawn from a short-term
stationary autoregressive (AR) process, as for the AR-based interpolators
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FIGURE 5.11. Click-degraded Music Waveform taken from 78rpm recording
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FIGURE 5.12. AR-based detection for above waveform, P=50. (a) Prediction
error filter (b) Matched filter.
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of the previous section:

xt =
P
∑

i=1

aixn−i + et

The prediction error et should take on small values for most of the time,
especially if Gaussian assumptions can be made for {et}. Now, consider
what happens when an impulse replaces the signal. Of course the impulse
will be unrelated to the surrounding signal values and it is likely to cause
a large error if an attempt is made to predict its value from the previous
values of xt. Hence, if we apply the inverse AR filter to an impulse-corrupted
AR signal yt and observe the output prediction error sequence εt = yt −
∑P

i=1 aiyn−i we can expect large values at times when impulses are present
and small values for the remainder of the time. This is the basic principle
behind the simple AR model-based detectors.

If we suppose that the AR parameters and corresponding prediction error
variance σ2

e are known, then a possible detection scheme would be:

For n = 1 to N

1. Calculate prediction error: εt = yt −
∑P

i=1 aiyn−i

2. if |εt| > kσe then it = 1, else it = 0

end

Here k is a detection threshold which might be set to around 3 if we
believed the excitation {et} to be Gaussian and applied the standard ‘3σ’
rule for detection of unusual events. it is a binary detection indicator as
before.

In practice the AR model parameters a and the excitation variance σ2
e

are unknown and must be estimated from the corrupted data yt using some
procedure robust to impulsive noise. Robust methods for this estimation
procedure are well-known (see e.g. [95, 139, 123]) and can be applied here,
at least to give initial estimates of the unknown parameters. The detec-
tion process can then be iterated a few times if time permits, each time
performing interpolation of the detected samples and re-estimation of the
AR parameters from that restored output. The whole process can be re-
peated frame by frame through an entire track of audio material, leading
to a click-reduced output.
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5.3.1.1 Analysis and limitations

Some basic analysis of the AR detection method is instructive. Substituting
for yt from (5.1) using (4.41) gives:

εt = et + it nt −
P
∑

i=1

it−i nt−i ai (5.36)

which is composed of the true signal excitation et and a weighted sum of
present and past impulsive noise values. If {xt} is zero mean and has vari-

ance σ2
x then et is white noise with variance σ2

e = 2π
σ2

x
∫ π

−π
1

|A(ejθ)|2
dθ

, where

A(z) = 1−∑P
i=1 aiz

−i. The reduction in power here from signal to excita-
tion can be 40dB or more for highly correlated audio signals. Consideration
of (5.36), however, shows that a single impulse contributes the impulse re-
sponse of the prediction error filter, weighted by the impulse amplitude,
to the detection signal εt, with maximum amplitude corresponding to the
maximum in the impulse response. This means that considerable ampli-
fication of the impulse relative to the signal can be achieved for all but
uncorrelated, noise-like signals. It should be noted, however, that this am-
plification is achieved at the expense of localisation in time of the impulse,
whose effect is now spread over P + 1 samples of the detection signal εt.
This will have adverse consequences when a number of impulses is present
in the same vicinity, since their impulse responses may cancel one another
out or add constructively to give false detections . More generally, threshold
selection will be troublesome when impulses of widely differing amplitudes
are present, since a low threshold which is appropriate for very small clicks
will lead to false detections in the P detection values which follow a large
impulse.

Detection can then be performed by thresholding |εt| to identify likely
impulses. Choice of threshold will depend upon the AR model, the variance
of {et} and the size of impulses present, and will reflect trade-offs between
false and missed detection rates. Optimal thresholds can be obtained under
certain assumptions for the noise and signal statistics, see [69, appendix H],
but will in more general conditions be a difficult issue. See figure 5.12(a) for
a typical example of the detection prediction error εt obtained using this
method, which shows how the impulsive interference is strongly amplified
relative to the signal component.

5.3.1.2 Adaptations to the basic AR detector

As the previous discussion will have indicated, the most basic form of AR
detector described thus far is far from ideal. Depending upon the threshold
chosen it will either leave a residual click noise behind or it will cause
perceptual damage to the underlying audio signal. A practical scheme will
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have to devise improvements aimed at overcoming the limitations discussed
above. We do not detail the precise structure of such an algorithm as most
of the ideas are ad hoc, but rather point out some areas where improvements
can be achieved:

• Clicks occur as ‘bursts’ of corruption. It is very rare for a single
impulse to occur in the corrupted waveform. It is much more common
for clicks to have some finite width, say between 5 and 100 samples
at 44.1kHz sampling rates. This would correspond to the width of
the physical scratch or irregularity in the recorded medium. Hence
improvements can be achieved by allowing a ‘buffer’ zone of a few
samples both before and after the clicks detected as above. There
are many ways for achieving this, including pre- and post-filtering of
the prediction error or the detection vector with a non-linear ‘pulse
broadening’ filter.

• Backward prediction error. Very often a good estimate can be
obtained for the position of the start of a click, but it is more diffi-
cult to distinguish the end of a click, owing in part to the forward
‘smearing’ effect of the prediction error filter (see figure 5.12(a)). This
can be alleviated somewhat by using information from the backward
prediction error εbt :

εbt = yt −
P
∑

i=1

aiyn+i

εbt can often give clean estimates of the end point of a click, so some
appropriate combination of εt and εbt will improve detection capabil-
ity.

5.3.1.3 Matched filter detector

An adaptation of the basic AR detection method, also devised by Vaseghi
and Rayner, considers the impulse detection problem from a matched fil-
tering perspective [186]. The ‘signal’ is the impulse itself, while the autore-
gressive audio data is regarded as coloured additive noise. The prediction
error filter described above can then be viewed as a pre-whitening stage for
the autoregressive noise, and the full matched filter is given by A(z)A(z−1),
a non-causal filter with 2P + 1 coefficients which can be realised with P
samples of lookahead. The matched filtering approach provides additional
amplification of impulses relative to the signal, but further reduces localisa-
tion of impulses for a given model order. Choice between the two methods
will thus depend on the range of click amplitudes present in a particular
recording and the degree of separation of individual impulses in the wave-
form. See figure 5.12(b) for an example of detection using the matched
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filter. Notice that the matched filter has highlighted a few additional im-
pulse positions, but at the expense of a much more ‘smeared’ response
which will make accurate localisation of the clicks more difficult. Hence the
prediction-error detector is usually preferred in practice.

Both the prediction error detection algorithm and the matched filtering
algorithm are efficient to implement and can be operated in real time using
DSP microprocessors. Results of a very high standard can be achieved if
a careful strategy is adopted for extracting the precise click locations from
the detection signal.

5.3.1.4 Other models

The principles of the AR-based detector can be extended to some of the
other audio models which were used for interpolation. For example, an
ARMA model can easily replace the AR model in the detection step by
applying the inverse ARMA model to the corrupted data in place of the
AR prediction error filter. We have found that this can give improved lo-
calisation of clicks, although it must of course be ensured that the ARMA
model is itself invertible. The advantages of the sin+AR residual model
can also be exploited by performing AR-based detection directly on the
estimated AR residual. This can give a greater sensitivity to small clicks
and crackles than is obtainable using the standard AR-based detector and
also prevents some signal-damaging false alarms in the detection process.

5.4 Statistical methods for the treatment of clicks

The detection and replacement techniques described in the preceding sec-
tions can be combined to give very successful click concealment, as demon-
strated by a number of research and commercial systems which are now
used for the re-mastering of old recordings. However, some of the difficulties
outlined above concerning the ‘masking’ of smaller defects by large defects
in the detection process, the poor time localisation of some detectors in
the presence of impulse ‘bursts’ and the inadequate performance of exist-
ing interpolation methods for certain signal categories, has led to further
research which considers the problem from a more fundamental statistical
perspective [76, 79, 83, 82]. These methods model explicitly both signal and
noise sources, using rigorous statistical methods to perform more accurate
and robust removal of clicks. The basis of these techniques can be found
in chapters 9 - 12. The same framework may be extended to perform joint
removal of clicks and background noise in one single procedure, and some
recent work on this problem can be found in [81] for autoregressive signals
and in [72, 73] for autoregressive moving-average (ARMA) signals.

A fully model based statistical methodology for treatment of audio de-
fects (not just clicks and crackles) has many advantages. One significant
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drawback, however, is the increase in computational requirements which re-
sults from the more sophisticated treatment. This becomes less of a problem
as the speed and memory size of computer systems improves.

5.5 Discussion

In this chapter we have seen many possible methods for interpolation and
detection of clicks in audio signals. The question remains as to which can
be recommended in the practical situation. In answer to this it should
be noted that all of the methods given have their advantages for particular
types of signal, but that not all will perform well with audio signals in their
generality; this is because some of the models used are aimed at signals
of a particular type, such as periodic or pitch-based. The most generally
applicable of the methods are the autoregressive (AR) based techniques,
which can be applied quite successfully to most types of audio. The basic
AR scheme can, however, lead to audible distortion of strongly ‘voiced’
musical extracts such as brass and vocal music. We now briefly summarise
the benefits and drawbacks of the other techniques described in the chapter.

The pitch based adaptation of the basic AR scheme can give consider-
ably better reconstructions of pitched voice and instrumental waveforms,
but requires a robust estimate of the pitch period and may not be success-
ful in unvoiced sections. The AR + basis function interpolators are more
generally applicable and a simple choice of sinusoidal basis leads to suc-
cessful results and improved detection compared with a pure AR model.
Random sampling methods as outlined here lead to a modest improvement
in interpolation of long gap lengths. They are more important, however,
as the basis of some of the more sophisticated statistical methods of later
chapters. The same comments apply to the interpolation methods which in-
corporate a noise model. Sequential methods using the Kalman filter can be
applied to all of the models considered in the chapter and are an implemen-
tational detail which may be important in certain real time applications.
The ARMA model has been found to give some improvements in detection
and interpolation, but the small improvements probably do not justify the
extra computational load.

Statistical methods were briefly mentioned in the chapter and will be
considered in more detail in chapters 9 - 12. These methods employ explicit
models of both the signal and degradation process, which allows a rigorous
model-based methodology to be applied to both detection and interpolation
of clicks. We believe that methods such as these will be a major source of
future advances in the area of click treatment.
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6

Hiss Reduction

Random additive background noise is a form of degradation common to all
analogue measurement, storage and recording systems. In the case of audio
signals the noise, which is generally perceived as ‘hiss’ by the listener, will
be composed of electrical circuit noise, irregularities in the storage medium
and ambient noise from the recording environment. The combined effect of
these sources will generally be treated as one single noise process, although
we note that a pure restoration should strictly not treat the ambient noise,
which might be considered as a part of the original ‘performance’. Random
noise generally has significant components at all audio frequencies, and thus
simple filtering and equalisation procedures are inadequate for restoration
purposes.

Analogue tape recordings typically exhibit noise characteristics which
are stationary and for most purposes white. At the other end of the scale,
many early 78rpm and cylinder recordings exhibit highly non-stationary
coloured noise characteristics, such that the noise can vary considerably
within each revolution of the playback system. This results in the charac-
teristic ‘swishing’ effect associated with some early recordings. In recording
media which are also affected by local disturbances, such as clicks and low
frequency noise resonances, standard practice is to restore these defects
prior to any background noise treatment.

Noise reduction has been of great importance for many years in engi-
neering disciplines. The classic least-squares work of Norbert Wiener [199]
placed noise reduction on a firm analytic footing, and still forms the basis
of many noise reduction methods. In the field of speech processing a large
number of techniques has been developed for noise reduction, and many of
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these are more generally applicable to noisy audio signals. We do not at-
tempt here to describe every possible method in detail, since these are well
covered in speech processing texts (see for example [112, 110] and numer-
ous subsequent texts). We do, however, consider some standard approaches
which are appropriate for general audio signals and emerging techniques
which are likely to be of use in future work. It is worth mentioning that
where methods are derived from speech processing techniques, as in for ex-
ample the spectral attenuation methods of section 6.1, sophisticated modi-
fications are required in order to match the stringent fidelity requirements
and signal characteristics of an audio restoration system.

6.1 Spectral domain methods

Certainly the most popular methods for noise reduction in audio signals
to date are based upon short-time processing in the spectral domain. the
reason for the success of these methods is that audio signals are usually
composed of a number of line spectral components which correspond to
fundamental pitch and partials of the notes being played. Although these
line components are time-varying they can be considered as fixed over a
short analysis window with a duration of perhaps 0.02 seconds or more.
Hence analysing short blocks of data in the frequency domain will con-
centrate the signal energy into a relatively few frequency ‘bins’ with high
signal-to-noise ratio. This means that noise reduction can be performed in
the frequency domain while maintaining the important parts of the signal
spectrum largely unaffected. Processing is performed in a transform do-
main, usually the discrete Fourier Transform (DFT) Y (n,m) of sub-frames
in the observed data {yn}:

Y (n,m) =

N−1
∑

l=0

gl y(nM+l) exp(−jlm2π/N), m = 0, . . . , N − 1.

Index n is the sub-frame number within the data and m is the frequency
component number. gl is a time domain pre-windowing function with suit-
able frequency domain characteristics, such as the Hanning or Hamming
Window. N is the sub-frame length and M < N is the number of samples
between successive sub-frames. Typically M = N/2 or M = N/4 to allow a
significant overlap between successive frames. A suitable value of N which
encompasses a large enough window of data while not seriously violating
the assumption of short-term fixed frequency components will be chosen,
and N = 1024 or N = 2048 are appropriate choices which allow calculation
with the FFT. Cappé [30, 32] has performed analysis which justifies the use
of block lengths of this order.
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FIGURE 6.1. a) Input sine wave xt b) Pre-/Post-windowing functions gl and
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Processing is then performed on the spectral components Y (n,m) in
order to estimate the spectrum of the ‘clean’ data X(n,m):

X̂(n,m) = f(Y (n,m))

where f(.) is a function which performs noise reduction on the spectral
components. We will discuss some possible forms for f(.) in the next section.

The estimated spectrum X̂(n,m) is then inverse DFT-ed to obtain a
time domain signal estimate for sub-frame n at sample number nM + l:

x̂n
nM+l = hl

1

N

N−1
∑

m=0

X̂(n,m) exp(jlm2π/N), l = 0, . . . , N − 1

where hl is a post-processing window function which is typically tapered to
zero at its ends to ensure continuity of restored output. Again, Hamming
or Hanning windows would be suitable choices here.

Finally, the reconstructed signal in sub-frame n is obtained by an overlap-
add method:

x̂nM+l = wl

∑

m∈M

x̂m
nM+l

where M = {m; mM ≤ nM + l < mM + N}, wl is a weighting function
which compensates for the overall gain of the pre- and post-windowing
functions gl and hl:

wl =
1

∑

m∈M0
gmM+lhmM+l

and M0 = {m; 0 ≤ mM + l < N}. The summation sets in these two
expressions are over all adjacent windows which overlap with the current
output sample number.

This time domain pre-windowing, post-windowing and gain compensa-
tion procedure is illustrated for Hanning windows with 50% block over-
lap (M = N/2) in figure 6.1. The processing function is switched off, i.e.
f(Y ) = Y , so we wish in this case to reconstruct the input signal unmodi-
fied at the output.

6.1.1 Noise reduction functions

The previous section has described a basic scheme for analysis, processing
and resynthesis of noisy audio signals using the DFT, a similar method to
that first presented by Allen [4]. We have not yet, however, detailed the
type of processing functions f(.) which might be used to perform noise
reduction for the spectral components. Many possible variants have been
proposed in the literature, some based on heuristic ideas and others on a
more rigorous basis such as the Wiener, maximum likelihood or maximum
a posteriori estimation. See [20] for a review of the various suppression
rules from a statistical perspective.
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6.1.1.1 The Wiener solution

If the noise is assumed to be additive and independent of the signal, then
the frequency domain Wiener filter which minimises the mean-squared error
of the time domain reconstruction is given by [148]:

H(ω) =
SX(ω)

SX(ω) + SN (ω)

where SX(ω) is the power spectrum of the signal and SN (ω) is the power
spectrum of the noise. If this gain can be calculated at the frequencies cor-
responding to the DFT bins then it can be applied as a noise reduction
filter in the DFT domain. If we interchange the continuous frequency vari-
able ω with the DFT bin number m the following ‘pseudo-Wiener’ noise
reduction rule is obtained:

f(Y (m)) =
SX(m)

SX(m) + SN (m)
Y (m)

where we have dropped the sub-frame variable n for convenience.
The problem here is that we do not in general know any of the required

terms in this equation except for the raw DFT data Y (m). However, in
many cases it is assumed that SN (m) is known and it only remains to
obtain SX(m) (SN (m) can often be estimated from ‘silent’ sections where
no music is playing, for example). A very crude estimate for SY (m), the
power spectrum of the noisy signal, can be obtained from the amplitude
squared of the raw DFT components |Y (m)|2. An estimate for the signal
power spectrum is then:

SX(m) =

{

|Y (m)|2 − SN (m), |Y (m)|2 > SN (m)

0, otherwise

where the second case ensures that the power spectrum is always greater
than or equal to zero, leading to a noise reduction function of the form:

f(Y (m)) =

{

|Y (m)|2−SN (m)
|Y (m)|2 Y (m), |Y (m)|2 > SN (m)

0, otherwise

Defining the power signal-to-noise ratio at each frequency bin to be
ρ(m) = (|Y (m)|2 − SN (m))/SN (m), this function can be rewritten as:

f(Y (m)) =

{

ρ(m)
1+ρ(m)Y (m), ρ(m) > 0

0, otherwise

Notice that the noise reducer arising from the Wiener filter introduces
zero phase shift - the restored phase equals the phase of the corrupted
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signal. Even though it is often quoted that the ear is insensitive to phase,
this only applies to time-invariant signals [137]. Thus it can be expected
that phase-related modulation effects will be observed when this and other
‘phase-blind’ processes are applied in the time-varying environment of real
audio signals.

6.1.1.2 Spectral subtraction and power subtraction

The Wiener solution has the appeal of being based upon a well-defined
optimality criterion. Many other criteria are possible, however, including
the well known spectral subtraction and power subtraction methods [19,
154, 16, 125, 112].

In the spectral subtraction method an amount of noise equal to the root
mean-squared noise in each frequency bin, i.e. SN (m)1/2, is subtracted
from the spectral amplitude, while once again the phase is left untouched.
In other words we have the following noise reduction function:

f(Y (m)) =

{

|Y (m)|−SN (m)1/2

|Y (m)| Y (m), |Y (m)|2 > SN (m)

0, otherwise

Rewriting as above in terms of the power signal-to-noise ratio ρ(m) we
obtain:

f(Y (m)) =

{

(

1 − 1
(1+ρ(m))1/2

)

Y (m), ρ(m) > 0

0, otherwise

Another well known variant upon the same theme is the power subtrac-
tion method, in which the restored spectral power is set equal to the power
of the noisy input minus the expected noise power:

f(Y (m)) =







(

|Y (m)|2−SN (m)
|Y (m)|2

)1/2

Y (m), |Y (m)|2 > SN (m)

0, otherwise

and in terms of the power signal-to-noise ratio:

f(Y (m)) =







(

ρ(m)
1+ρ(m)

)1/2

Y (m), ρ(m) > 0

0, otherwise

The gain applied here is the square root of the Wiener gain.
The gain curves for Wiener, spectral subtraction and power subtrac-

tion methods are plotted in figure 6.2 as a function of ρ(m). The output
amplitude as a function of input amplitude is plotted in figure 6.3 with
SN (m) = 1. It can be seen that spectral subtraction gives the most severe
suppression of spectral amplitudes, power subtraction the least severe and
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the Wiener gain lies between the two. The Wiener and power subtraction
rules tend much more rapidly towards unity gain at high input amplitudes.
In our experience the audible differences between the three rules are quite
subtle for audio signals, especially when some of the modifications out-
lined below are incorporated, and the Wiener rule is usually an adequate
compromise.

The de-noising procedure is now illustrated with a synthetic example
in which a music signal (figure 6.4(a)) is artificially corrupted with ad-
ditive white Gaussian noise (figure 6.4(b)). Figure 6.4(c) shows the noisy
input after pre-windowing with a Hanning window. The data is fast Fourier
transformed (FFT-ed) to give figure 6.5 in which the clean data FFT (figure
6.5(a)) is included for comparison. Note the way in which the noise floor has
been elevated in the noisy case (figure 6.5(b)). Only the first 200 frequency
bins have been plotted, a frequency range of roughly 8.5kHz, as there is
little signal information to be seen at higher frequencies for this example.
Figure 6.6 shows the filter gain calculated according to the three criteria
described above. Note the more severe attenuating effect of the spectral
subtraction method. This can also be seen in the reconstructed outputs of
figure 6.7, in which there is clearly a progression in the amount of residual
noise left in the three methods (see the next section for a discussion of
residual noise effects).

6.1.2 Artefacts and ‘musical noise’

The above methods can all lead to significant reduction in background
noise in audio recordings. However, there are several significant drawbacks
which inhibit the practical application of these techniques without further
modification. The main drawbacks are in the residual noise artefacts, the
most annoying of which is known variously as ‘musical noise’, ‘bird-song’ or
‘tonal noise’. We will describe this effect and suggest some ways to eliminate
it, noting that attempts to remove these artifacts are likely to involve a
trade-off with the introduction of other distortions into the audio.

Musical noise arises from the randomness inherent in the crude estimate
for the signal power spectrum which is used in the basic form of these
methods, i.e. SX(m) = |Y (m)|2 − SN (m). Clearly the use of the raw in-
put spectral amplitude will lead to inaccuracies in the filter gain owing to
the random noise and signal fluctuations within each frequency band. This
can lead to over-estimates for SX(m) in cases where |Y (m)| is too high
and under-estimates when |Y (m)| is too low, and a corresponding random
distortion of the sound quality in the restored output. The generation of
musical noise can be seen most clearly in the case where no signal is present
(SX(m) = 0) and the filter gain would ideally then be zero across all fre-
quency bins. To see what actually occurs we use another synthetic example,
in which a pure white Gaussian noise signal is de-noised using the Wiener
suppression rule. In order to illustrate the effect best the noise power spec-
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FIGURE 6.4. (a) Clean input signal xn, (b) Noisy input signal yn, (c)
Pre-windowed input glyn.
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thesis: (a) Spectral subtraction, (b) Wiener filter, (c) Power subtraction.
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trum is over-estimated by a factor of two, which leads to a smaller amount
of residual noise but greater distortion to the musical signal components.
Figure 6.8 shows the input noise signal, the pre-windowed noise signal and
the Wiener estimated signal corresponding to this noise signal. The noise
is well attenuated (roughly 10dB of attenuation can be measured) but as
before a residual noise is clearly visible. Ideally we would like the residual
noise to have a pleasant-sounding time-invariant characteristic. However,
figure 6.9 shows that this is not the case. Figure 6.9(a) shows the spectral
magnitude of the noise input signal and figure 6.9(b) gives the correspond-
ing noise reduced spectrum. It can be seen that while low amplitude noise
components have been attenuated to zero, as desired, the high amplitude
components have remained largely unsuppressed, owing to the non-linear
nature of the suppression rule. These components are typically isolated in
the spectrum from one another and will thus be perceived as ‘tones’ in the
restored output. When considered from frame to frame in the data these
isolated components will move randomly around the spectrum, leading to
rapidly time-varying bursts of tonal or ‘musical’ noise in the restoration.
This residual can be more unpleasant than the original unattenuated noise,
and we now go on to discuss ways for alleviating the problem.

6.1.3 Improving spectral domain methods

We have already stated that the main cause of musical noise is random
fluctuations in the estimate of SX(m), the signal power spectrum. Clearly
one way to improve the situation will be to make a more statistically stable
estimate of this term for each frame. Another way to improve the quality
of restoration will be to devise alternative noise suppression rules based
upon more appropriate criteria than those described above. There is a
large number of techniques which have been proposed for achieving either
or both of these objectives, mostly aimed at speech enhancement, and we
do not attempt to describe all of them here. Rather we describe the main
principles involved and list some of the key references. For a range of audio
applications based upon these techniques and their variants the reader is
referred to [109, 138, 187, 190, 189, 185, 58, 116].

6.1.3.1 Eliminating musical noise

The simplest way to eliminate musical noise is to over-estimate the noise
power spectrum, see e.g. [187, 190, 16, 17, 116], in a similar (but more
extreme) way as used in the results of figure 6.8. To achieve this we simply
replace SN (m) with αSN (m), where α > 1 is typically between 3 and 6 for
noisy audio. Of course, such a procedure simply trades off improvements
in musical noise with distortion to the musical signal. Another simple idea
leaves a noise ‘floor’ in the spectrum, masking the isolated noise peaks
which lead to tonal noise. The introduction of a noise floor means less noise
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FIGURE 6.8. (a) Input noise signal yn, (b) Pre-windowed input glyn, (c) Wiener
estimated output signal.
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reduction, but this might be acceptable depending upon the application and
noise levels in the original recording. A first means of achieving this [16]
simply limits the restored spectral amplitude to be no less than βSN (m)1/2,
where 0 < β < 1 determines the required noise attenuation. The resulting
residual sounds slightly unnatural, and a better scheme places a lower limit
on the filter gain [16, 17, 116]. The Wiener suppression rule would become,
for example:

f(Y (m)) = max

(

α,
ρ(m)

1 + ρ(m)

)

Y (m)

This achieves a significant degree of masking for musical noise and leaves
a natural sounding residual. It can also help to limit any loss of sound
quality by ensuring that very small signal components are never completely
attenuated.

The best means for elimination of musical noise to date, however, em-
ploy temporal information from surrounding data sub-frames. It is highly
unlikely that a random noise peak will occur at the same frequency in
adjacent sub-frames, while tonal components which are genuinely present
in the music are likely to remain at the same frequency for several sub-
frames. Thus some degree of linear or non-linear processing can be used
to eliminate the noise spikes while retaining the more slowly varying sig-
nal components intact. In [19] a spectral magnitude averaging approach is
suggested in which the raw speech amplitudes |Y (n,m)| are averaged over
several adjacent sub-frames n at each frequency bin m. This helps some-
what in the stability of signal power spectral estimates, but will smooth
out genuine transients in the music without leading to a very significant re-
duction in musical noise. A more successful approach from the same paper
uses the minimum estimated spectral amplitude from adjacent sub-frames
as the restored output, although this can again lead to a ‘dulling’ of the
sound quality. One simple technique which we have found to be effective
without any serious degradation of the sound quality involves taking a me-
dian of adjacent blocks rather than an arithmetic mean or minimum value.
This eliminates musical noise quite successfully and the effect on the signal
quality is less severe than taking a minimum amplitude. Other techniques
include non-linear ‘masking’ out of frequency components whose tempo-
ral neighbours are of low amplitude (and hence can be classified as noise)
[189] and applying frequency domain de-noising to the temporal envelope
of individual frequency bins [29].

In the same way that there are many possible methods for perform-
ing click detection, there is no end to the alternative schemes which can
be devised for refining the hiss reduction performance based upon tem-
poral spectral envelopes. In practice a combination of several techniques
and some careful algorithmic tuning will be necessary to achieve the best
performance.



148 6. Hiss Reduction

6.1.3.2 Advanced noise reduction functions

In addition to the basic noise suppression rules (Wiener, power/spectral
subtraction) described so far, various alternative rules have been proposed,
based upon criteria such as maximum likelihood [125] and minimum mean-
squared error [54, 55, 56]. In [125] a maximum likelihood estimator is de-
rived for the spectral amplitude components under Gaussian noise assump-
tions, with the complex phase integrated out. This estimator is extended in
[55] to the minimum mean-square error estimate for the amplitudes, which
incorporates Gaussian a priori assumptions for the signal components in
addition to the noise. Both of these methods [125, 55] also incorporate un-
certainty about the presence of signal components at a given frequency, but
rely on the assumption of statistical independence between spectral com-
ponents at differing frequencies. In fact, the Ephraim and Malah method
[55] is well known in that it does not generate significant levels of musical
noise. This can be attributed to a time domain non-linear smoothing filter
which is used to estimate the a priori signal variance [31, 84].

6.1.3.3 Psychoacoustical methods

A potentially important development in spectral domain noise reduction is
the incorporation of the psychoacoustical properties of human hearing. It is
clearly sub-optimal to design algorithms based upon mathematical criteria
which do not account for the properties of the listener. In [27, 28] a method
is derived which attempts to mimic the pre-filtering of the auditory system
for hearing-impaired listeners, while in [183, 116] simultaneous masking re-
sults of the human auditory system [137] are employed to predict which
parts of the spectrum need not be processed, hence leading to improved
fidelity in the restored output as perceived by the listener. These methods
are in their infancy and do not yet incorporate other aspects of the human
auditory system such as non-simultaneous masking, but it might be ex-
pected that noise reducers and restoration systems of the future will take
fuller account of these features to their benefit.

6.1.4 Other transform domain methods

So far we have assumed a Fourier transform-based implementation of spec-
tral noise reduction methods. It is possible to apply many of these methods
in other domains which may be better tuned to the non-stationary and
transient character of audio signals. Recent work has seem noise reduction
performed in alternative basis expansions, in particular the wavelet domain
[134, 185, 14] and sub-space representations [44, 57].



6.2 Model-based methods 149

6.2 Model-based methods

The spectral domain methods described so far are essentially
non-parametric, although some include assumptions about the probabil-
ity distribution of signal and noise spectral components. In the same way
as for click reduction, it should be possible to achieve better results if an
appropriate signal model can be incorporated into the noise reduction pro-
cedure, however noise reduction is an especially sensitive operation and
the model must be chosen very carefully. In the speech processing field
Lim and Oppenheim [111] studied noise reduction using an autoregressive
signal model, deriving iterative MAP and ML procedures. These methods
are computationally intensive, although the signal estimation part of the
iteration is shown to have a simple frequency-domain Wiener filtering inter-
pretation (see also [147, 107] for Kalman filtering realisations of the signal
estimation step). It is felt that new and more sophisticated model-based
procedures may provide noise reducers which are competitive with the well-
known short-time Fourier based methods. In particular, modern Bayesian
statistical methodology for solution of complex problems [172, 68] allows
for more realistic signal and noise modelling, including non-Gaussianity,
non-linearity and non-stationarity. Such a framework can also be used to
perform joint restoration of both clicks and random noise in one single pro-
cess. A Bayesian approach to this joint problem using an autoregressive sig-
nal model is described in [70] and in chapter 9 (the ‘noisy data’ case), while
[141, 142] present an extended Kalman filter for ARMA-modelled audio sig-
nals with the same type of degradation. See also [81, 72, 73] for some recent
work in this area which uses Markov chain Monte Carlo (MCMC) methods
to perform joint removal of impulses and background noise for both AR
and autoregressive moving-average (ARMA) signals. Chapter 12 describes
in detail the principles behind these methods. The standard time series
models have yielded some results of a good quality, but it is anticipated
that more sophisticated and realistic models will have to be incorporated
in order to exploit the model-based approach fully.

6.2.1 Discussion

A number of noise reduction methods have been described, with particular
emphasis on the short-term spectral methods which have been most popular
to date. However, it is expected that new statistical methodology and rapid
increases in readily-available computational power will lead in the future to
the use of more sophisticated methods based on realistic signal modelling
assumptions and perceptual optimality criteria.
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7

Removal of Low Frequency Noise
Pulses

A problem which is common to several recording media, including gramo-
phone discs and optical film sound tracks, is that of low frequency noise
pulses. This form of degradation is typically associated with large scratches
or even breakages in the surface of a gramophone disc. The precise form
of the noise pulses depends upon the characteristics of the playback sys-
tem but a typical waveform is shown in figure 7.1. A large discontinuity is
observed followed by a decaying low frequency transient. The noise pulses
appear to be additively superimposed upon the undistorted signal wave-
form (see figure 7.2).

In this chapter we briefly review some early digital technology for removal
of these defects, the templating method [187, 190], noting that problems
can arise with these methods since they rely on little or no variability of
pulse waveforms throughout a recording. This can be quite a good assump-
tion when defects are caused by single breakages or radial scratches on a
disc recording. However pulse shapes are much less consistent when defects
are caused by randomly placed scratches in disc recordings or optical film
sound tracks. The templating method then becomes very difficult to apply.
Many different templates are required to cover all possible pulse shapes,
and automation of such a system is not straightforward. Thus it seems bet-
ter to form a more general model for the noise pulses which is sufficiently
flexible to allow for all the pulses encountered on a particular recording.
In this chapter we propose the use of an AR model for the noise pulses,
driven by impulsive excitation. An algorithm is initially derived for the
separation of additively superimposed AR signals. This is then modified to
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give a restoration algorithm suited to our assumed models for signal and
noise pulses.

7.1 Existing methods

Low frequency noise pulses appear to be the response of the pick-up system
to extreme step-like or impulsive stimuli caused by breakages in the groove
walls of gramophone discs or large scratches on an optical film sound track.
The audible effect of this response is a percussive ‘pop’ or ‘thump’ in the
recording. This type of degradation is often the most disturbing artefact
present in a given extract. It is thus highly desirable to eliminate noise
pulses as a first stage in the restoration process.

Since the majority of the noise pulse is of very low frequency it might
be thought that some kind of high pass filtering operation would remove
the defect. Unfortunately this does not work well since the discontinuity
at the front of the pulse has significant high frequency content. Some suc-
cess has been achieved with a combination of localised high pass filtering
and interpolation to remove discontinuities. However it is generally found
that significant artefacts remain after processing or that the low frequency
content of the signal has been damaged.

The only existing method known to the authors is that of Vaseghi and
Rayner [187, 190]. This technique, which employs a template for the noise
pulse waveform, has been found to give good results for many examples of
broken gramophone discs. The observation was made that the low frequency
sections of successive occurrences of noise pulses in the same recording were
nearly identical in envelope (to within a scale factor). This observation is
true particularly when the noise pulses correspond to a single fracture run-
ning through successive grooves of a disc recording. Given the waveform of
the repetitive section of the noise pulse (the ‘template’ tm) it is then pos-
sible to subtract appropriately scaled versions from the corrupted signal
yn wherever pulses are detected. Any remaining samples close to the dis-
continuity which are irrevocably distorted can then be interpolated using
a method such as the LSAR interpolator discussed earlier.

The template tm is obtained by long term averaging of many such pulses
in the corrupted waveform. The correct position and scaling for each indi-
vidual pulse are obtained by cross-correlating the template with the cor-
rupted signal.

The template method is limited in several important ways which prevent
automation of pulse removal. While the assumption of constant template
shape is good for short extracts with periodically recurring noise pulses
(e.g. in the case of a broken gramophone disc) it is not a good assumption
for many other recordings. Even where noise pulses do correspond to a
single radial scratch or fracture on the record the pulse shape is often
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FIGURE 7.1. Noise pulse from broken gramophone disc (‘lead-in’ groove)
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FIGURE 7.2. Signal waveform degraded by additive noise pulse
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found to change significantly as the recording proceeds, while much more
variety is found where pulses correspond to ‘randomly’ placed scratches and
breakages on the recording. Further complications arise where several pulses
become superimposed as is the case for several closely spaced scratches.

Correct detection is also a problem. This may seem surprising since the
defect is often very large relative to the signal. However, audible noise pulses
do occur in high amplitude sections of the signal. In such cases the cross-
correlation method of detection can give false alarms from low frequency
components in the signal; in other circumstances noise pulses can be missed
altogether. This is partly as a result of colouration of the signal which
renders the cross-correlation procedure sub-optimal. A true matched filter
for the noise pulse would take into account the signal correlations (see e.g.
[186]) and perhaps achieve some improvements in detection. However this
issue is not addressed here since the other limitations of the templating
method are considered too severe. Rather in chapter 7 we derive a more
general restoration system for noise pulses which is designed to cope with
situations where pulses are of varying shape and at random locations. With
such an approach we aim to restore a wider range of degraded material,
including optical sound tracks, with little or no user intervention.

7.2 Separation of AR processes

Consider firstly the problem of separating two additively superimposed AR
processes. This will provide the basis for the subsequent noise pulse restora-
tion algorithm. A probabilistic derivation is given here for consistency with
the remainder of the book, although a least squares analysis yields similar
results.

A data block y with N samples is expressed as the sum of two constituent
parts x1 and x2:

y = x1 + x2. (7.1)

We wish to estimate either x1 or x2 from the combined signal y under the
assumption that both constituent signals are drawn from AR processes.
The parameters and excitation variances {a1, σ

2
e1} and {a2, σ

2
e2} for the two

AR processes are assumed known. The two signals x1 and x2 are assumed
independent and their individual PDFs can be written in the usual fashion
(see (4.54)) under the Gaussian independence assumption as

px1(x1) =
1

(2πσ2
e1)

N−P1
2

exp

(

− 1

2σ2
e1

x1
TA1

TA1 x1

)

(7.2)

px2(x2) =
1

(2πσ2
e2)

N−P2
2

exp

(

− 1

2σ2
e2

x2
TA2

TA2 x2

)

(7.3)
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where Pi is the AR model order for ith process (i = 1, 2) and Ai is the pre-
diction matrix containing AR model coefficients from the ith model. These
PDFs are, as before, strictly conditional upon the first Pi data samples
for each signal component. The resulting approximation is maintained for
the sake of notational simplicity. Note, however, that as before the exact
likelihoods can be incorporated by relatively straightforward modifications
to the first Pi elements of the first Pi rows of the matrices AT

i Ai (see
appendix C).

Say we wish to find the MAP solution for x1. The probability for the
combined data conditional upon the first component signal is given by:

p(y | x1) = px2(y − x1). (7.4)

We then obtain the posterior distribution for x1 using Bayes’ theorem as

p(x1 | y) ∝ p(y | x1) px1(x1)

∝ px2(y − x1) px1(x1) (7.5)

where the term p(y) can as usual be ignored as a normalising constant.
Substituting for the terms in (7.5) using (7.2) and (7.3) then gives

p(x1 | y) ∝
exp

(

− 1
2σ2

e2
(y − x1)

T A2
TA2 (y − x1) − 1

2σ2
e1

x1
T A1

TA1 x1

)

(2πσ2
e1)

(N−P1)/2 (2πσ2
e2)

(N−P2)/2

(7.6)

and the MAP solution vector xMAP
1 is then obtained as the solution of :

(

A1
TA1

σ2
e1

+
A2

TA2

σ2
e2

)

xMAP

1 =
A2

TA2

σ2
e2

y. (7.7)

This separation equation requires knowledge of both AR processes and as
such cannot straightforwardly be applied in general ‘blind’ signal separation
applications. Nevertheless we will now show that a modified form of this
approach can be applied successfully to the practical case of separating an
audio signal from transient noise pulses.

7.3 Restoration of transient noise pulses

Examination of figures 7.1 and 7.2 indicates that the noise pulse is com-
posed of a high amplitude impulsive start-up transient followed by a low
frequency decaying oscillatory tail consistent with a ‘free-running’ system
(i.e. a resonant system with no excitation). The oscillatory tail appears to
be additive to the true audio signal while the impulsive start may well oblit-
erate the underlying signal altogether for a period of some large number of
samples (50-100 samples is typical).
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This noise transient is interpreted as being the response of the mechanical
playback apparatus to highly impulsive or step-like stimuli such as would
occur when a complete breakage or deep gouge is encountered by the stylus
in the groove wall. The way such discontinuities are generated, in contrast
with the way the cutter records the true audio signal onto the disc, means
that the damaged grooves can have a much higher rate of rise or fall than
could ever be encountered from the standard recording procedure (and most
likely at a higher rate of change than the subsequent electronic circuitry is
capable of reproducing). It is postulated that these especially sharp step-
like discontinuities excite the low frequency resonance observed with some
scratches, while other clicks and scratches with less sharp transitions will
not excite the same degree of resonance. The frequency of oscillation is con-
sistent with the resonant frequency of the tone arm apparatus (15-30Hz, see
[133]) so this may well be the source of the resonance. We do not verify this
here from mechanics theory or experiments but rather concern ourselves
with the modelling of the noise transients in the observed waveform.

It can be seen clearly from figure 7.1 that the frequency of resonance de-
creases significantly as the transient proceeds. This is typical of noise pulses
from both gramophone recordings and optical film sound tracks. Attempts
to model the pulse as several superimposed decaying vibration modes with
different frequencies have proved largely unsuccessful, and it seems more
likely that there is non-linearity in the mechanical system which would
account for this effect. This kind of change in resonant frequency is con-
sistent with a ‘stiffening’ spring system in which a spring-type mechanical
element has increasing stiffness with increasing displacement (see e.g. [90]).
Exploratory experiments indicate that discrete low order (2-3) non-linear
AR models based on a reduced Volterra expansion (see e.g. [18]) lead to sig-
nificantly better whitening of the prediction error than a linear AR model
with the same number of coefficients. This requires further investigation
and is left as further work. Here, for the sake of achieving analytic results
(and hence a practical restoration system), we adopt the linear AR model
as an approximation to the true mechanical system. The impulsive start-up
section is modelled as high-amplitude impulsive input to the system and a
low level white noise excitation is assumed elsewhere to allow for modelling
inaccuracies resulting from the linear approximation.

7.3.1 Modified separation algorithm

The proposed model for noise transient degradation is similar to the ‘noisy
data’ model for standard click degradation (see section 9.1) in which a noise
signal is generated by switching between two noise processes {n1

m} and
{n0

m} according to the value of a binary process {im}. The high amplitude
noise process {n1

m} corresponds to high level impulsive input (i.e. the start-
up transient) while the low level noise process n0

m represents the low level
of noise excitation mentioned above. The low frequency transient model
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FIGURE 7.3. Schematic model for noise transients

differs from the standard click model in that the switched noise process
is then treated as the excitation to the AR process with parameters a2.
The output of this process is then added to the input data signal. Figure
7.3 gives a schematic form for the noise model. Since this model does not
specify when the high amplitude impulsive excitation process n1

m is active,
it is general enough to include the problematic scenario of many large
scratches close together, causing ‘overlapping’ noise pulses in the degraded
audio waveform. We now consider modifications to the AR-based separation
algorithm given in the previous section. These will lead to an algorithm for
restoring signals degraded by noise from the proposed model.

In the simple AR-based separation algorithm (7.7) a constant variance
Gaussian white excitation was assumed for both AR processes. However,
the model discussed above indicates a switched process for the excitation
to AR process a2, depending on the current ‘switch value’ im. We define
a vector i similar to the detection vector of chapter 9 which contains a ‘1’
wherever im = 1, i.e. the high amplitude noise process is active, and ‘0’
otherwise. This vector gives the switch position at each sampling instant
and hence determines which of the two noise processes is applied to the AR
filter a2. If the two noise processes are modelled as Gaussian and white with
variances σ2

n0 and σ2
n1 the correlation matrix for the excitation sequence
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to the second AR model a2 is a diagonal matrix Λ. The diagonal elements
λm of Λ are given by

λm = σ2
n0 + im(σ2

n1 − σ2
n0). (7.8)

The PDFfor x2, the ‘noise’ signal, is then modified from the expression of
(7.3) to give

px2(x2) =
1

(2π)
N−P2

2 | Λ |1/2
exp

(

−1

2
x2

TA2
T Λ−1A2 x2

)

. (7.9)

The derivation for the modified separation algorithm then follows the same
steps as for the straightforward AR separation case, substituting the mod-
ified PDFfor x2 and leading to the following posterior distribution,

p(x1 | y) ∝
exp

(

− 1
2 (y − x1)

T A2
T Λ−1A2 (y − x1) − 1

2σ2
e1

x1
TA1

TA1 x1

)

(2πσ2
e1)

(N−P1)/2 (2π)(N−P2)/2 | Λ |1/2

(7.10)

and the resulting MAP solution vector xMAP
1 is obtained as the solution of:

(

A1
TA1

σ2
e1

+ A2
T Λ−1A2

)

xMAP

1 = A2
T Λ−1A2 y (7.11)

If σ2
n1 is very large the process {n1

m} tends to a uniform distribution, in
which case the impulsive section will largely obscure the underlying audio
waveform x1. In the limit the elements of Λ−1 equal to (1/σ2

n1) tend to
zero. Since σ2

n1 is usually large and awkward to estimate we will assume
the limiting case for the restoration examples given later.

The algorithm as it stands is appropriate for restoration of a whole block
of data with no reference to the surroundings. Discontinuities can thus
result at the boundaries between a restored data block and adjacent data.
Continuity can be enforced with a windowed overlap/add approach at the
ends of a processed block. However, improved results have been obtained
by fixing a set of known samples at both ends of the block. Continuity
is then inherent in the separation stage. This approach requires a slightly
modified version of equation (7.11) which accounts for the known samples
in a manner very similar to the standard AR-based interpolator (see section
5.2.2) in which known samples are fixed either side of missing data.

7.3.2 Practical considerations

The modified algorithm proposed for separation of the true signal from
the combination of true signal and noise transients requires knowledge of
both AR systems, including noise variances and actual parameter values,
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as well as the detection vector i which indicates which noise samples have
impulsive excitation and which have low level excitation. We now consider
how we might obtain estimates for these unknowns and hence produce a
practical restoration scheme.

7.3.2.1 Detection vector i

Identification of i is the equivalent for noise transients of click detection. We
are required to estimate which samples of the noise pulse signal correspond
to impulsive noise excitation. A Bayesian scheme for optimal detection can
be derived based on the same principles as the click detector of chapter
9 but using the revised noise model. However, in many cases the noise
transients are large relative to the audio signal and a simpler approach will
suffice.

An approach based on the inverse filtering AR detector as described
elsewhere (see section 5.3.1) has been found to perform adequately in most
cases. The impulsive sections of the low frequency noise transients are sim-
ply considered as standard clicks of high amplitude. The inverse filtering
threshold operates as for detection of standard clicks, but a second higher
valued threshold is chosen to ‘flag’ clicks of the low frequency transient
type. These clicks are then restored using the scheme introduced above.
Such a detection procedure will provide good results for most types of
noise pulse degradation. However, ‘false alarms’ and ‘missed detections’
are an inevitable consequence in a signal where low frequency transients
can be of small amplitude or when standard clicks can be of comparable
magnitude to noise transient clicks. The higher threshold must be chosen
from trial and error and will reflect how tolerant we are of false alarms
(which may result in distortion of the low frequency signal content) and
missed detections (which will leave small transients unrestored). The more
sophisticated Bayesian detection scheme should improve the situation but
is left as a topic for future investigation.

7.3.2.2 AR process for true signal x1

The AR model parameters and excitation variance {a1, σ
2
e1} for the unde-

graded audio source can usually be estimated by standard methods (see
section 4.3.1) from a section of uncorrupted data in the close vicinity of
the noise pulse. It is best to estimate these parameters from data prior to
the noise pulse so as to avoid the effects of the low frequency noise tail on
estimates. Assumptions of local stationarity are then made for restoration
of the subsequent corrupted section of data using the same AR model. The
AR model order is fixed beforehand and, as for click removal applications,
an order of 40-60 is typically sufficient.
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7.3.2.3 AR process for noise transient x2

The AR process for the noise transients may be identified in several ways.
Perhaps the most effective method is to estimate the parameters by max-
imum likelihood from a ‘clean’ noise pulse obtained from a passage of the
recording where no recorded sound is present, such as the lead-in groove of
a disc recording (see figure 7.1). If a ‘clean’ noise transient is not available
for any reason it is possible to use estimates obtained from another similar
recording. These estimates can of course be replaced or adapted based on
restored pulses obtained as processing proceeds. Typically a very low model
order of 2-3 is found to perform well. When no such estimates are available
we have found that a ‘second differencing’ AR model, which favours signals
which are ‘smooth’ in terms of their second differences, with parameters
[2, −1], leads to restorations of a satisfactory standard.

7.3.3 Experimental evaluation

Experimental results are now presented for the signal separation algorithms
derived in previous sections. Firstly we consider a synthetic case in which a
noise transient obtained from the lead-in groove of a gramophone recording
is added at a known position to a ‘clean’ audio waveform. The resulting
synthetically corrupted waveform is shown in figure 7.4. The restoration
corresponding to this waveform is shown below in figure 7.5 and we can
see that the degradation is completely removed as far as the eye can see.
The next two figures (7.6 and 7.7) show the true noise transient and the
transient estimated by the algorithm, respectively. The estimated transient
is obtained by subtracting the restored waveform (figure 7.5) from the cor-
rupted waveform (figure 7.4). There is very good correspondence between
the true and estimated transient waveform, indicating that the separation
algorithm has worked well. We now consider the procedure in more detail.

The AR model parameters for the noise transient were estimated to order
2 by the covariance method from the non-impulsive section of the true noise
transient (samples 500-1000 of figure 7.6). The AR parameters for the signal
were estimated to order 80 from a section of 1000 data points just prior
to the noise transient. The high amplitude impulsive section driving the
noise transient was chosen as a run of 50 samples from 451-500 and the
separation algorithm operated over the larger interval 441-720.

In this example 80 ‘restored’ samples were fixed before and after the
region of signal separation (samples 441-720). The values of these fixed
samples were obtained by a high-pass filtering operation on the corrupted
data. Such a procedure assumes little or no spectral overlap between the de-
sired signal and noise transient at large distances from the impulsive central
section and leads to computational savings, since a significant proportion
of the transient can be removed by standard high-pass filtering operations.
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The estimated noise transient under these conditions is shown in more
detail in figure 7.9. The region of signal separation is enclosed by the vertical
dot-dash line while the region of high amplitude impulsive input is enclosed
by the dotted lines. For comparison purposes the true noise pulse is shown
in figure 7.8. A very close correspondence can be seen over the whole region
of separation although the peak values are very slightly under-predicted.
Figures 7.10 and 7.11 show the same region in the true and estimated audio
signals. Once again a very good correspondence can be observed.

Two further examples are now given which illustrate restoration per-
formed on genuine degraded audio material. In the first example (figures
7.12 and 7.13) restoration is performed on two closely spaced noise tran-
sients. Detection of high amplitude impulsive input regions was performed
using the inverse filtering detector with threshold set very high so as to
avoid detecting standard clicks as noise transients. In the second example
(figures 7.14, 7.15 and 7.16) a difficult section of data is taken in which there
are many overlapping noise pulses of different amplitudes and shapes. This
example would thus be particularly problematic for the templating method.
Detection of impulsive sections was performed as for the previous example
and restoration is visually very effective.

A number of passages of degraded audio material have been processed us-
ing this technique. Results have been good and usually more effective than
the templating method, which requires some additional high-pass filtering
to remove the last traces of degradation.

7.4 Kalman filter implementation

As for the single AR process models, it is possible to write the double AR
process model in state-space form. This means that the separation proce-
dure can be efficiently implemented using the Kalman filter (see section
4.4), which is an important consideration since the size of matrices to be
inverted in the direct implementation can run into many hundreds. Details
of such an implementation can be found in [85].

7.5 Conclusion

The separation algorithms developed in this chapter have been found to be
a significant improvement over the templating method for removal of low
frequency noise transients, both in terms of automation and the quality of
processed results. Any further work needs to address the issue of detection
for low frequency noise transients since it is still a difficult problem to
distinguish between standard clicks and low frequency transients with low
energy relative to the signal. In our current investigations we are looking
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FIGURE 7.4. Audio Waveform synthetically corrupted by low frequency transient
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FIGURE 7.5. Restored audio data
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FIGURE 7.6. Genuine noise transient added to audio signal
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FIGURE 7.7. Noise transient estimated by restoration procedure
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FIGURE 7.8. Genuine noise transient showing areas of signal separation and
interpolation
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FIGURE 7.9. Noise transient estimated by restoration procedure



7.5 Conclusion 167

-800

-600

-400

-200

0

200

400

600

800

900 950 1000 1050 1100 1150 1200 1250 1300

sample number

am
pl

itu
de

FIGURE 7.10. Original audio signal showing areas of signal separation and in-
terpolation
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FIGURE 7.11. Signal estimated by restoration procedure
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FIGURE 7.12. Degraded audio signal with two closely spaced noise transients
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FIGURE 7.13. Restored audio signal for figure 7.12 (different scale)
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FIGURE 7.14. Degraded audio signal with many closely spaced noise transients
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FIGURE 7.15. Estimated noise transients for figure 7.14
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FIGURE 7.16. Restored audio signal for figure 7.14 (different scale)

at models which more accurately reflect the mechanics of the gramophone
turntable system, which should lead to improved detection and restoration
performance.

It is thought that the methods proposed in this chapter may find ap-
plication in more general correlated transient detection and restoration.
Another example from the audio field is that of high frequency resonances
caused by poor choice of or faulty playback stylus. This defect has many
features in common with that of low frequency transients although it has
only rarely been a serious practical problem in our experience.



This is page 171
Printer: Opaque this

8

Restoration of Pitch Variation Defects

A form of degradation which can be encountered on almost any analogue
recording medium, including discs, magnetic tape, wax cylinders and op-
tical film sound tracks, is an overall pitch variation which was not present
in the original performance. This chapter addresses the problem of smooth
pitch variation over long time-scales (e.g. variations at around 78rpm for
many early gramophone discs), a defect often referred to as ‘wow’ and one
of the most disturbing artefacts encountered in old recordings. An associ-
ated defect known as ‘flutter’ describes a pitch variation which varies more
rapidly with time. This defect can in principle be restored within the same
framework but difficulties are expected when performance effects such as
tremolo or vibrato are present.

There are several mechanisms by which wow can occur. One cause is a
variation of rotational speed of the recording medium during either record-
ing or playback; this is often the case for tape or gramophone recordings.
A further cause is eccentricity in the recording or playback process for disc
and cylinder recordings, for example a hole which is not punched perfectly
at the centre of a gramophone disc. Lastly it is possible for magnetic tape
to become unevenly stretched during playback or storage; this too leads
to pitch variation during playback. Early accounts of wow and flutter are
given in [62, 10]. The fundamental principles behind our algorithms pre-
sented here have been presented in [78], while a recursive adaptation is
given in [71].

In some cases it is in principle possible to make a mechanical correction
for pitch defects, for example in the case of the poorly punched disc centre-
hole, but such approaches are generally impractical. This chapter presents
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a new signal processing approach to the detection and correction of these
defects which is designed to be as general as possible in order to correct a
wide range of related defects in recordings. No knowledge is assumed about
the precise source of the pitch variation except its smooth variation with
time. Results are presented from both synthetically degraded material and
genuinely degraded sources.

8.1 Overview

The physical mechanism by which wow is produced is equivalent to a non-
uniform warping of the time axis. If the undistorted time-domain waveform
of the gramophone signal is written as x(t) and the time axis is warped by
a function fw(t) then the distorted signal is given by:

xw(t) = x(fw(t)) (8.1)

For example, consider a gramophone turntable with nominal playback an-
gular speed ω0. Suppose there is a periodic speed fluctuation in the turntable
motor which leads to an actual speed of rotation during playback as:

ωw(t) = (1 + α cos(ω0t)) ω0 (8.2)

Since a given disc is designed to be replayed at constant angular speed ω0

an effective time warping and resultant pitch variation will be observed on

playback. The waveform recorded on the disc is x
(

θ
ω0

)

where θ denotes

the angular position around the disc groove (the range [0, 2π) indicates
the first revolution of the disk, [2π, 4π) the second, etc.) and the distorted
output waveform when the motor rotates the disc at a speed of ωw(t) will
be (assuming that θ = 0 at t = 0):

xw(t) = x

(

1

ω0

∫ t

0

ωw(τ) dτ

)

= x

(
∫ t

0

(1 + α cos(ω0τ)) dτ

)

= x

(

t+
1

ω0
α sin(ω0t)

)

. (8.3)

In this case the time warping function is fw(t) = t+ 1
ω0
α sin(ω0t). Similar

results hold for more general speed variations. The resultant pitch variation
may be seen by consideration of a sinusoidal signal component x(t) =
sin(ωst). The distorted signal is then given by

xw(t) = x(fw(t))

= sin

(

ωs

(

t+
1

ω0
α sin(ω0t)

))

, (8.4)
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which is a frequency modulated sine wave with instantaneous frequency
ωs(1+α cos(ω0t)). This will be perceived as a tone with time-varying pitch
provided that ωs >> ω0. Fig. 8.1 illustrates this effect. When a number of
sinusoidal components of different frequencies are present simultaneously
they will all be frequency modulated in such a way that there is a perceived
overall variation of pitch with time.

If the time warping function fw() is known and invertible it is possible
to regenerate the undistorted waveform x(t) as

x(t) = xw(f−1
w (t)) (8.5)

A wow restoration system is thus primarily concerned with estimation
of the time warping function or equivalently the pitch variation function

pw(t) =
d(fw(t))

dt
, from which the original signal can be reconstructed.

We adopt here a discrete time approach in which the values of pitch
variation function are estimated from the wow-degraded data. We denote
by p = [p1 . . . pN ]T the pitch variation vector corresponding to a vector
of corrupted data points xw. If it is assumed that p is drawn from some
random process which has prior distribution p(p) then Bayes’ theorem
gives:

p(p | xw) ∝ p(xw | p) p(p) (8.6)

where the likelihood p(xw | p) can in principle be obtained from the prior
for the undistorted data p(x) and the pitch variation vector. In fact we
adopt a pre-processing stage in which the raw data are first transformed
into a time-frequency ‘map’ which tracks the pitch of the principle fre-
quency components in the data (‘frequency tracking’). This simplifies the
calculation of the likelihood and allows a practical implementation of Bayes’
theorem to the transformed data. The idea behind this is the observation
that most musical signals are made up of combinations of steady tones
each comprising a fundamental pitch and overtones. The assumption is
made that pitch variations which are common to all tones present may
be attributed to the wow degradation, while other variations are genuine
pitch variations in the musical performance. The approach can of course
fail during non-tonal (‘unvoiced’) passages or if note ‘slides’ dominate the
spectrum, but this has not usually been a problem.

Once frequency tracks have been generated they are combined using
the Bayesian algorithm into a single pitch variation vector p. The final
restoration stage of equation (8.5) is then approximated by a digital re-
sampling operation on the raw data which is effectively a time-varying
sample rate converter.

The complete wow identification and restoration scheme is summarised
in figure 8.2.
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FIGURE 8.2. Outline of wow restoration system.

8.2 Frequency tracking

The function of the frequency tracking stage is to identify as many tonal
frequency components as possible from the data and to make estimates of
the way their frequencies vary with time. In principle any suitable time-
varying spectral estimator may be used for this purpose (see e.g. [155, 39]).
For the purpose of wow estimation it has been found adequate to employ
the discrete Fourier Transform (DFT) for the frequency estimation task,
although more sophisticated methods could easily be incorporated into the
same framework. The window length is chosen to be short enough that
frequency components within a single block are nearly constant, typically
2048 data points at 44.1kHz sampling rates, and a windowing function with
suitable frequency domain characteristics such as the Hamming window
is employed. Analysis of the peaks in the DFT magnitude spectrum then
leads to estimates for the instantaneous frequency of tonal components in
each data block. In order to obtain a set of contiguous frequency ‘tracks’
from block to block, a peak matching algorithm is used. This is closely
related to the methods employed for sinusoidal coding of speech and audio,
see [126, 158] and references therein.

In our scheme the position and amplitude of maxima (peaks) are ex-
tracted from the DFT magnitude spectrum for each new data block. The
frequency at which the peak occurs can be refined to higher accuracy by
evaluation of the DTFT on a finer grid of frequencies than the raw DFT,
and a binary search procedure is used to achieve this. Peaks below a chosen
threshold are deemed noise and discarded. The remaining peaks are split
into two categories: those which fit closely in amplitude and frequency with
an existing frequency ‘track’ from the previous block (these are added to
the end of the existing track) and those which do not match with an ex-
isting track (these are placed at the start of a new frequency track). Thus
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the frequency tracks evolve with time in a consistent manner, enabling the
subsequent processing to estimate a pitch variation curve.

Experimental results for frequency tracking are shown in Figs. 8.4 & 8.9
and discussed in the experimental section.

8.3 Generation of pitch variation curve

Once frequency tracks have been generated for a section of music, the pitch
variation curve can be estimated. For the nth block of data there will be
Rn frequency estimates corresponding to the Rn tonal components which
were being tracked at block n. The ith tonal component has a nominal
(unknown) centre frequency F i

0 which is assumed to remain fixed over the
period of interest in the uncorrupted music data, and a measured frequency
F i

n. Variations in F i
n are attributed to the pitch variation value Pn for block

n and a noise component V i
n. This noise component is composed both of

inaccuracies in the frequency estimation stage and genuine ‘performance’
pitch deviations (hopefully small) in tonal components.

Two modelling forms are considered. In both cases frequency measure-
ments F i

n are expressed as the product of centre frequency F i
0 and the pitch

variation value Pn in the presence of noise. In the first case a straightfor-
ward additive form for the noise is assumed:

F i
n = F i

0 Pn + V i
n, (n = 1, . . . , N, i = 1, . . . , Rn) (8.7)

This would seem to be a reasonable model where the noise is assumed
to be composed largely of additive frequency estimation errors from the
frequency tracking stage. However, it was mentioned that the noise term
must also account for true pitch variations in musical tones which might
include performance effects such as tremolo and vibrato. These may well
be multiplicative, which leads to the following perhaps more natural model:

F i
n = F i

0 Pn V
i
n, V i

n > 0 (8.8)

This is equivalent to making logarithmic frequency measurements of the
form:

f i
n = f i

0 + pn + vi
n (8.9)

where lower case characters denote the natural logarithm of the correspond-
ing upper case quantities. Such a model linearises the estimation tasks for
the centre frequencies and the pitch variation, a fact which will lead to
significant computational benefits over the additive noise case. A further
advantage of the multiplicative model is that all of the unknowns in the
log-transformed domain can be treated as random variables over the whole
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real axis, which means that the Gaussian assumption can be made without
fear of estimating invalid parameter values (i.e. negative frequencies and
pitch variation functions).

We now consider the multiplicative noise modelling assumption in more
detail, obtaining the likelihood functions which will be required for the
subsequent Bayesian analysis. For full details of the use of the additive
noise model, see [70, 78, 71].

For the time being we treat the number of tonal components as fixed
for all blocks with Rn = R, for notational simplicity. This restriction is
removed in a later section.

For the log-transformed multiplicative model of (8.9) we can write in
vector notation the observation equation at times n for the logarithmically
transformed variables as

fn = f0 + pn 1R + vn, (n = 1, . . . , N) (8.10)

where 1m is the column vector with m elements containing all ones, and

fn = [f1
n f

2
n . . . fR

n ]
T
,

f0 = [f1
0 f

2
0 . . . fR

0 ]
T
,

vn = [v1
n v

2
n . . . vR

n ]
T
.

The corresponding matrix notation for all N data blocks is then:

F = f0 1N
T + 1RpT + V (8.11)

where

F = [ f1 f2 · · · fN ], (8.12)

p = [ p1 p2 · · · pN ]T , (8.13)

V = [ v1 v2 · · · vN ] (8.14)

If we now assume a specific noise distribution for the log-noise terms
{vi

n}, it is straightforward to obtain the likelihood function for the data,
p(F | p, f0). The simplest case analytically assumes that the noise terms
are i.i.d. Gaussian random variables with variance σ2

v . This is likely to be
an over-simplification, especially for the ‘modelling error’ noise component
which may contain decidedly non-white noise effects such as vibrato. Nev-
ertheless, this i.i.d. Gaussian assumption has been used for all of our work
to date and very successful results have been obtained. The likelihood is
then given by:

p(F | p, f0) =
1

(2πσ2
v)

N R
2

exp

(

− 1

2σ2
v

Q

)

(8.15)
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where

Q =

N
∑

n=1

R
∑

i=1

(vi
n)

2
(8.16)

since the Jacobian of the transformation V → F conditioned upon f0 and
p, defined by (8.11), is unity. We now expand Q using (8.11) to give:

Q = trace(VVT ) (8.17)

= trace(F FT − 2F (1N f0
T + p1R

T )

+ f01N
T1N f0

T + 1RpTp1R
T + 2 f01N

T p1R
T ) (8.18)

= trace(F FT ) − 2 f0
T F 1N − 2 1R

TFp

+ N f0
T f0 + R pTp + 2 1N

Tp 1R
T f0 (8.19)

where the result (trace(u vT ) = vT u) has been used to obtain (8.19) from
(8.18).

Differentiation w.r.t. f0 and p gives the following partial derivatives:

∂Q

∂f0
= −2F 1N + 2N f0 + 2 1R×Np (8.20)

∂Q

∂p
= −2 FT1R + 2 R p + 2 1N×Rf0 (8.21)

where 1N×M is the (N×M)-matrix containing all unity elements. A simple
ML estimate for the unknown parameter vectors would be obtained by
setting these gradient expressions to zero. This, however, leads to a singular
system of equations, and hence the ML estimate is not well-defined for the
multiplicative noise assumption. For the additive modelling assumption, a
ML solution does exist, but is found to cause noise-fitting in the estimated
pitch variation vector. In the methods discussed below, prior regularising
information is introduced which makes the estimation problem well-posed
and we find that a linear joint estimate is possible for both f0 and p since
(8.20) and (8.21) involve no cross-terms between the unknowns.

8.3.1 Bayesian estimator

The ML approach assumes no prior knowledge about the pitch variation
curve and as such is not particularly useful since the solution vector tends to
be very noisy for the additive noise assumption (see experimental section)
or ill-posed for the multiplicative assumption. The Bayesian approach is
introduced here as a means of regularising the solution vector such that
noise is rejected in order to be consistent with qualitative prior information
about the wow generation process. In (8.6) the posterior distribution for
unknown parameters is expressed in terms of the raw input data. We now
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assume that the raw data has been pre-processed to give frequency tracks
F. The joint posterior distribution for p and f0 can then be expressed as:

p(p, f0 | F) ∝ p(F | p, f0) p(p, f0) (8.22)

which is analogous to equation (8.6) except that the frequency track data
F rather than the raw time domain signal is taken as the starting point for
estimation. This is sub-optimal in the sense that some information will in-
evitably be lost in the pre-processing step. However, from the point of view
of analytical tractability working with F directly is highly advantageous.

Since we are concerned only with estimating p it might be argued that
f0 should be marginalised from the a posteriori distribution. In fact, for
the multiplicative noise model the marginal estimate for p can be shown to
be identical to the joint estimate since the posterior distribution is jointly
Gaussian in both p and f0.

A uniform (flat) prior is assumed for f0 throughout since we have no
particular information known about the distribution of centre frequencies
which is not contained in the frequency tracks, hence we can write p(p, f0) ∝
p(p). The prior chosen for p will depend on what is known about the source
mechanism for pitch defects. For example if the defect is caused by a poorly
punched centre-hole in a disc recording, a sinusoidal model with period close
to the period of angular rotation of the disc may be appropriate, while for
more random pitch variations, caused perhaps by stretched analogue tape
or hand-cranked disc and cylinder recordings, a stochastic model must be
used. We place most emphasis on the latter case, since a system with the
ability to identify such defects will have more general application than a
system constrained to identify a deterministic form of defect such as a
sinusoid. One vital piece of prior information which can be used in many
cases is that pitch variations are smooth with time: the mechanical speed
variations which cause wow very rarely change in a sudden fashion, so we
don’t expect a very ‘rough’ waveform or any sharp discontinuities.

In all cases considered here the prior on p is zero-mean and Gaussian. In
the general case, then, we have p(p) = N(0,Cp), the Gaussian distribution
with mean vector zero and covariance matrix Cp (see appendix A.2):

p(p) =
1

(2π)
N
2 |Cp|1/2

exp

(

−1

2
pTCp

−1p

)

(8.23)

The posterior distribution can be derived directly by substituting (8.15)
and (8.23) into (8.22):

p(p, f0 | F) ∝ exp

(

− 1

2σ2
v

Qpost

)

(8.24)

where

Qpost = Q + σ2
v pTCp

−1p (8.25)



180 8. Restoration of Pitch Variation Defects

and we can then obtain the partial derivatives:

∂Qpost

∂f0
=
∂Q

∂f0
= −2F 1N + 2 N f0 + 2 1R×Np (8.26)

∂Qpost

∂p
=
∂Q

∂p
+ 2 σ2

v Cp
−1p

= −2 FT1R + 2 R p + 2 1N×Rf0 + 2
σ2

v

σ2
e

Cp
−1p (8.27)

If (8.26) and (8.27) are equated to zero, linear estimates for f0 and p,
in terms of each other, result. Back-substituting for f0 gives the following
estimate for p alone:

pMAP =

((

R I − R

N
1N×N

)

+ σ2
vCp

−1

)−1 (

I− 1

N
1N×N

)

FT 1R

(8.28)

This linear form of solution is one of the principal advantages of a multi-
plicative noise model over an additive model for the pitch correction prob-
lem.

8.3.2 Prior models

Several specific forms of prior information are now considered. The first
assumes that pitch curves can be modelled as an AR process. This is quite
a general formulation which can incorporate most forms of pitch defect
that we have encountered. For example, the poles of the AR process can be
centred upon 78/60Hz and close to the unit circle in cases where the defect
is known to originate from a 78rpm recording. A second form of prior in-
formation, which can be viewed as a special case of the AR model, includes
the prior information already mentioned about the expected ‘smoothness’
of the pitch curves. It is usually the case that pitch variations occur in a
smooth fashion with no sharp discontinuities. This intuitive form of prior
information is thus a reasonable assumption. Finally, deterministic mod-
els for pitch variation are briefly considered, which might be appropriate
for modelling gradual pitch shifts over a longer period of time (such as
a turntable motor which gradually slowed down over a period of several
seconds during the recording or playback process). We have successfully
applied all three forms of prior to the correction of pitch variations in real
recordings.

8.3.2.1 Autoregressive (AR) model

This is in some sense the most general of the pitch variation models con-
sidered, allowing for a wide range of pitch defect mechanisms from highly
random to sinusoidal, depending on the parameters of the AR model and
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the driving excitation variance. Recall from chapter 4 that an AR process
driven by a Gaussian white independent zero-mean noise process with vari-

ance σ2
e has inverse covariance matrix Cp

−1 ≈ AT A
σ2

e
(see (4.48)), where A

is the usual matrix of AR coefficients. To obtain the MAP estimate for p
using an AR model prior, we simply substitute for Cp

−1 in result (8.28):

pMAP =

((

R I − R

N
1N×N

)

+
σ2

v

σ2
e

AT A

)−1 (

I − 1

N
1N×N

)

FT1R

(8.29)

Note, however, that the estimate obtained assumes knowledge of the AR
coefficients as well as the ratio λ = σ2

v/σ
2
e . These are generally unknown

for a given problem and must be determined beforehand. It is possible to
estimate the values for these parameters or to marginalise them from the
posterior distributions. Such an approach leads to a non-linear search for
the pitch variation estimate, for which the EM (expectation-maximisation)
algorithm would be a suitable method; we do not investigate this here,
however, and thus the parameter values are considered as part of the prior
modelling information. For the general AR modelling case this might seem
impractical. However, it is often possible to choose parameters for a low
order model (P = 2 or 3) by appropriate positioning of the poles of the AR
filter to reflect any periodicity in the pitch deviations (such as a 78/60Hz
effect for a 78rpm recording) and selecting a noise variance ratio which
gives suitable pitch variation estimates over a number of trial processing
blocks. When sufficient prior information is not available to position the AR
poles, the smoothness prior of the next section may be more appropriate.
In this case all parameter values except for the noise variance ratio are
fixed. The noise variance ratio then expresses the expected ‘smoothness’ of
pitch curves.

8.3.2.2 Smoothness Model

This prior is specifically designed to maximise some objective measure of
‘smoothness’ in the pitch variation curve. This is reasonable since it can
usually be assumed that pitch defects vary in a smooth fashion. Such an
approach is well known for the regularisation of least-squares and Bayesian
solutions (see, e.g. [198, 150, 117, 103]). One suitable smoothness measure
for the continuous case is the integral of order q derivatives:

∫ t

0

∣

∣

∣

∣

dqpw(τ)

dτq

∣

∣

∣

∣

2

dτ (8.30)

where the time interval for wow estimation is (0, t). In the discrete case the
derivatives can be approximated by finite differencing of the time series: the
first difference is given by d1

n = pn − pn−1, the second by d2
n = d1

n − d1
n−1,
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etc. Written in matrix form we can form the sum squared of the qth order
differences as follows:

QS =

N
∑

n=q+1

(dq
n)

2
= pT Dq

T Dq p (8.31)

where Dq is the matrix which generates the vector of order q differences
from a length N vector. An appropriate Gaussian prior which favours vec-
tors p which are ‘smooth’ to order q is then

p(p) ∝ exp
(

−α
2
QS

)

(8.32)

Substitution of covariance matrix Cp
−1 = αDq

T Dq into equation (8.28)
leads to the MAP estimate for the smoothness prior model. In a similar
way to the AR model we can define a regularising constant λ = σ2

vα which
reflects the degree of ‘smoothness’ expected for a particular problem.

Such a prior is thus a special case of the AR model with fixed parameters
and poles on the real axis at unity radius (for q = 2, the second order case,
the parameters are a = [ 2 − 1 ]T ). The smoothness prior thus eliminates
the need for AR coefficient estimation, although λ must still be selected.
As before, λ could be estimated or marginalised from the posterior distri-
bution, but the same arguments apply as for the AR modelling case. In
practice it is usually possible to select a single value for λ which gives suit-
able pitch variation curve estimates for the whole of a particular musical
extract.

8.3.2.3 Deterministic prior models for the pitch variation

In some cases there will be specific prior information available about the
form of the pitch variation curve. For example, the pitch variation may
be known to be sinusoidal or to consist of a linear pitch shift over a time
interval of many seconds. In these cases deterministic basis functions can be
added to the prior pitch model, in much the same way as for the AR+basis
function interpolators described in chapter 5. We do not present the details
here as they can easily be obtained through a synthesis of ideas already
discussed in this and earlier chapters. We do note, however, that both
sinusoidal and linear pitch shift priors have been used successfully on a
number of real recordings.

8.3.3 Discontinuities in frequency tracks

The above results apply only to frequency tracks which are contiguous over
the whole time window of interest (recall that we fixed Rn, the number of
tracks at time n, to be constant for all n). In practice, however, frequency
tracks will have gaps and discontinuities corresponding to note changes
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in the musical material and possibly errors in the tracking algorithm. In
some cases all tracks may disappear during pauses between notes. The
likelihood expressions developed above can be straightforwardly modified
to incorporate these discontinuities which leads to a small change in the
form of the MAP estimate.

Each frequency track is now assigned a ‘birth’ and ‘death’ index bi and
di, obtained from the frequency tracking algorithm, such that bi denotes
the first time index within the block at which f0i is present (‘active’) and
di the last (each track is then continuously ‘active’ between these indices).

The model equation can now be re-written for the multiplicative noise
case as

f i
n =

{

f i
0 + pn + vi

n, bi ≤ n ≤ di

0, otherwise
, i = 1...Rmax (8.33)

Rmax is the total number of tonal components tracked in the interval 1 to
N . At block n there are Rn active tracks, and the length of the ith track
is given by Ni = di − bi + 1. Q (see (8.16)) is as before defined as the
sum squared of all the noise terms {vi

n}, and differentiation of Q yields the
following modified gradient expressions (c.f. (8.20)-(8.21)):

∂Q

∂f0
= −2F 1N + 2 diag(N1, N2, ..., NRmax) f0 + 2 M p (8.34)

∂Q

∂p
= −2 FT1Rmax + 2 diag(R1, R2, ..., RN ) p + 2 MT f0 (8.35)

[F]pq = fp
q and M is the (Rmax ×N) matrix defined as:

[M]pq =

{

1, [F]pq > 0

0, otherwise
(8.36)

In other words elements of M ‘flag’ whether a particular frequency track
element in F is active. This modified form for Q and its derivatives are
substituted directly for (8.20) and (8.21) above to give a slightly modified
form of the Bayesian estimator (8.28) which is used for pitch estimation on
real data.

8.3.4 Experimental results in pitch curve generation

Some examples of processing to generate pitch variation curve estimates
are now presented. Two musical extracts sampled at 44.1kHz are used for
the experiments.

The first example, ‘Viola’, is a simple extract of string music taken from
a modern CD quality digital recording. There are no significant pitch de-
fects on the recording so artificial pitch defects are generated to test the
effectiveness of the pitch variation algorithms. The artificial pitch variation
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is sinusoidal (see figure 8.3). This was applied to the uncorrupted signal
using a resampling operation similar to that discussed shortly in section
8.4.

The second example, ‘Midsum’, is taken from a poor quality 78rpm disc
recording of orchestral music which exhibits a large amount of ‘wow’ degra-
dation. The only available source for the recording is a second or third gen-
eration analogue tape copy of the 78rpm master so it is not known whether
the ‘wow’ originates from the disc or tape medium and whether a regular or
periodic degradation can be assumed. The high broad-band noise content
of this source means that this is a testing environment for the frequency
tracking algorithm.

Both extracts have initially been pre-processed to generate frequency
tracks which are shown in figures 8.4 and 8.9. Frequency tracking is lim-
ited to the range 100Hz-1kHz and a new set of frequency track values is
generated once every 2048 input samples for a block of 4096 data samples
(i.e. a 50% block overlap scheme).

8.3.4.1 Trials using extract ‘Viola’ (synthetic pitch variation)

The first set of results, applied to extract ‘Viola’, are from the application
of the second differencing (q = 2) smoothness model (see section 8.3.2.2).
This model has been found to perform well for a wide variety of pitch
variation scenarios. If there is no particular reason to assume periodicity
in the pitch variation then this model is probably the most robust choice.
Figure 8.5 shows the estimated pitch curves using this model under both
additive and multiplicative noise assumptions. The noise variance ratios λ
have been chosen to give results with an appropriate degree of smoothness
from several ‘pilot’ runs with different values of λ. The graph shows very
little difference between the additive and multiplicative assumptions, which
both give a good approximation to the true pitch curve. For pitch variations
with peak-to-peak deviations within a few percent very little difference in
performance is generally observed from applying the two noise assumptions.
Thus the multiplicative assumption, with its computational advantage, is
adopted for remaining trials on extract ‘Viola’.

Figure 8.6 shows estimated pitch curves under the AR model and sinu-
soidal model assumptions. Both of these models are suited to pitch variation
curves which exhibit some periodicity, so performance is improved for this
example compared with the smoothness prior. For the AR model an order
2 system was selected with poles close to the unit circle. The pole angle was
selected by hand (θ = 0.13π in this case). This may seem artificial but in
a real-life situation the periodicity will often be known to a reasonable ap-
proximation (78rpm will be typical!) so a pole position in the correct range
can easily be selected. For this example the resulting pitch curve was found
to be fairly insensitive to errors in pole angle within ±30%. As should be
expected the sinusoidal model gives the best performance of all the models
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in this artificial case since the true pitch variation curve is itself sinusoidal.
Nevertheless the close agreement between the sinusoid model curve and the
true pitch curve gives an indication that a reasonable formulation is being
used for pitch curve estimation from the frequency tracks.

Figures 8.7 and 8.8 show the effect of varying λ over a wide range for the
smoothness model and also for the AR model with poles at angle ±0.13π on
the unit circle. λ = 1 corresponds to very little prior influence on the pitch
variation curve. This estimate identifies general trends in the pitch curve
but since there is very little regularisation of the solution this estimate is
very noisy. Increasing λ leads to increasingly smooth solutions. In the case
of the smoothness prior (figure 8.8) the solution tends to zero amplitude
as λ becomes large since its favoured solution is a straight line. Hence the
solution is sensitive to choice of λ. The AR model solution (figure 8.10) is
less sensitive to λ since its favoured solution is now a sinusoid at normalised
frequency θ, the pole angle. This feature is one possible benefit from using
the AR model when periodic behaviour can be expected.

8.3.4.2 Trials using extract ‘Midsum’ (non-synthetic pitch variation)

Figures 8.9 and 8.10 show frequency tracks and estimated pitch curves
respectively for example ‘Midsum’. Pitch curves are estimated using the
differential smoothness model under both additive and multiplicative noise
assumptions. Once again little significant difference is observed between the
two assumptions, which both give reasonable pitch curves. The appearance
of these curves as well as the application of AR and sinusoid models (results
not shown) indicates that the smoothness model is the best choice here
since there is little periodicity evident in the frequency tracks. Listening
tests performed with restorations from these pitch curves (see next section)
confirm this.

8.4 Restoration of the signal

The generation of a pitch variation curve allows the final restoration stage
to proceed. Equation (8.5) shows that, in principle, perfect reconstruction of
the undegraded signal is possible in the continuous time case, provided the
time warping function is known. In the case of band-limited discrete signals
perfect reconstruction will also be possible by non-uniform resampling of
the degraded samples. The degraded signal xw(nT ) is considered to be
non-uniform samples from the undegraded signal x(t) with non-uniform
sampling instants given by the time-warping function fw(nT ), where 1/T
is the sample rate for x(t). Provided the average sampling rate for the non-
uniformly sampled signal x(fw(nT )) is greater than the Nyquist rate for
x(t) it is then possible to reconstruct x(nT ) perfectly from x(fw(nT )) (see
e.g. [122]). Note however that the pitch varies very slowly relative to the
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FIGURE 8.3. Synthetically generated pitch variation.
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FIGURE 8.4. Frequency tracks generated for example ‘Viola’.
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FIGURE 8.5. Pitch variation estimates for example ‘Viola’ using differential
smoothness model: dotted line - true variation; solid line - additive model; dashed
line - multiplicative model
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FIGURE 8.7. Pitch variation estimates for example ‘Viola’ using differential
smoothness model: dotted line - true variation; solid line - λ = 1; dashed line
- λ = 40; dot-dash line - λ = 400
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FIGURE 8.8. Pitch variation estimates for example ‘Viola’ using AR model:
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FIGURE 8.9. Frequency tracks for example ‘Midsum’
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FIGURE 8.10. Pitch variation estimates for example ‘Midsum’ using differential
smoothness model: solid line - additive model; dashed line - multiplicative model
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sampling rate. Thus, at any given time instant it is possible to approximate
the non-uniformly sampled input signal as a uniformly sampled signal with
sample rate 1/T ′ = pw(t)/T . The problem is then simplified to one of
sample rate conversion for which there are well-known techniques (see e.g.
[41, 159]). Since the sample rate is slowly changing with time, a conversion
method must be chosen which can easily be adjusted to arbitrary rates. A
method which has been found suitable under these conditions is resampling
with a truncated sinc function (see e.g. [41, 149]). In this method the output
sample x(nT ) is estimated from the closest (2M + 1) corrupted samples as

x̂(nT ) =

M
∑

m=−M

w(mT ′ − τ) sinc(α(mT ′ − τ)) xw((nw −m)T ′) (8.37)

where α = min(1, T ′/T ) ensures band-limiting to the Nyquist frequency,
nw is the closest corrupted sample to the required output sample n, τ =
nT − fw(nwT ) is the effective time delay and w(t) is a time domain win-
dowing function with suitable frequency characteristics. Such a scheme can
be implemented in real-time using standard digital signal processing chips.

8.5 Conclusion

Informal listening tests indicate that the proposed method is capable of
a very high quality of restoration of gramophone recordings which would
otherwise be rendered useless owing to high levels of wow. The algorithm
has been tested on a wide range of pitch defects from commercial recordings
and found to work robustly in many different scenarios. Improvements to
the algorithms could involve a joint peak-tracking/pitch curve estimation
scheme, for which some of the more sophisticated techniques discussed in
chapter 12 might be applied.
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9

A Bayesian Approach to Click
Removal

Clicks are the most common form of localised degradation encountered in
audio signals. This chapter presents techniques for the removal of clicks
based on an explicit model for the process by which these artefacts are
generated. This work has previously been presented in [76, 79]. A full dis-
cussion and review of existing restoration methods for clicks is given in
chapter 5.

Within the framework presented here, clicks are modelled as random
amplitude disturbances occurring at random positions in the waveform.
When a suitable form is chosen for the random processes which generate
the clicks, the proposed model can accurately represent the characteristics
of degradation in real audio signals. The detection and restoration proce-
dure then becomes a problem in decision and estimation theory and we
apply the Bayesian principles discussed in chapter 4. This approach al-
lows for the incorporation of modelling information into the problem in a
consistent fashion which we believe is not possible using more traditional
methods. The problem is formulated such that each possible permutation
of the corrupted samples in a particular section of data is represented by
a separate state in a classification scheme. Bayes decision theory is then
applied to identify which of these possible states is ‘most probable’. This
state is chosen as the detection estimate.

Since this work is essentially concerned with the identification of aberrant
observations in a time series, there are many parallels with work which has
been done in the field of model-based outlier treatment in statistical data;
see for example [22, 88, 13, 1, 2] for some texts of particular relevance.



192 9. A Bayesian Approach to Click Removal

This chapter develops the fundamental theory for detection using our
model of click-type discontinuities. We then consider the case of
AR-modelled data and particular forms of the click generating process.
Classification results are derived which form the basis of both a block-based
detector and a sequential detection scheme derived in the next chapter.
Extensions to the basic theory are presented which consider marginalised
detectors, the case of ‘noisy data’ and multi-channel detection. A special
case of the detector is then shown to be equivalent to the simple detectors
proposed by Vaseghi and Rayner [190, 187]. Experimental results from the
methods are presented in chapter 11.

9.1 Modelling framework for click-type
degradations

Consider a sampled data sequence {xm} which is corrupted by a random,
additive noise process to give a corrupted data sequence {ym}. The noise
samples are generated by two processes. The first is a binary (1/0) noise
generating process, {im}, which controls a ‘switch’. The switch is connected
only when im = 1, allowing a second noise process {nm}, the noise am-
plitude process, to be added to the data signal xm. ym is thus expressed
as:

ym = xm + imnm (9.1)

The noise source is thus a switched additive noise process which corrupts
xm only when im = 1. Note that the precise grouping of corrupted samples
will depend on the statistics of {im}. For example, if successive values of
im are modelled by a Markov chain (see e.g. [174]), then the transition
probabilities of the Markov chain will describe some degree of ‘cohesion’
between values of im, i.e. the corrupting noise will tend to occur in groups
or ‘bursts’. We now see how such a model can be used to represent click
degradation in audio signals since, as we have observed before, clicks can
be viewed as groups of corrupted samples random in length and position.
The amplitude of these clicks is assumed to be generated by some random
process {nm} whose samples need not in general be i.i.d. and might also
depend on the noise generating process {im}.

Under this model the tasks of noise detection and restoration can be
defined as follows: detection identifies the noise switching values {im} from
the observed data {ym}, while restoration attempts to regenerate the input
data {xm} given observations {ym}.

Note that a more realistic formulation might generalise the noise process
to switch between a high amplitude ‘impulsive’ disturbance {nm

1} and a
low level background noise process {nm

0}. This then represents a system
with a continuous low level disturbance (such as broad band background
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FIGURE 9.1. Schematic form for ‘noisy data’ model

noise) in addition to impulsive click-type disturbances. The corrupted wave-
form is modified to:

ym = xm + (1 − im) nm
0 + im nm

1 (9.2)

This model will be referred to as the ‘noisy data’ case. In a later section it is
shown that the optimal detector is obtained as a straightforward extension
of the detector for the purely impulsive case (9.1). Figure 9.1 shows a
schematic form for the noisy data model. The standard click model of (9.1)
is obtained by setting n0

m = 0.

9.2 Bayesian detection

The detection of clicks is considered first and the restoration procedure is
found to follow as a direct consequence. For a given vector of N observed
data samples y = [y1...ym...yN ]T we may write for the case of additive
noise

y = x + n (9.3)
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where x is the corresponding data signal and n is the random additive
switched noise vector containing elements imnm (which can of course be
zero for some or all of its elements). Define a corresponding vector i with
binary elements containing the corresponding samples of {im}. Note that
complete knowledge of i constitutes perfect detection of the corrupted sam-
ples within vector y. The discrete N -vector i can take on any one of 2N

possible values and each value is considered to be a state within a classifi-
cation framework. For the detection procedure we must estimate the true
detection state (represented by i) from the observed data sequence y.

Within a Bayesian classification scheme (see section 4.1.4) we can esti-
mate the detection ‘state’ i by calculating the posterior probability p(i | y)
for a postulated detection state i. The major part of this calculation is
determination of the state likelihood , p(y | i) (see 4.18) which will be the
major concern of the next few sections. A general approach is derived ini-
tially in which the underlying distributions are not specified. Subsequent
sections consider data modelled as an AR process with particular noise
statistics.

9.2.1 Posterior probability for i

If i is treated as a discrete random vector whose elements may take on
values 0 and 1 in any combination, we may derive the probability of i, the
detection state, conditional upon the corrupted data y and any other prior
information available to us. This posterior probability is expressed using
Bayes rule as (see 4.18):

p(i | y) =
p(y | i) p(i)

p(y)
(9.4)

p(y | i) is the likelihood for state i, which will be considered shortly.
p(i) is the prior probability for the discrete detection vector, which will be

referred to as the noise generator prior. This discrete probability, defined
only for elements of i equal to 1 or 0, reflects any knowledge we have
concerning the noise generating process {im}. p(i) will contain any prior
information about the relative probability of various click lengths and their
frequencies of occurrence. A ‘uniform’ prior assigns equal prior probability
to all noise configurations. However, we know from experience that this does
not represent a typical noise generation process. For example, uncorrupted
samples are usually far more likely than corrupted samples (a 20:1 ratio is
typical), and as we have discussed in the previous section, the corruption
tends to occur in ‘bursts’ of random length. A prior which expresses this
knowledge may be more successful than a uniform prior which assumes all
detections i are equally probable. A discussion of suitable priors on i is
found in the next chapter.
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p(y) is a constant for any given y and serves to normalise the posterior

probability p(i|y). It can be calculated as p(y) =
∑

i

p(y | i) p(i), where

the summation is over all 2N possible detection states i.
For classification using a MAP procedure (see section 4.1.4) the posterior

probability p(i | y) must in principle be evaluated for all 2N possible i and
the estimated state is then that which maximises the posterior probability
(although in the next chapter we devise sub-optimal schemes for practical
operation).

The likelihood p(y | i) is obtained from modelling considerations of both
data and noise (see later).

We now adopt a notation for partitioning matrices and vectors according
to the elements of i which is identical to that defined in section 5.2. In
other words vectors are partitioned into elements which correspond to noisy
(im = 1) or clean (im = 0) data. Specifically the corrupt input data y
will be partitioned as y(i) and y

−(i), the true data x will be partitioned
as x(i) and x

−(i) and the autoregressive parameter matrix A (see 4.3 and
next section) will be partitioned as A(i) and A

−(i). Clearly y
−(i) = x

−(i)

is the section of uncorrupted data and the corrupting noise is given by
n(i) = y(i) − x(i).

Assume that the PDFfor the corrupting noise during bursts is known to
be pn(i)|i(.). In addition assume a PDFfor the uncorrupted data, px(x). If
the noise is assumed statistically independent of the data x the likelihood
can be obtained as (see appendix D):

p(y | i) =

∫

x(i)

pn(i)|i(y(i) − x(i) | i) px(Ux(i) + Ky
−(i))dx(i) (9.5)

where U and K are ‘rearrangement’ matrices such that x = Ux(i) +Ky
−(i),

as defined in section 5.2.1. The likelihood expression can be seen to be anal-
ogous to the evidence calculation for the model selection scheme with un-
known parameters (see 4.22), except we are now integrating over unknown
data values rather than unknown parameters.

Note that the ‘zero’ hypothesis which tests whether i = 0, (i.e. no sam-
ples are corrupted), is obtained straightforwardly from equation 9.4 by
considering the case of i = 0, the zero vector. No integration is required
and the resulting likelihood expression is simply

p(y | i = 0) = px(y). (9.6)

In the next section we consider detection when the signal {xm} is modelled
as a Gaussian AR process.

9.2.2 Detection for autoregressive (AR) processes

The previous section developed a general probability expression for de-
tection of noise bursts. We now address the specific problem of detect-
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ing burst-type degradation for particular audio signal models. We consider
only the likelihood calculation since the posterior probability of (9.4) is
then straightforward to evaluate. Inspection of (9.5) shows that we require
knowledge of two probability densities: pn(i)|i(.), the density for noise sam-
ples in corrupted sections, and px(.), the density for the signal samples.

9.2.2.1 Density function for signal, px(.)

The signal model investigated here is the autoregressive (AR) model (see
section 4.3), in which data samples can be expressed as a weighted sum of
P previous data samples to which a random excitation value is added:

xm =

P
∑

i=1

aixm−i + em. (9.7)

The excitation sequence {em} is modelled as zero-mean white Gaussian
noise of variance σ2

e , and the signal {xm} is assumed stationary over the
region of interest. Such a model has been found suitable for many examples
of speech and music and has the appeal of being a reasonable approximation
to the physical model for sound production (excitation signal applied to
‘vocal tract’ filter).

The conditional likelihood for the vector of AR samples is then given by
(see section 4.3.1, result (4.49)):

p(x1 | x0) =
1

(2πσ2
e)

N−P
2

exp

(

− 1

2σ2
e

xT ATA x

)

(9.8)

where the expression is implicitly conditioned on the AR parameters a, the
excitation variance σ2

e and the total number of samples (including x0) is
N .

We then adopt the approximate likelihood result (see (4.50)):

px(x) ≈ p(x1|x0), N >> P (9.9)

As noted in section 4.3.1, this result can easily be made exact by the in-
corporation of the extra term p(x0), but we omit this here for reasons of
notational simplicity. Furthermore, as also noted in section 4.3.1, results
from using this approximation will be exact provided that the first P data
points x0 are uncorrupted. For the detection procedure studied here this
simplification will imply that the first P samples of i are held constant at
zero indicating no corruption over these samples. In a block-based scheme
we could, for example, choose to make x0 the last P samples of restored
data from the previous data block, so we would be reasonably confident of
no corrupted samples within x0.
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9.2.2.2 Density function for noise amplitudes, pn(i)|i(.)

Having considered the signal model PDFpx(.) we now consider the noise
amplitude density function, pn(i)|i, which is the distribution of noise ampli-
tudes within bursts, given knowledge of the noise burst positions i.

The precise form for pn(i)|i(.) is not in general known, but one possible as-
sumption is that the noise samples within bursts are mutually independent
and drawn from a Gaussian zero-mean process of variance σ2

n. Observa-
tion of many click-degraded audio signals indicates that such a noise prior
may be reasonable in many cases. Note that if more explicit information is
known about the noise PDFduring bursts this may be directly incorporated.
In particular, a more general Gaussian distribution is easily incorporated
into the algorithm as described here. The assumption of such a zero-mean
multivariate Gaussian density with covariance matrix Rn(i)

leads to a noise
amplitude density function of the form (see appendix A):

pn(i)|i(n(i) | i) =
1

(2π)l/2 | Rn(i)
|1/2

exp

(

−1

2
n(i)

TRn(i)

−1n(i)

)

(9.10)

where l = (iT i) is the number of corrupted samples indicated by detection
vector i.

9.2.2.3 Likelihood for Gaussian AR data

The noise and signal priors can now be substituted from (9.10) and (9.8)
into the integral of equation (9.5) to give the required likelihood for i.
The resulting expression is derived in full in appendix D.1 and after some
manipulation may be written in the following form:

p(y | i) =
σl

e exp
(

− 1
2σ2

e
EMIN

)

(2πσ2
e)

N−P
2 | Rn(i)

|1/2| Φ |1/2
(9.11)

where

EMIN = E0 − θ
TxMAP

(i) (9.12)

xMAP

(i) = Φ−1θ (9.13)

Φ = A(i)
TA(i) + σ2

e Rn(i)

−1 (9.14)

θ = −
(

A(i)
TA

−(i) y
−(i) − σ2

e Rn(i)

−1y(i)

)

(9.15)

E0 = y
−(i)

TA
−(i)

TA
−(i) y

−(i) + σ2
e y(i)

T Rn(i)

−1y(i) (9.16)

Equations (9.6) and (9.8) lead to the following straightforward result for
the likelihood for no samples being erroneous (i = 0):

p(y | i = 0) =
1

(2πσ2
e)

N−P
2

exp

(

− 1

2σ2
e

EMIN

)

(9.17)
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where

EMIN = yT AT A y. (9.18)

The term xMAP
(i)

(9.13) is the MAP estimate for the unknown data x(i)

given the detection state i and is calculated as a byproduct of the likelihood
calculation of (9.11)-(9.16). xMAP

(i) has already been derived and discussed
in the earlier click removal chapter in section 5.2.3.4. Under the given mod-
elling assumptions for signal and noise, xMAP

(i) is clearly a desirable choice for
restoration for a given detection state i, since it possesses many useful prop-
erties including MMSE (see 4.1.4) for a particular i. Thus we can achieve
joint detection and restoration using the Bayes classification scheme by
choosing the MAP detection state i and then restoring over the unknown
samples for state i using xMAP

(i) . This is a suboptimal procedure, but one
which is found to be perfectly adequate in practice.

A special case of the noise statistics requires the assumption that the
corrupting noise samples n(i) are drawn from a zero-mean white Gaussian
noise process of variance σ2

n. In this case the noise autocorrelation matrix
is simply σ2

nI with I the (l× l) identity matrix, and thus Rn(i)

−1 = 1
σ2
n
I and

| Rn(i)
|= σ2l

n . In this case make the following modifications to (9.11)-(9.16):

p(y | i) =
µl exp

(

− 1
2σ2

e
EMIN

)

(2πσ2
e)

N−P
2 | Φ |1/2

(9.19)

and

EMIN = E0 − θTxMAP

(i)
(9.20)

xMAP

(i)
= Φ−1θ (9.21)

Φ = A(i)
TA(i) + µ2 I (9.22)

θ = −
(

A(i)
TA

−(i) y
−(i) − µ2 y(i)

)

(9.23)

E0 = y
−(i)

T A
−(i)

TA
−(i) y

−(i) + µ2 y(i)
T y(i) (9.24)

where µ = σe/σn. This simplification is used in much of the following work
and it appears to be a reasonable model for the degradation in many audio
signals.

As derived in section 5.2.2 above, the standard AR-based interpolator
effectively discards the observed data over the corrupted sections. We can
achieve the same result within our click modelling framework by allowing
the noise variance σ2

n to become very large. As the ratio µ = σe/σn → 0
the noise distribution tends to uniform and the corrupted data is ignored.
Taking the limit makes the following modifications to equations (9.22)-
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(9.24):

Φ = A(i)
TA(i) (9.25)

θ = −A(i)
TA

−(i) y
−(i) (9.26)

E0 = y
−(i)

TA
−(i)

TA
−(i) y

−(i) (9.27)

and in this case xMAP
(i)

is identical to the xLS
(i)

, the standard AR-based inter-
polation.

9.2.2.4 Reformulation as a probability ratio test

The detector can be reformulated as a probability ratio test: specifically,
form the ratio Λ(i) of posterior probability for detection state i to that for
i = 0, the ‘null’ hypothesis. Using results (9.4), (9.11) and (9.17) we obtain

Λ(i) =
p(i | y)

p(i = 0 | y)
=

p(y | i) p(i)
p(y | i = 0) p(i = 0)

(9.28)

=
p(i)

p(i = 0)

σl
e exp

(

− 1
2σ2

e
∆EMIN

)

| Rn(i)
|1/2| Φ |1/2

(9.29)

which is the ratio of likelihoods for the two states, weighted by the rel-

ative prior probabilities p(i)
p(i=0) . ∆EMIN is the difference between EMIN for

detection state i (9.12) and EMIN for the null state i = 0 (9.18). The whole
expression is perhaps more conveniently written as a log-probability ratio:

log(Λ(i)) = log

(

p(i)

p(i = 0)

)

+
1

2
log

(

σ2l
e

| Rn(i)
|

)

− 1

2
log | Φ | − 1

2σ2
e

∆EMIN (9.30)

where the only data-dependent term is ∆EMIN and the remaining terms
form a constant threshold for a given state i compared with the null state
i = 0. We now consider this term in some detail since it has an intuitively
appealing form and will be used later in the chapter. Expansion of ∆EMIN

using (9.18) and (9.12-9.16) and some manipulation gives the result

∆EMIN = −
(

y(i) − xMAP

(i)

)T
Φ
(

y(i) − xMAP

(i)

)

(9.31)

which can be seen as the error between the corrupted data y(i) and the
MAP data estimate xMAP

(i)
, ‘weighted’ by Φ. Broadly speaking, the larger

the error between interpolated signal xMAP
(i)

and corrupted data y(i), the
higher the probability that the data is corrupted.
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An alternative form for ∆EMIN is obtained by expanding Φ and xMAP
(i)

using (9.13) and (9.14) to give:

∆EMIN = −
(

y(i) −
(

A(i)
TA(i)

)−1

A(i)
TA

−(i)y−(i)

)T

(

A(i)
TA(i)

)T

Φ−1
(

A(i)
TA(i)

)

(

y(i) −
(

A(i)
TA(i)

)−1

A(i)
TA

−(i)y−(i)

)

(9.32)

= −
(

y(i) − xLS

(i)

)T
(

A(i)
T A(i)

)T

Φ−1
(

A(i)
TA(i)

)

(

y(i) − xLS

(i)

)

(9.33)

which shows a relationship with the LSAR interpolation xLS
(i) (see (5.15)).

The probability ratio form of the Bayes detector may often be a more useful
form for practical use since we have eliminated the unknown scaling factor
p(y) from the full posterior probability expression (9.4). Probability ratios
are now measured relative to the zero detection, so we will have at least
some idea how ‘good’ a particular state estimate is relative to the zero
detection.

9.2.3 Selection of optimal detection state estimate i

As discussed in section 4.1.4 the MAP state selection iMAP will correspond
to minimum error-rate detection. In order to identify iMAP it will in general
be necessary to evaluate the likelihood according to equations (9.11)-(9.16)
for all states i and substitute into the posterior probability expression of
(9.4) with some assumed (or known) noise generator prior p(i). The state
which achieves maximum posterior probability is selected as the final state
estimate and the corresponding MAP data estimate, xMAP

(i) , may be used
to restore the corrupted samples. This scheme will form the basis of the
experimental work in chapter 11. Methods are described there which reduce
the number of likelihood evaluations required in a practical scheme.

It is worth noting, however, that the MAP state estimate may not always
be the desired solution to a problem such as this. Recall from section 4.1.4
that the MAP state estimate is the minimum-risk state estimate for a loss
function which weights all errors equally. In the block-based click detection
framework the MAP estimator is equally disposed to make an estimate in
which all samples in the block are incorrectly detected as an estimate in
which all but one sample is correctly detected. Clearly the latter case is far
more acceptable in click detection for audio and hence we should perhaps
consider a modified loss function which better expresses the requirements
of the problem. One possibility would be a loss function which increases in
dependence upon the total number of incorrectly identified samples, given
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by ne = |ii − ij |2, where ii is the estimated state and ij is the true state.
The loss function for choosing ii when the true state is ij is then given by

λ(αi | ij) = f(ne) (9.34)

where f() is some non-decreasing function which expresses how the loss
increases with the number of incorrectly detected samples. A further so-
phistication might introduce some trade-off between the number of false
detections nf and the number of missed detections nu. These are defined
such that nf is the number of samples detected as corrupted which were
in fact uncorrupted and nu is the number of corrupted samples which go
undetected. If nf (ii, ij) is the number of false alarms when state ii is esti-
mated under true state ij , and likewise for the missed detections nu(ii, ij),
a modified loss function might be

λ(αi | ij) = f(β nf (ii, ij) + (1 − β) nu(ii, ij)) (9.35)

where β represents the trade-off between missed detections and false alarms.
Loss functions which do not lead to the MAP solution, however, are

likely to require the exhaustive calculation of (4.19) for all i, which will
be impractical. Sub-optimal approaches have been considered and are dis-
cussed in the next chapter on sequential detection, but for the block-based
algorithm experimentation is limited to estimation of the MAP detection
vector.

9.2.4 Computational complexity for the block-based algorithm

Computational complexity is largely determined by the matrix inversion
of equation (9.13). This will in general be an O(l3) operation, repeated for
each state evidence evaluation (with l varied appropriately). Note, however,
that if the detection vector i is constrained to detect only single, contiguous
noise bursts and a ‘guard zone’ of at least P samples is maintained both be-
fore and after the longest noise burst tested, the matrix will be Toeplitz, as
for the standard LSAR interpolation. Solution of the equations may then be
efficiently calculated using the Levinson-Durbin recursion, requiring O(l2)
floating point operations (see [52, 173]).

9.3 Extensions to the Bayes detector

Several useful extensions to the theory developed in this chapter are now
outlined.

9.3.1 Marginalised distributions

All of the detection results presented so far are implicitly conditioned on
modelling assumptions, which may include parameter values. For the Gaus-



202 9. A Bayesian Approach to Click Removal

sian AR data case the posterior distributions are conditional upon the val-
ues of the AR coefficients a, the excitation variance σ2

e , and the noise sam-
ple variance σ2

n (when the noise samples are considered to be independent
zero mean Gaussian variates, see (9.19)-(9.24)). If these parameters are un-
known a priori , as will usually be the case in real processing situations, it
may be desirable to marginalise. The resulting likelihood expressions will
then not depend on parameter estimates, which can be unreliable.

The authors are unaware of any analytic result for marginalising the AR
coefficients a from the likelihood expression (9.19). It seems unlikely that
an analytic result exists because of the complicated structure of EMIN and
| Φ |, both of which depend upon the AR coefficients. Detection is thus
performed using estimated AR coefficients (see chapter 11).

Under certain prior assumptions it is possible to marginalise analytically
one of the noise variance terms (σ2

e or σ2
n). The details are summarised in

appendix E. Initial experiments indicate that the marginalised detector is
more robust than the standard detector with fixed parameters, but a full
investigation is not presented here.

9.3.2 Noisy data

Detection under the ‘noisy data’ model (9.2) is a simple extension of the
work in this chapter. It is thought that use of this model may give some
robustness to ‘missed’ detections, since some small amount of smoothing
will be applied in restoration even when no clicks are detected. Recall that
corruption is modelled as switching between two noise processes {nm

0}
and {nm

1}, controlled by the binary switching process {im}. Making the
Gaussian i.i.d. assumption for noise amplitudes, the correlation matrix for
the noise samples Rn|i is equal to a diagonal matrix Λ, whose diagonal
elements λj are given by

λj = σ2
0 + ij(σ

2
1 − σ2

0) (9.36)

where σ2
0 and σ2

1 are the variances of the white Gaussian noise processes
{nt

0} and {nt
1}, respectively. Following a simplified version of the deriva-

tion given in appendices D and D.1 the state likelihood is given by:

p(y | i) =
σP

e exp
(

− 1
2σ2

e
EMIN

)

(2π)
N−P

2 | Λ |1/2| Φ |1/2
(9.37)

and

EMIN = E0 − θ
TxMAP (9.38)

xMAP = Φ−1θ (9.39)

Φ = AT A + σ2
e Λ−1 (9.40)

θ = σ2
e Λ−1y (9.41)

E0 = σ2
ey

T Λ−1y (9.42)
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This procedure is clearly more computationally expensive than the pure
click detection, since calculation of xMAP involves the inversion of an (N ×
N) matrix Φ. A further difficulty is foreseen in parameter estimation for the
noisy data case. The sequential algorithms presented in the next chapter
are, however, easily extended to the noisy data case with a less serious
increase in computation.

9.3.3 Multi-channel detection

A further topic which is of interest for click removal (and audio restoration
in general) is that of multi-channel sources. By this we mean that two or
more sources of the same recording are available. If degradation of these
sources occurred after the production process then defects are likely to be
completely different. It would thus be expected that significant processing
gains can be achieved through reference to all the sources. Problems in
precise alignment of the sources are, however, non-trivial (see [187, 190]) for
the general case. An example where two closely aligned sources are available
is where a monophonic disc recording is played back using stereophonic
equipment. It is often found that artefacts in the two resulting channels are
largely uncorrelated. The problem of restoration of multiple aligned sources
with uncorrelated clicks has been considered from a Bayesian perspective,
based on modifications to the theory of this chapter. A summary of the
theory is given in [70, appendix G]. The approach is based on a simple linear
filtering relationship between signals in the two channels. The resulting
detector is of a similar form to the single channel detector of this chapter.

9.3.4 Relationship to existing AR-based detectors

It is shown in [70, appendix H] that the inverse filtering and matched fil-
tering detectors (see section 5.3.1) are equivalent to special cases of the
Bayesian detectors derived in this chapter. This equivalence applies when
the Bayesian detectors are constrained to detect only single corrupted sam-
ples in any given section of data. It is found that the inverse filtering de-
tector corresponds to detection with no ‘lookahead’, i.e. the Bayes detector
is testing for corruption in the last sample of any data block. With P or
more samples of lookahead the matched filtering detector results. These re-
sults give some justification to the existing detectors while also highlighting
the reason for their inadequacy when corruption occurs in closely spaced
random bursts of many consecutive samples.

9.3.5 Sequential Bayes detection

We have seen that optimal detection for the Bayesian scheme of this chap-
ter will in general require 2N expensive evaluations of a complex likelihood
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function. This is highly impractical for any useful value of N . Sub-optimal
methods for overcoming this problem with a block-based approach are pro-
posed in chapter 11, but these are somewhat unsatisfactory since they rely
on a good initial estimate for the detection state i. In a sequential detection
framework, state estimates are updated as new data samples are input. It
is then possible to treat the detection procedure as a binary tree search
in which each new sample can lead to two possible detection outcomes for
the new data point (corrupted or uncorrupted). Paths with low posterior
probabilities can be eliminated from the search, leading to a great reduc-
tion in the number of detection states visited compared with the exhaustive
search. Sequential methods are derived in the next chapter and investigated
experimentally in chapter 11.

9.4 Discussion

The Bayes restoration system has been developed in a general form. The
system has been investigated for AR data with specific noise burst models
thought to be realistic for many types of audio degradation. Experimen-
tal results and discussion of practical detection-state selection schemes for
both artificial and real data are presented in chapter 11. There are limi-
tations to the full Bayesian approach largely as a result of the difficulty
in selecting a small subset of candidate detection vectors for a given data
block (see chapter 11). This difficulty means that constraints such as one
single contiguous burst of degradation per block have to be applied which
reduce the generality of the method. The recursive algorithms developed in
the next chapter are aimed at overcoming some of these problems and they
also place the algorithm in a sequential framework which is more natural
for real-time audio applications.

In addition, it has been demonstrated that the existing AR-based de-
tection techniques described in chapter 5 are equivalent to a special case
of the full Bayesian detector. As a result of this work, new detectors with
a similar form to the existing simple detectors have been developed with
explicit expressions for threshold values [70, appendix I].
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10

Bayesian Sequential Click Removal

In this chapter a sequential detection scheme is presented which is founded
on a recursive update for state posterior probabilities. This recursive form
is more natural for real time signal processing applications in which new
data becomes available one sample at a time. However, the main motiva-
tion is to obtain a reliable search method for the optimal detection state
estimate which requires few probability evaluations. The sequential algo-
rithm achieves this by maintaining a list of ‘candidate’ detection estimates.
With the input of a new data sample the posterior probability for each
member of the list is updated into two new list elements. The first of these
new elements corresponds to the detection estimate with the new sam-
ple uncorrupted, while the second element is for the corrupted case. If all
states in the list are retained after each set of probability updates the list
will grow exponentially in size. The search procedure would then amount
to the exhaustive search of a binary tree. We present a reduced search in
which states are deleted from the list after each iteration according to pos-
terior probability. If we retain a sufficient number of ‘candidate’ states at
each sampling instant it is hoped that we will only rarely discard a low
probability state which would have developed into the MAP state estimate
some samples later.

As for the sequential Bayesian classification schemes of section 4.1.5 the
main task is obtaining a recursive update for the state likelihood p(i|y),
which is derived with the aid of the matrix inversion results given in ap-
pendix B. The resulting form is related to the Kalman filtering equations,
see section 4.4.
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In order to obtain the posterior state probability from the state likeli-
hood, the noise generator prior, p(i), is required. In chapter 9 a Markov
chain model was proposed for noise generation. Such a model fits conve-
niently into the sequential framework here and is discussed in more detail
in this chapter.

Given updating results for the state posterior probabilities, reduced state
search algorithms are developed. Criteria for retention of state estimates
are proposed which result in a method related to the reduced state Viterbi
algorithms [193, 6].

The methods derived in this chapter have been presented previously as
[83] and patented as [69].

10.1 Overview of the method

We have calculated in the previous chapter a posterior state probability for
a candidate detection vector i:

p(i|y) ∝ p(y|i)p(i)
and (for the MAP detection criterion) we wish to maximise this posterior

probability:

iMAP = argmax
i

(p(i|y))

Since this is infeasible for long data vectors we devise instead a sequential
procedure which allows a more efficient sub-optimal search. Assume that at
time n we have a set of candidate detection vectors In = {i1n, i2n, . . . , iMn

n },
along with their posterior probabilities p(ijn|yn), where the subscript ‘n’
denotes a vector with n data points, e.g. yn = [y1, . . . , yn]T . These candi-
dates and their posterior probabilities are then updated with the input of
a new data point yn+1. The scheme for updating from time n to n+ 1 can
be summarised as:

1. At time n we have ijn and p(ijn|yn), for j = 1, . . .Mn.

2. Input a new data point yn+1.

3. For each candidate detection vector ijn, j = 1, . . .Mn, generate two
new candidate detection vectors of length n + 1 and update their
posterior probabilities:

i2j−1
n+1 = [ijn

T
0]T

p(i2j−1
n+1 |yn+1) = g(p(ijn|yn), yn+1)

i2j
n+1 = [ijn

T
1]T

p(i2j
n+1|yn+1) = g(p(ijn|yn), yn+1)
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4. Perform a ‘culling’ step to eliminate new candidates which have low
posterior probability p(in+1|yn+1)

5. n = n+ 1, goto 1.

Details of the culling step, which maintains the set of candidates at a
practicable size, are discussed later in the chapter. The computationally
intensive step is in the sequential updating of posterior probabilities (step
3.), and most of the chapter is devoted to a derivation of this from first
principles. At the end of the chapter it is pointed out that the recursive
probability update can also be implemented using a Kalman filter.

10.2 Recursive update for posterior state
probability

We now derive a recursive update for the posterior detection state proba-
bility, p(i | y), (see equation (9.4)). As before we will be concerned mainly
with a recursive update for the state likelihood, p(y | i), since the full pos-
terior probability is straightforwardly obtained from this term. A Gaussian
AR model is assumed for the data as in the last chapter, and the corrupting
noise is assumed white and Gaussian with variance σ2

n. These assumptions
correspond to the likelihood expression of (9.19)-(9.24).

As in section 4.1.5 a subscript n is introduced for all variables dependent
on the number of samples in the processing block. Thus in indicates a
state detection vector i corresponding to the first n samples of data. The
likelihood for state in is then rewritten directly from (9.19)-(9.24) as

p(yn | in) =
µl exp

(

− 1
2σ2

e
EMINn

)

(2πσ2
e)

n−P
2 | Φn |1/2

(10.1)

and

EMINn = E0n − θn
TxMAP

(i)n (10.2)

xMAP

(i)n = Φn
−1θn (10.3)

Φn = A(i)n

T A(i)n + µ2 I (10.4)

θn = −
(

A(i)n
TA

−(i)n y
−(i)n − µ2 y(i)n

)

(10.5)

E0n = y
−(i)n

TAT
−(i)nA

−(i)n y
−(i)n + µ2 y(i)n

Ty(i)n (10.6)

where µ = σe/σn as before. The recursive likelihood update we require
is then written in terms of the previous evidence value and a new input
sample yn+1 as

p(yn+1 | in+1) = g(p(yn | in), yn+1) (10.7)
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and as before this update can be expressed in terms of the conditional
predictive distribution for the new sample yn+1 (see (4.32)):

p(yn+1 | in+1) = p(yn+1 | yn, in+1) p(yn | in) (10.8)

since p(yn | in) = p(yn | in+1).
With the input of a new sample yn+1 each detection state estimate in is

extended by one new binary element in+1:

in+1 = [ in in+1 ]T (10.9)

Clearly for each in there are two possibilities for the state update, corre-
sponding to in+1 = 0 (yn+1 uncorrupted) and in+1 = 1 (yn+1 corrupted).
If in+1 = 0 sample yn+1 is considered ‘known’ and then l (the number of
‘unknown’ samples) remains the same. Correspondingly the MAP estimate
of the unknown data xMAP

(i)(n+1) is of the same length as its predecessor xMAP
(i)n .

In this case it will be seen that the evidence update takes a similar form
to that encountered in the sequential model selection scheme discussed in
section 4.1.5. However, when in+1 = 1 the number of unknown samples
increases by one. The evidence update then takes a modified form which
includes a change in system ‘order’ from l to (l + 1). The likelihood up-
dates for both in+1 = 0 and in+1 = 1 are now derived in appendix F and
summarised in the next section.
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10.2.1 Full update scheme.

The full update is now summarised in a form which highlights terms com-
mon to both cases in+1 = 0 and in+1 = 1. For in+1 = 0 the update is
exactly equivalent to (F.13)-(F.20) while for in+1 = 1 the two stages out-
lined above are combined into one set of operations.

Firstly calculate the terms:

pn = Pn b(i)n (10.10)

κn = 1 + b(i)n
Tp (10.11)

κ′n = 1 + µ2(κn) (10.12)

Ψn = pn pn
T (10.13)

Now, for in+1 = 0:

kn =
pn

κn
(10.14)

dn+1 = yn+1 − b
−(i)n

Ty
−(i)n (10.15)

αn+1 = dn+1 − xMAP

(i)n
T
b(i)n (10.16)

xMAP

(i)(n+1) = xMAP

(i)n + kn+1 αn+1 (10.17)

εn+1 = dn+1 − xMAP

(i)(n+1)
T
b(i)n (10.18)

Pn+1 = Pn − Ψn

κn
(10.19)

p(y(n+1) | i(n+1)) =
p(yn | in)
√

2πσ2
e

1

κ
1/2
n

exp

(

− 1

2σ2
e

αn+1 εn+1

)

(10.20)

and, for in+1 = 1:

xMAP

(i)(n+1) =

[

xMAP
(i)n

yn+1 − αn+1

]

+
µ2 αn+1

κ′n

[

pn

κn

]

(10.21)

Pn+1 =

[ (

Pn − (µ2 Ψn)/κ′n
)

pn/κ
′
n

pn
T /κ′n κn/κ

′
n

]

(10.22)

p(y(n+1) | i(n+1)) =
p(yn | in)
√

2πσ2
e

µ

κ′n
1/2

exp

(

− 1

2σ2
e

µ2

κ′n
αn+1

2

)

(10.23)
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The update for in+1 = 1 requires very few calculations in addition to
those required for in+1 = 0, the most intensive operation being the O(l2)
operation (Pn − (µ2 Ψn)/κ′n).

10.2.2 Computational complexity

We now consider the computational complexity for the full update of (10.10)-
(10.23). The whole operation is O(l2) in floating point multiplications and
additions, the respective totals being (ignoring single multiples and addi-
tions) 4l2 + 5l + n multiplies and 3l2 + 3l + n additions. This is a very
heavy computational load, especially as the effective block length n and
consequently the number of missing samples l becomes large. There are
several simple ways to alleviate this computational load.

Firstly observe that bn (see F.2) contains only P non-zero terms. Hence
the partitioned vectors b(i)n and b

−(i)n will contain lP and P − lP non-zero
elements, respectively, where (lP ≤ P ≤ l) is the number of samples which
are unknown from the most recent P samples. Careful programming will
thus immediately reduce O(l2) operations such as (10.10) to a complexity
of O(l × lP ). A further implication of the zero elements in bn is is that the
data dependent terms αn+1 and εn+1 in the evidence updates require only
the most recent lP samples of xMAP

(i)n and xMAP

(i)(n+1) respectively, since earlier

sample values are zeroed in the products b(i)n
TxMAP

(i)n and b(i)n
TxMAP

(i)n+1 (see
(10.16) and (10.18)). A direct consequence of this is that we require only to
update the last lP elements of the last lP rows of An+1. All O(l2) operations
now become O(lP

2), which can be a very significant saving over the ‘brute
force’ calculation.

10.2.3 Kalman filter implementation of the likelihood update

We have given thus far a derivation from first principles of the sequen-
tial likelihood update. An alternative implementation of this step uses the
Kalman filter and the prediction error decomposition as described in sec-
tion 4.4.1. Here the ‘hyperparameter’ of the model is the detection vector
up to time n, in, which replaces θ in the prediction error decomposition.
We write the AR model in the same state-space form as given in section
5.2.3.5, but setting Z = HT for all times. Now to complete the model, set
σ2

v = σ2
n when im = 1 and σ2

v = 0 when im = 0. Running the Kalman filter
and calculating the terms required for the prediction error decomposition
now calculates the state likelihood recursively. The computations carried
out are almost identical to those derived in the sequential update formulae
earlier in this chapter.
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10.2.4 Choice of noise generator prior p(i)

We have derived updates for the detection state likelihood p(xn | in). Refer-
ring back to (9.4) we see that the remaining term required for the full pos-
terior update (to within a scale factor) is the noise generator prior p(in). As
stated above one possibility is a uniform prior, in which case the likelihood
can be used unmodified for detection. However, we will often have some
knowledge of the noise generating process. For example in click-degraded
audio the degraded samples tend to be grouped together in bursts of 1-30
samples (hence the use of the term noise ‘burst’ in the previous sections).

One possible model would be a Bernoulli model [174] in which we could
include information about the ratio of corrupted to uncorrupted samples in
the state probabilities. However, this does not incorporate any information
about the way samples of noise cluster together, since samples are assumed
independent in such a model. A better model for this might be the Markov
chain [174], where the state transition probabilities allow a preference for
‘cohesion’ within bursts of noise and uncorrupted sections.

The two-state Markov chain model fits neatly into the sequential frame-
work of this chapter, since the prior probability for in+1 depends by def-
inition on only the previous value in (for the first order case). We define
state transition probabilities Pinin+1 in terms of:

P00 = Probability of remaining in state 0 (uncorrupted) (10.24)

P11 = Probability of remaining in state 1 (corrupted) (10.25)

from which the state change transition probabilities follow as P01 = 1−P00

and P10 = 1 − P11.
The sequential update for the noise prior is then obtained as

p(in+1) = Pinin+1p(in) (10.26)

which fits well with the sequential likelihood updates derived earlier. If we
are not prepared to specify any degree of cohesion between noise burst
samples we can set P01 = P11 and P10 = P00 to give the Bernoulli model
mentioned above. In this case all that is assumed is the average ratio of
corrupted samples to uncorrupted samples. Many other noise generator pri-
ors are possible and could be incorporated into the sequential framework,
but we have chosen the Markov chain model for subsequent experimen-
tation since it appears to be a realistic representation of many click type
degradations.

10.3 Algorithms for selection of the detection
vector

The previous sections derived the required recursions for the posterior prob-
ability for a candidate detection vector. A scheme must now be devised for
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selecting the best detection vector in a sequential fashion. Given a set of
Mn candidate detection state estimates at sample n

In = {i1n, i2n, . . . , iMn
n } (10.27)

for which detection probabilities p(ijn|y) have been calculated, we can select
the vector with maximum probability as our current detection estimate. As
a new sample yn+1 arrives, there are two paths that each member of In can
take (corresponding to in+1 = 0 or in+1 = 1). The posterior probabilities
for each member of I can then be updated for each case according to
the sequential updating strategy derived earlier to give two new detection
state estimates at sample number (n+ 1). We now have a set of 2Mn

detection vectors each with a corresponding probability, and the new set
In+1 must now be selected from the 2Mn vectors, based upon their relative
probabilities. The exhaustive search procedure would involve doubling the
size of In with each increment in n, so a ‘culling’ strategy for deleting less
probable state estimates must be employed after each update procedure.
Such a scheme cannot guarantee the optimal (MAP) solution, but it may
be possible to achieve results which are close to optimal.

For n data samples there are 2n possible detection permutations. How-
ever, the nature of a finite order AR model leads us to expect that new
data samples will contain very little information about noise burst con-
figurations many samples in the past. Hence the retention of vectors in
the current set of candidate vectors In with different noise configurations
prior to n0, where n � n0, will lead to unnecessarily large Mn, the num-
ber of candidate vectors in In. The retention of such vectors will also be
detrimental to the selection of noise-burst configurations occurring more
recently than sample n0, since important detection vectors may then have
to be deleted from In in order to keep Mn within practical limits.

Hence it is found useful to make a ‘hard-decision’ for elements of in
corresponding to samples prior to n−dH , where dH is an empirically chosen
delay. One suitable way to make this hard-decision is to delete all vectors
from In which have elements prior to sample n− dH different from those
of the most probable element in In (i.e. the current MAP state estimate).
dH should clearly depend on the AR model order P as well as the level
of accuracy required of the detector.Under such a scheme only the most
recent dH samples of the detection state estimates in In are allowed to vary,
the earlier values being fixed. Finding the state estimate with maximum
probability under this constraint is then equivalent to decoding the state
of a finite state machine with 2dH states. Algorithms similar to the Viterbi
algorithm [193, 60] are thus appropriate. However, dH (which may well be
e.g. 20-30) is likely to be too large for evaluation of the posterior probability
for all 2dH states. We thus apply a ‘culling’ algorithm related to the reduced
forms of the Viterbi algorithm [6] in which states are deleted from In which
have log-probabilities which are not within a certain threshold below that
of the most probable member of In. This approach is flexible in that it will
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keep very few candidate vectors when the detection probability function
is strongly ‘peaked’ around its maximum (i.e. the detector is relatively
sure of the correct solution) but in some critical areas of uncertainty it will
maintain a larger ‘stack’ of possible vectors until the uncertainty is resolved
with more incoming data. A further reduction procedure limits the number
of elements in In to a maximum of Mmax by deleting the least probable
elements of In.

10.3.1 Alternative risk functions

The desirability of minimising some function other than the commonly-used
one-zero risk function is discussed in section (9.2.3). However, as stated in
that section, it will usually be necessary to calculate p(in | yn) for all
possible in-vectors in order to achieve this goal.

In the present case we have available the set of candidate vectors In and
their associated posterior probabilities. Suppose that we were certain that
In contained the true MAP detection state. This is equivalent to assuming
that the posterior probability of any detection state estimate not present
in In has zero probability, and correspondingly there is zero risk associated
with not choosing any such state estimates. The total expected risk may
then be rewritten as

R(αi | yn) ∝
∑

{j:ij∈In}

λ(αi | ij)P (ij | yn) (10.28)

where we have modified the summation of (4.19) such that only elements
of In are included.

This risk function can then be evaluated for each element of In to give
a new criterion for selection of state estimate. We cannot guarantee that
the correct state vector is within In, so such a risk calculation will be sub-
optimal. It is quite possible, for example, that the culling algorithm outlined
above deletes a state which would later have a relatively high probability
and a low expected risk. The state estimate selected from In might then
have significantly higher risk than the deleted state. Nevertheless, initial
tests with a loss function of the form (9.35) indicate that some trade-
off can indeed be made between false alarms and missed detections at an
acceptable overall error rate using a risk function of the form (10.28), but
a thorough investigation is left as future work.

10.4 Summary

In this chapter we have derived a sequential form for Bayesian detection of
clicks. Most of the work is concerned with deriving sequential updates for
the detection state likelihood which are based on matrix inversion results
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similar to those used in RLS and Kalman filtering. In fact, through use of
the prediction error decomposition (see section 4.4), an alternative imple-
mentation of the whole scheme would be possible using a Kalman filter.
In addition we have introduced a Markov chain prior for noise generation
which is used in subsequent experimental work and is designed to model
the observed tendency that clicks correspond to short ‘bursts’ of corrupted
samples rather than isolated impulses in the data. In the next chapter we
include implementational details for the Bayes detector and perform some
experimental evaluation of the algorithms presented in this and the previ-
ous chapter.
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11

Implementation and Experimental
Results for Bayesian Detection

In this chapter we discuss implementation issues concerned with the
Bayesian detection schemes derived in the last two chapters. Experimental
results from several implementations of the detector are then presented
which demonstrate the performance improvements attainable using the new
schemes.

Firstly, the block-based approach of chapter 9 is discussed. As has been
suggested earlier, the block-based scheme is awkward to implement ow-
ing to the combinatorial explosion in the number of possible detection
states as the block size N increases. Sub-optimal search procedures are
proposed which will usually bring the number of detection states tested
within reasonable computational limits. Some experimental results are pre-
sented which show that the Bayesian approach can improve upon existing
techniques. It is not proposed that these methods are applied in practice,
but we present results to illustrate the workings of the Bayesian principles.
The reader who is only interested in the practical algorithm can miss out
this section.

Secondly, a fuller investigation of performance is made using the more
flexible sequential methods of chapter 10. Algorithms for sequential selec-
tion of detection states are specified and experimental results are presented
for these algorithms using both artificial and real data sequences.
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11.1 Block-based detection

We first consider the block-based detection scheme given in chapter 9 in
which the posterior probability for a particular detection state estimate is
derived for a block of N corrupted data samples y under Gaussian AR data
assumptions (see (9.4) and (9.11)-(9.16). This section may be omitted by
readers only interested in the practical implementation of the sequential
scheme. In the absence of any additional information concerning the noise-
burst amplitude distribution we will make the Gaussian i.i.d. assumption
which leads to the evidence result of (9.19)-(9.24). In this section a ‘uniform’
prior P (i) = 1/2N is assumed for the detection state vector i, i.e. for a
given data block no particular state detection estimate is initially thought
to be more probable than any other. Other priors based upon the Markov
chain model of click degradation are considered in the section on sequential
detection.

11.1.1 Search procedures for the MAP detection estimate

Assuming that we have estimated values for the AR system parameters
it is now possible to search for the MAP detection vector based upon the
posterior probability for each i. We have seen that for a given data block
there are 2N possibilities for the detection state, making the exhaustive
posterior calculation for all i prohibitive. It is thus necessary to perform
a sub-optimal search which restricts the search to a few detection states
which are thought most probable.

It is proposed that an initial estimate for the detection state is obtained
from one of the standard detection methods outlined in section 5.3.1, such
as the inverse filtering method or the matched filtering alternative. A lim-
ited search of states ‘close’ to this estimate is then made to find a local max-
imum in the detection probability. Perhaps the simplest procedure makes
the assumption that at most one contiguous burst of data samples is cor-
rupted in any particular data block. This will be reasonable in cases where
the corruption is fairly infrequent and the block length is not excessively
large.

The starting point for the search is taken as an initial estimate given by
the standard techniques. Optimisation is then performed by iterated one-
dimensional searches in the space of the i-vector. Supposing the the first
corrupted sample is m and the last corrupted sample is n (the number of
degraded samples is then given by l = n−m+1). Initial estimates {n0,m0}
are obtained from the inverse filtering or matched filter method. m is ini-
tially fixed at m0 and n is varied within some fixed search region around
its estimate n0. The posterior probability for each {n,m0} combination is
evaluated. The value of n which gives maximum posterior probability is se-
lected as the new estimate n1. With n fixed at n1, m is now varied around
m0 over a similar search region to find a new estimate {n1,m1} with max-
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imum probability. This completes one iteration. The ith iteration, starting
with estimate {mi−1, ni−1} and using a search region of ±∆ is summarised
as:

1. Evaluate posterior probability for m = mi−1 and
n = (ni−1 − ∆)...(ni−1 + ∆).

2. Choose ni as the value of n which maximises the posterior probability
in step 1.

3. Evaluate posterior probability for m = (mi − ∆)...(mi + ∆) and
n = ni.

4. Choose mi as the value of m which maximises the posterior proba-
bility in step 3.

More than one iteration may be required, depending on the extent of search
region ∆ and how close the initial estimate {n0,m0} is to the MAP esti-
mate.

An example of this simple search procedure is given in figures 11.1-11.4.
In figure 11.1 a real audio signal is shown and a sequence of samples (34-39)
has been corrupted by additive Gaussian noise (σn/σe = 4). Figure 11.2
shows the magnitude output of both the matched filter and inverse filter
detectors (normalised by maximum magnitude). An AR model of order 20
has been used with parameters (including σe) estimated directly from 1000
samples of the corrupted data by the covariance method.

We see that both filters give high amplitude output in the region of degra-
dation and so may be thresholded to give initial estimates for the corrupted
section. Figure 11.3 now shows (scaled) posterior probabilities calculated
for one iteration of the one-dimensional search procedures outlined above
and using the same data and AR model as before. The evidence formu-
lation of equations (9.19)-(9.24) is used for this and subsequent trials. A
uniform noise generator prior was used which favours no one detection over
any other. The dashed line shows step 1. above in which probabilities are
evaluated for a range of n values with m fixed at m0 = 31 (an error of 3
samples). There is a clear peak in probability at n = 39, the last degraded
sample. The full line shows step 3. in which n is fixed at n1 = 39 and m is
varied. Again there is a strong peak at the correct m value of 34. Finally,
figure 11.4 shows a mesh plot of probability for all possible {m,n} com-
binations within the range {31 − 37, 36 − 42} which shows a strong local
maximum at the desired detection estimate {34, 39} (note that any com-
bination where n < m is assigned zero probability). The one-dimensional
probability plots of the previous figure are effectively just cross-sections of
this 3-d plot taken parallel to the m and n axes.

The above example demonstrates typical operation of the Bayesian de-
tection algorithm and highlights some of the advantages obtainable. In
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particular it can be seen that there is some ambiguity in detection us-
ing the standard methods (see figure 11.2). It is not possible to select a
threshold for this example which will correctly detect the corrupted data
without leading to ‘false alarms’. The Bayesian detector on the other hand
gives a clear probability maximum which requires no heuristic threshold-
ing or other manipulations in the detection process. A suitable probability
maximum is typically found within 1-2 iterations of the search procedure,
involving a total of perhaps 10-20 probability evaluations. Note that false
alarms in detection are automatically tested if we use the probability ratio
version of the detector (see (9.28) and following). If no posterior probability
ratio evaluated exceeds unity then the ‘zero’ hypothesis is selected in which
no samples are detected as corrupt.

We have seen that each direct evaluation of posterior probabilities is an
O(l2) operation when the constraint of one contiguous noise burst framed
by at least P uncorrupted samples is made. Even using the simple search
algorithms discussed above the detection procedure is considerably more
computationally intensive than the standard restoration techniques given in
section 5.3.1 which require, in addition to detection, a single interpolation
with O(l2) complexity. The situation is not as bad as it appears, how-
ever, since the ordered nature of the search procedures outlined above lend
themselves well to efficient update methods. In particular the procedure
of increasing the last degraded sample number n by one or decreasing the
first sample m by one can be performed in O(l) operations using techniques
based upon the Levinson recursion for Toeplitz systems (see [86]). Search
procedures for the MAP estimate can then be O(l2max), where lmax is the
maximum length degradation tested. Computation is then comparable to
the standard methods.

The methods discussed above are somewhat limiting in that we are con-
strained to one single contiguous degradation in a particular data block.
We require in addition a buffer of at least P uncorrupted samples to frame
the degradation in order to maintain a Toeplitz system leading to efficient
probability evaluations. The procedure can however be generalised for prac-
tical use. The standard detection methods are used as an ‘event’ detector.
An event in the signal will be one single burst of degradation which can
generally be identified from the highest maxima of the detection waveform
(see e.g. figure 11.2). Each event identified in this way is then framed by
sufficient samples on either side to surround the whole degradation with
at least P samples. The sub-block formed by this framing process is then
processed using the search procedures given above to give the Bayesian
detection estimate and (if required) the restored signal waveform. This
method will work well when degradations are fairly infrequent. It is then
unlikely that more than one event will occur in any detection sub-block. In
cases where multiple events do occur in sub-blocks the above algorithms
will ignore all but the ‘current’ event and sub-optimal performance will
result. Although of course more heuristics can be added to improve the



11.1 Block-based detection 219

situation, this practical limitation of the block-based approach is a signif-
icant motivation for the sequential processing methods developed in the
last chapter and evaluated later in this chapter.

11.1.2 Experimental evaluation

Some quantitative evaluation of the block-based algorithm’s performance is
possible if we calculate the probability of error in detection, PE . This repre-
sents the probability that the algorithm does not pick precisely the correct
detection estimate in a given block of N samples. PE may be estimated
experimentally by performing many trials at different levels of degradation
and counting the number of incorrect detections NE as a proportion of the
total number of trials NT :

P̂E =
NE

NT
(11.1)

and for NT sufficiently large, P̂E → PE .
In this set of trials data is either synthetically generated or extracted from

a real audio file and a single noise burst of random length and amplitude
is added at a random position to the data. The posterior probability is
evaluated on a 7 by 7 grid of {m,n} values such that the true values of
m and n lie at the centre of the grid. A correct detection is registered
when the posterior probability is maximum at the centre of the grid, while
the error count increases by one each time the maximum is elsewhere in
the grid. This is a highly constrained search procedure which effectively
assumes that the initial estimate {n0,m0} is close to the correct solution.
It does however give some insight into detector performance.

The first result shown in figure 11.5 is for a synthetic order 10 AR model.
Noise burst amplitudes are generated from a Gaussian distribution of the
appropriate variance. The length of noise bursts is uniformly distributed
between 0 and 15 samples. The full line gives the error probability under
ideal conditions when µ is known exactly. Performance becomes steadily
worse from left to right which corresponds to decreasing noise amplitudes.
This is to be expected since smaller clicks should be harder to detect than
large clicks. Error probabilities may seem quite high but it should be noted
that we are using Gaussian noise bursts. A significant proportion of noise
samples will thus have near-zero amplitude making detection by any means
a near impossibility. The dashed line gives some idea of the algorithm’s
sensitivity to the parameter µ. In this case we have fixed the detector at
µ̂ = 30 while varying the true value of µ for the artificially generated noise
bursts. Some degradation in performance can be seen which increases at low
noise amplitudes (since the detector’s estimate for µ is most inaccurate for
low noise burst amplitudes). Nevertheless performance is broadly similar to
that for the ideal case. This result may be important in practice since µ is
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FIGURE 11.1. True audio signal (dashed line) and signal corrupted with additive
Gaussian noise burst (solid line)
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FIGURE 11.2. Detection sequences using matched (solid line) and inverse filtering
(dashed line) detectors- AR(20)
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FIGURE 11.3. Posterior probabilities for m and n with AR(20) modelling: dotted
line - signal waveforms; solid line - posterior probability for m with n fixed at 39;
dashed line - posterior probability for n with m fixed at 31.

31
32

33
34

35
36

37

36

38

40

42
0

0.2

0.4

0.6

0.8

1

nm

R
el

at
iv

e 
P

ro
ba

bi
lit

y

FIGURE 11.4. Mesh plot of posterior probability over a grid of {m,n} combina-
tions (range is m:31-37, n:36-42, {m, n} increase vertically)
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likely to be difficult to estimate. The dotted line gives the error probabilities
obtained using the matched filtering detector over the same set of data
samples. The threshold for this detector was hand-tuned to give minimum
error probability but the result is seen to be consistently far worse than that
for the Bayes detector. This result is perhaps not as poor as it appears since,
while the matched filter hardly ever gives precisely the correct detection
estimate owing to filter smearing effects, it is quite robust and usually gives
a result close to the correct estimate. A more realistic comparison of the
different methods is given later in the work on sequential detection where
the per sample error rate is measured.

In the second graph of figure 11.6 we test the sensitivity of the detector
to the Gaussian assumption for noise bursts. The noise burst amplitudes
are now generated from a rectangular distribution and the detector used is
based on the Gaussian assumption with µ set according to the variance of
the rectangular distribution noise samples. Performance is broadly similar
to that for Gaussian noise samples with even some improvement for high
noise amplitudes. The dashed line once again gives error probabilities with
the estimate of µ fixed at a value of 30.

The third graph of figure 11.7 shows results obtained using a real audio
signal and artificial Gaussian noise bursts. AR parameters are estimated to
order 10 by the covariance method from the uncorrupted data. Results are
similar to those for the synthetic AR data indicating that the AR model
assumption is satisfactory for detection in real audio signals.

Note that these experiments only give a first impression of the perfor-
mance of the block-based approach since the degradation was limited to a
single contiguous noise burst. A more useful objective evaluation is possible
using the sequential algorithm of subsequent sections. Also, as discussed in
section (9.2.3), PE is not necessarily the best measure of the performance
of this type of algorithm. For the sequential algorithms it is possible to
obtain meaningful estimates of per sample error rates which give a more
realistic picture of detector performance.

11.2 Sequential detection

In the last section algorithms have been proposed for block-based Bayesian
detection. It has been seen that several constraints have to be placed on
detection to give a practically realisable system. In particular we have seen
that a good initial estimate for degraded sample locations is required. This
may be unreliable or impossible to achieve especially for very low variance
noise samples. The sequential algorithms derived in the last chapter allow a
more flexible and general approach which does not rely on other methods or
require the assumption of contiguous noise bursts which occur infrequently
throughout the data.
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FIGURE 11.5. Error probabilities for Bayesian detector as µ is varied, synthetic
AR(10) model: solid line - Bayes with true µ value; dashed line - Bayes with
µ̂ = 30; dotted line - matched filter detector
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FIGURE 11.6. Error probabilities with uniform click distribution as µ is varied,
synthetic AR(10) data: solid line - Bayes with true µ value; dashed line - Bayes
with µ̂ = 30; dotted line - matched filter detector
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FIGURE 11.7. Error probabilities for Bayesian detector as µ is varied, real audio
data modelled as AR(10): solid line - Bayes detector; dashed line - matched filter
detector

As for the block-based algorithm it is possible to make some objective
evaluation of detection performance for the sequential algorithm by the
processing of data corrupted with synthetically generated noise waveforms.
Full knowledge of the corrupting noise process enables measurement of some
critical quantities; in particular the following probabilities are defined:

Pf = False alarm probability: Probability of detecting a corrupted sample
when the sample is uncorrupted

(11.2)

Pu = Missed detection probability: Probability of not detecting a cor-
rupted sample when the sample is corrupted

(11.3)

Pse = Per-sample error-rate: Probability of incorrect detection, whether
false alarm or missed detection.

(11.4)

These quantities are easily estimated in simulations by measurements of
detection performance over a sufficiently large number of samples.

The first set of simulations uses a true Gaussian AR process with known
parameters for the uncorrupted data signal in order to establish the algo-
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rithm’s performance under correct modelling assumptions. Further trials
process genuine audio data for which system parameters are unknown and
modelling assumptions are not perfect.

11.2.1 Synthetic AR data

Initially some measurements are made to determine values of the error
probabilities defined in equations (11.2)-(11.4) under ideal conditions. An
AR model order of 20 is used throughout. The state vector selection, or
‘culling’, algorithm (see section 10.3) deletes detection states which have
posterior probabilities more than 50dB’s below the peak value of all the
candidates, and limits the maximum number of state vectors to 10 (this is
the maximum value after the selection procedure). The hard-decision delay
length is fixed at dH = P , the AR model order. The AR model parame-
ters for simulations are obtained by the covariance method from a typical
section of audio material in order to give a realistic scenario for the simu-
lations. The synthetic AR data is generated by filtering a white Gaussian
excitation signal of known variance σ2

e through the AR filter. The corrupt-
ing noise process is generated from a binary Markov source with known
transition probabilities (P00 = 0.97, P11 = 0.873) (see section 10.2.4), and
the noise amplitudes within bursts are generated from a white Gaussian
noise source of known variance σ2

n. The sequential detection algorithm is
then applied to the synthetically corrupted data over N data samples. N
is typically very large (e.g. 100000) in order to give good estimates of error
probabilities. A tally is kept of the quantitiesNf (the number of samples in-
correctly identified as corrupted),Nu (the number of corrupted samples not
detected as such) and Nc (the number of samples known to be corrupted).
For sufficiently large N the error probabilities defined in (11.2)-(11.4) may
be reliably estimated as:

P̂f =
Nf

N −Nc
(11.5)

P̂u =
Nu

Nc
(11.6)

P̂se =
Nu +Nf

N
(11.7)

Figures (11.8) and (11.9) illustrate an example of detection and restora-
tion within this simulation environment for µ = 3. In the first (unrestored)
waveform noise-bursts can be seen as the most ‘jagged’ sections in the wave-
form; these have been completely removed in the lower (restored) waveform.

The graphical results of figure (11.10) show the variation of detection
probabilities as the ratio µ is increase. As should be expected the probabil-
ity of undetected corruption Pu increases as µ increases and noise bursts
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are of smaller amplitude. For the range of µ examined Pu is mostly below
10−1, rising to higher values for very small noise amplitudes. This may seem
a high proportion of undetected samples. However as noted earlier for the
block-based detector noise amplitudes are generated from a Gaussian PDF,
whose most probable amplitude is zero. Hence a significant proportion of
noise samples will be of very low amplitude, and these are unlikely to be
detected by the detector. This should not worry us unduly since such sam-
ples are least likely to leave any audible signal degradation if they remain
unrestored. The rising trend in Pu is the most significant component of the
overall error rate Pse, while Pf is consistently lower.

For comparison purposes corresponding results are plotted in the same
figure for the inverse filtering detector. The error rates plotted correspond
to the threshold which gives (experimentally) the minimum per sample
error rate Pse. The inverse filtering detector is seen to give significantly
higher error rates at all but extremely low σn values, where the two de-
tectors converge in performance (at these extremely low noise amplitudes
both detectors are unable to perform a good detection and are essentially
achieving the ‘random guess’ error rate).

As for the block-based detector an important issue to investigate is the
sensitivity of detector performance to incorrect parameter estimates, such
as the µ ratio and the Markov source transition probabilities P00 and P11.
Figure (11.12) shows an example of the significant variation of error proba-
bilities as the estimate of σn, σ̂n, is varied about its optimum. This variation
amounts essentially to a trade-off between Pu and Pf and could be used to
tailor the system performance to the needs of a particular problem. Figure
(11.13) shows this trade-off in the form of a ‘Detector Operating Charac-
teristic’ (DOC) (see [186]) with probability of correct detection (1 − Pu)
plotted against false alarm rate (Pf ). For comparison purposes an equiva-
lent curve is plotted for the inverse filtering detector, in this case varying
the detection threshold over a wide range of values. It can be seen that the
Bayesian detector performs significantly better than the inverse filtering
method. The shape of curve for the Bayesian method follows essentially
the same shape as the standard DOC, but turns back on itself for very
high σ̂n. This may be explained by the nature of the Bayes detector, which
is now able to model high amplitude signal components as noise bursts of
large amplitude, causing Pf to increase.

Considerably less performance variation has been observed when the
Markov transition probabilities are varied, although once again some error-
rate trade-offs can be achieved by careful choice of these parameters.

11.2.2 Real data

For real data it is possible to estimate the same error probabilities as for the
synthetic case when noise-bursts are generated synthetically. The further
issues of parameter estimation for a, σn and σe now require consideration,
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since these are all assumed known by the Bayesian detector. The same
principles essentially apply as in the block-based case although it is now
perhaps desirable to update system parameters adaptively on a sample by
sample basis. The autoregressive parameters are possibly best estimated
adaptively [93] and one suitable approach is to use the restored waveform
for the estimation. In this way the bias introduced by parameter estima-
tion in an impulsive noise environment should be largely avoided. σe can
also be estimated adaptively from the excitation sequence generated from
inverse-filtering the restored data with the AR filter parameters. σn may
be estimated adaptively as the root mean square value of noise samples
removed during restoration.

Figure (11.11) shows the same quantities as were measured for the syn-
thetic data case, obtained by processing a short section of wide-band music
sampled from a Compact Disc recording (sample-rate 44.1kHz). Markov
source probabilities and the AR model order were the same as used for the
purely synthetic trials, so conditions for this real data simulation should
be reasonably comparable with those results. Performance is seen to be
similar to that for the synthetic AR data except for slightly higher false
alarm rate Pf at low µ values. This higher false alarm rate may reflect the
fact that real data is not ideally modelled as a quasi-stationary AR process,
and some transient behaviour in the data is falsely detected as degradation.
The corresponding error probabilities are plotted for the inverse filtering
AR detector and they are seen once more to be significantly higher.

Listening tests performed for several different sections of restored data
show that an improvement in noise level reduction can be achieved by this
restoration method compared with the standard AR filter-based method.
In addition, the method is qualitatively judged to remove many more
clicks with lower resultant signal degradation than when the inverse fil-
tering or matched filtering detection method is used. Where restoration
was performed on artificially corrupted data the restored version was com-
pared with the true undegraded original signal. Restored sound quality was
judged almost identical to that of the original material.

11.3 Conclusion

Implementation issues have been discussed for the Bayesian detection meth-
ods of the previous two chapters. The block-based methods have been used
to evaluate performance of the Bayesian techniques and sensitivity to cer-
tain system parameters. Practical schemes for implementing block-based
detection have been proposed but it has been seen that several limiting
constraints must be applied in order to make the scheme usable. Sequen-
tial methods are seen to have more general application and flexibility and
some useful performance measurements have been made. Substantial im-
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FIGURE 11.8. Corrupted input waveform for synthetic AR(20) data.
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FIGURE 11.9. Restored output waveform for synthetic AR(20) data.
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provements are demonstrated over the inverse filtering and matched filter-
ing approaches to detection which indicate that the extra computational
load may be worthwhile in critical applications. The Bayesian detectors
tested here are, however, limited in that they assume fixed and known AR
parameters, which is never the case in reality. In the final chapter we show
how to lift this restriction and use numerical Bayesian methods to solve
the joint problem of detection, interpolation and parameter estimation.
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12

Fully Bayesian Restoration using EM
and MCMC

In this chapter we consider the restoration of click-degraded audio using
advanced statistical estimation techniques. In the methods of earlier chap-
ters it was generally not possible to eliminate the system hyperparameters
such as the AR coefficients and noise variances without losing the analyti-
cal tractability of the interpolation and detection schemes; thus heuristic or
iterative methods had to be adopted for estimation of these ‘nuisance’ pa-
rameters. The methods used here are formalised iterative procedures which
allow all of the remaining hyperparameters to be numerically integrated out
of the estimation scheme, thus forming estimators for just the quantities of
interest, in this case the restored data. These methods, especially the Monte
Carlo schemes, are highly computationally intensive and cannot currently
be considered for on-line or real time implementation. However, they illus-
trate that fully Bayesian inference with its inherent advantages can be per-
formed on realistic and sophisticated models given sufficient computational
power. In future years, with the advancements in available computational
speed which are continually being developed, methods such as these seem
likely to dominate statistical signal processing when complex models are
required.

The use of advanced statistical methodology allows more realistic mod-
elling to be applied to problems, and we consider here in particular the
case of non-Gaussian impulses (recall that earlier work was restricted to
Gaussian impulse distributions, which we will see can lead to inadequate
performance). Modelling of non-Gaussianity is achieved here by use of scale
mixtures of Gaussians, a technique which allows quite a wide range of
heavy-tailed noise distributions to be modelled, and some detailed dis-
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cussion of this important point is given. Having described the modelling
framework for clicks and signal, an expectation-maximisation (EM) algo-
rithm is presented for the interpolation of corrupted audio in the presence
of non-Gaussian impulses. This method provides effective results for the
pure interpolation problem (i.e. when the detection vector i is known) but
cannot easily be extended to detection as well as interpolation. The Gibbs
sampler provides a method for achieving this, and the majority of the chap-
ter is devoted to a detailed description of a suitable implementation of this
scheme. Finally results are presented for both methods. The work included
here has appeared previously as [80, 82, 83].

12.1 A review of some relevant work from other
fields in Monte Carlo methods

Applications of MCMC methods which are of particular relevance to this
current work include Carlin et al. [33] who perform MCMC calculations
in a general non-linear and non-Gaussian state-space model, McCulloch
and Tsay [128, 129] who use the Gibbs Sampler to detect change-points
and outliers in autoregressive data and, in the audio processing field, Ó
Ruanaidh and Fitzgerald [146] who develop interpolators for missing data
in autoregressive sequences.

Take first Carlin et al. [33]. This paper takes a non-linear, non-Gaussian
state-space model as its starting point and uses a rejection-based MCMC
method to sample the conditional for the state variables at each sampling
time in turn. As such this is a very general formulation. However, it does not
take into account any specific state-space model structure and hence could
converge poorly in complex examples. Our method by contrast expresses
the model for noise sources using extra latent variables (in particular the
indicator variables it and the noise variances σ2

vt
, see later) which leads

to a conditionally Gaussian structure [36, 170] for the reconstructed data
x and certain model parameters. This conditionally Gaussian structure is
exploited to create efficient blocking schemes in the Gibbs Sampler [113]
which are found to improve convergence properties.

The signal and noise models we use are related to those used by us in
chapter 9 and [76, 83] and also McCulloch and Tsay [129] for analysis of
autoregressive (AR) time series. Important differences between our MCMC
schemes and theirs include the efficient blocking schemes we use to improve
convergence (McCulloch and Tsay employ only univariate conditional sam-
pling), our model for the continuous additive noise source vt, which is based
on a continuous mixture of Gaussians in order to give robustness to non-
Gaussian heavy-tailed noise sources, and in the discrete Markov chain prior
which models the ‘burst’-like nature of typical impulsive processes. A fur-
ther development is treatment of the noise distribution ‘hyperparameters’
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as unknowns which can be sampled alongside the other parameters. This
allows both the scale parameter and the degrees of freedom parameter for
the impulsive noise to be estimated directly from the data.

Finally, the Gibbs Sampling and EM schemes of Ó Ruanaidh and Fitzger-
ald [146, 168] consider the interpolation of missing data in autoregressive
sequences. As such they do not attempt to model or detect impulsive noise
sources, assuming rather that this has been achieved beforehand. Their
work can be obtained as a special case of our scheme in which the noise
model and detection steps (both crucial parts of our formulation) are omit-
ted.

12.2 Model specification

12.2.1 Noise specification

The types of degradation we are concerned with here can be regarded as
additive and localised in time, which may be represented quite generally
using a ‘switched’ noise model as seen previously in chapters 5 and 9:

yt = xt + it vt (12.1)

where yt is the observed (corrupted) waveform, xt is the underlying audio
signal and it vt is an impulsive noise process. it is a binary (0/1) ‘indica-
tor’ variable which indicates outlier positions and vt is a continuous noise
process.

12.2.1.1 Continuous noise source

An important consideration within a high fidelity reconstruction environ-
ment will be the statistics of the continuous noise source, vt. Close exam-
ination of the typical corrupted audio waveform in figure 12.15 indicates
that the noise process operates over a very wide range of amplitudes within
a short time interval. In the case of gramophone recordings this is a result
of physical defects on the disk surface which vary dramatically in size, from
microscopic surface cracks up to relatively large dust particles adhering to
the groove walls and scratches in the medium, while in a communications
environment variations in the size of impulses can be attributed to the
power of individual noise sources and to their distance from the measuring
point. It will clearly be important to model the noise sources in a fashion
which is robust to the full range of defect sizes which is likely to be en-
countered. In particular, for very small-scale defects it should be possible
to extract useful information about the underlying signal from corrupted
sample values, while very large impulses should effectively be ignored and
treated as if the data were ‘missing’.
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A natural first assumption for the underlying noise process vt might be
the Gaussian distribution p(vt|σ2

v) = N(0, σ2
v). Such an assumption has

been investigated for degraded audio signals within a Bayesian framework
in [76, 79] and chapters 9-11. However, the standard Gaussian assumption
is well known to be non-robust to noise distributions which are more ‘heavy-
tailed’ than the Gaussian, even if the variance component σ2

v is made an
unknown parameter a priori .

A convenient way to make the noise model robust to heavy-tailed noise
sources is to retain the overall Gaussian framework but to allow the variance
components of individual noise sources to vary with time index. In this
way a reconstruction algorithm can adjust locally to the scale of individual
defects, while the computational advantages of working within a linear
Gaussian framework are retained. The noise source vt is thus modelled as
Gaussian with time-varying variance parameter, i.e. p(vt|σ2

vt
) = N(0, σ2

vt
)

where σ2
vt

is dependent upon the time index t.
Under these assumptions the likelihood p(y|x,θ) is then obtained from

the independent, switched, additive noise modelling considerations (see
equation (12.1)). Note that θ contains all the system unknowns. However,
since the noise source is assumed to be independent of the signal, the like-
lihood is conditionally independent of the signal model parameters. Define
as before i to be the vector of it values corresponding to x. Then,

p(y|x,θ) =
∏

{t:it=0}

δ(yt − xt)

×
∏

{t:it=1}

N(yt|xt, σ
2
vt

) (12.2)

where the δ-functions account for the fact that the additive noise source
is precisely zero whenever the indicator switch it is zero (see (12.1)). Note
that the likelihood depends only upon the noise parameters (including i)
and is independent of any other elements in θ.

12.2.2 Signal specification

Many real-life signals, including speech, music and other acoustical signals,
have strong local autocorrelation structure in the time domain. This struc-
ture can be used for distinguishing between an uncorrupted audio waveform
and unwanted noise artefacts. We model the autocorrelation structure in
the uncorrupted data sequence {xt} as an autoregressive (AR) process (as
in earlier chapters) whose coefficients {ai} are constant in the short term:

xt =
P
∑

i=1

xt−i ai + et (12.3)
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where et ∼ N(0, σ2
e) is an i.i.d. excitation sequence. In matrix-vector form

we have, for N data samples:

e = Ax = x1 − Xa (12.4)

where the rows of A and X are constructed in such a way as to form et

in (12.3) for successive values of t and the notation x1 denotes vector x
with its first P elements removed. The parametric model for signal values
conditional upon parameter values can now be expressed using the standard
approximate likelihood for AR data (section 4.3.1 and [21, 155]):

p(x|θ) = p(x|a, σ2
e) = NN (0, σ2

e(AT A)−1) (12.5)

where Nq(µ,C) denotes as before the multivariate Gaussian with mean
vector µ and covariance matrix C (see appendix A).

It is of course an approximation to assume that the AR parameters and
excitation variance remain fixed in any given block of data. A time-varying
system might be a more realistic representation of the signal and should
certainly be considered in future adaptations to this work (see, e.g. [160]
for a possible framework). However, we have found this assumption to be
much less critical in practice than the choice of an appropriate impulsive
noise model (see section 12.8.1 for comparison with a constant variance
Gaussian impulse model), since the signal parameters for typical speech
and audio signals typically vary slowly and smoothly with time. A further
approximation is the assumption of Gaussian excitation process {et}, which
may not hold well for many speech or music examples. It is possible to relax
this assumption and allow impulsive elements in the excitation sequence.
This issue is not investigated here, since we have found that results are
generally robust to the Gaussian assumption. However, some initial work
in this area can be found in [72, 81].

12.3 Priors

12.3.1 Prior distribution for noise variances

Within a Bayesian framework prior distributions can now be assigned to
the unknown variance components σ2

vt
. In principle any distribution which

is defined over the positive axis can be chosen, and the precise choice will
depend on the type of prior knowledge available (if any) and will lead
to different robustness properties of the reconstruction procedure. A few
possible distributions which express different forms of prior knowledge are
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listed below:

p(σ2
vt

) ∝ c, Uniform

p(σ2
vt

) ∝ 1/σ2
vt
, Jeffreys

p(log(σ2
vt

)) = N(µv , sv), Log-normal

p(σ2
vt

) = IG(αv , βv) ∝ (σ2
vt

)−(αv+1) exp(−βv/σ
2
vt

), Inverted-gamma

Uniform or Jeffreys [97] priors might be used when no prior information is
available about noise variances. The log-normal prior is a suitable choice
when expected noise levels are known or estimable a priori on a decibel
scale. The inverted-gamma (IG) prior [98] (see appendix A) is a conve-
nient choice in that vague or specific prior information can be incorporated
through suitable choice of αv and βv while the uniform and Jeffreys priors
can be obtained as improper limiting cases. Owing to its flexibility and
computational simplicity (see later) the IG prior will be adopted for the
remainder of this work. Note that upper and lower limits on the noise vari-
ance may well be available from physical considerations of the system and
could easily be incorporated by rejection sampling [46, 153] into the Gibbs
sampling scheme proposed below.

We have discussed intuitively why combinations of noise models and pri-
ors such as these can be expected to lead to robustness. Perhaps a more
concrete interpretation is given by studying the marginal distribution p(vt)
which is obtained when the variance term is integrated out, or marginalised,
from the joint distribution p(vt|σ2

vt
)p(σ2

vt
). The resulting distributions are

scale mixtures of normals, which for example West [196] has proposed for
modelling of heavy-tailed noise sources. The family of possible distribu-
tions which can result from this scale mixture process is large, including
such well-known robust distributions as α-stable, generalised Gaussian and
Student-t families [7, 197]. In fact, the Student-t distribution is known to
arise as a result of assuming the IG prior (see appendix H.1 for a deriva-
tion), and we adopt this as the prior density in the remainder of the chapter,
owing both to its convenient form computationally and its intuitive appeal.
The Student-t distribution is a well known robust distribution which has
frequently been proposed for modelling of impulsive sources (see e.g. [89]).
However, it should be noted that the sampling methods described here can
be extended to other classes of prior distribution on the noise variances in
cases where Student-t noise is not thought to be appropriate. This will lead
to other robust noise distributions such as the α-stable class [144] which
has received considerable attention recently as the natural extension to a
Gaussian framework. α-stable noise distributions, being expressible as a
scale mixture of normals [7, 197], can in principle fit into the same frame-
work as we propose here, although the lack of an analytic form for the
distribution complicates matters somewhat.
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12.3.2 Prior for detection indicator variables

The statistics of the continuous noise source vt have been fully specified. It
now remains to assign a prior distribution to the vector i of noise switching
values it. The choice of this prior is not seriously limited by computational
considerations since any prior which can easily be evaluated for all i will
fit readily into the sampling framework of the next section. Since it is
known that impulses in many sources occur in ‘bursts’ rather than singly
(see [70, 79] for discussion of the audio restoration case), we adopt a two-
state Markov chain prior to model transitions between adjacent elements
of i. A model of this form has previously been proposed in [67] for burst-
noise in communications channels. The prior may be expressed in the form
p(i) = p(i0)

∏

t Pit−1it , in which the clustering of outliers in time is modelled
by the transition probabilities of the Markov chain, Pij and p(i0) is the prior
on the initial state. These transition probabilities can be assigned a priori
based on previous experience with similar data sets, although they could in
principle be ‘learnt’ by the Gibbs Sampler along with the other unknowns
(see later).

12.3.3 Prior for signal model parameters

Assuming that the AR parameter vector a is a priori independent of σ2
e , we

assign the simple improper prior p(a, σ2
e) = p(a)p(σ2

e ) ∝ IG(σ2
e |αe, βe), with

the parameters αe and βe chosen so that the IG distribution approaches the
Jeffreys limiting case. Note that a very vague prior specification such as this
should be adequate in most cases since a and σ2

e will be well-determined
from the data, which will contain many hundreds of elements. A slightly
more general framework would allow for a proper Gaussian prior on a.
We do not include this generalisation here for the sake of notational sim-
plicity, but it should be noted that the general mathematical form of the
Gibbs sampler derived shortly remains unchanged under this more general
framework.

12.4 EM algorithm

We firstly consider the application of the EM algorithm (see section 4.5)
to the pure interpolation problem, i.e. estimation of x(i) conditional upon
the detection indicator vector i and the observed data y. In this section
we work throughout in terms of precision parameters rather than variance
parameters, i.e. λ = 1/σ2, assigning gamma priors rather than inverted
gamma. This is purely for reasons of notational simplicity in the derivation,
and a simple change of variables λ = 1/σ2 gives exactly equivalent results
based on the corresponding variance parameters. We will revert to the
variance form in the subsequent Gibbs sampler interpolation algorithm.
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For purposes of comparison, we present the EM algorithm for both the
assumed noise model above, with independent variance components for
each noise sample, and a common variance model as used in chapter 9
where the noise samples are Gaussian with a single common variance term
σ2

v.
Substituting λe = 1/σ2

e , the conditional AR likelihood (12.5) is rewritten
as

p(x|a, λe) = (λe/2π)
N−P

2 exp (−λeE(x,a)/2)
def
= ARN (x|a, λe) (12.6)

where λe = 1/σ2
e and E(x,a) = eTe is the squared norm of the vector of

excitation values.
The interpolation problem is posed in the usual way as follows. A signal

x is corrupted by additive noise affecting l specified elements of x, indexed
by a switching vector i. The data x is partitioned according to ‘unknown’
(noise-corrupted) samples x(i) whose time indices form a set I, and the
remaining ‘known’ (uncorrupted) samples, denoted by x

−(i). The observed
data is y, and by use of a similar partitioning we may write y

−(i) = x
−(i)

and y(i) = x(i) + v(i), where v = [v1, . . . , vN ]T is the corrupting noise
signal. It is then required to reconstruct the unknown data x(i). Note that
the noise variance, the AR coefficients and the AR excitation variance will
all be unknown in general, so these will be treated as model parameters,
denoted by θ. We use an unconventional formulation of EM in which the
parameters θ are treated as the auxiliary data and the missing data x(i)

is treated as the quantity of interest, i.e. we are performing the following
MAP estimation:

xMAP

(i)
= argmax

x(i)

{p(x(i)|x−(i))} = argmax
x(i)

{
∫

�
p(x(i),θ|x−(i)) dθ

}

This is the formulation used by ÓRuanaidh and Fitzgerald [168] for the
purely missing data problem (i.e. with no explicit noise model) but is dis-
tinct from say [192, 136], who use EM for estimation of parameters rather
than missing data. Here the operation of EM is very powerful, enabling us
to marginalise all of the nuisance parameters, including the AR model and
the noise statistics.

The derivation of the EM interpolator is given in appendix G. It requires
calculation of expected values for the signal and noise parameters, from
which the updated missing data estimate xi+1

(i) (iteration i + 1) can be
obtained from the current estimate xi

(i) (iteration i), for the independent
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noise variance model, as follows:

ai = aMAP(xi) (12.7)

λi
e =

(αe + (N − P )/2)

(βe + E(xi,ai)/2)

λi
vt

= (αv + 1/2)/(βv + (vt
i)2/2), (t ∈ I) (12.8)

xi+1
(i)

= −Ψ−1

(

(

λi
eA

iT Ai + T(xi)
)

(i)−(i)

y
−(i) − Miy(i)

)

(12.9)

where

aMAP(xi) = (XiTXi)−1XiT xi
1 (12.10)

Mi = diag({λvt ; t ∈ I})
Ψ =

(

λi
eA

iTAi + T(xi)
)

(i)(i)

+ Mi

Matrix T(xi) is defined in appendix G and ‘(i)(i)’ denotes the sub-matrix
containing all elements whose row and column numbers are members of
I; similarly, ‘(i)−(i)’ extracts the sub-matrix whose row numbers are in I
and whose column numbers are not in I. The common variance model is
obtained simply by replacing the observation noise expectation step (12.8)
with

λi
v = (αn + l/2)/(βv +

∑

t∈I

(vt
i)2/2)

and setting Mi = λi
vI.

The first three lines of the iteration are simply calculating expected values
of the unknown system parameters (AR coefficients and noise precision val-
ues) conditional upon the current missing data estimate xi

(i)
. These are then

used in the calculation of xi+1
(i) . Each iteration of the method thus involves

a sequence of simple linear estimation tasks. Each iteration is guaranteed
to increase the posterior probability of the interpolated data. Initialising
with a starting guess x0

(i)
, the algorithm is run to convergence according to

some suitable stopping criterion.
In section 12.6 some results for the EM interpolator are presented and

compared with the Gibbs sampling scheme. We now consider the Gibbs
sampler both for the interpolation problem considered here and also for the
more challenging case of joint detection and interpolation of click-degraded
data.

12.5 Gibbs sampler

The noise and signal probability expressions given in the previous sections
are sufficient to specify the joint posterior distribution to within a con-
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stant scale factor (see appendix H.2). The Gibbs sampler now requires
the full posterior conditional distributions for each unknown in turn. The
standard approach in many applications is to calculate univariate condi-
tionals for each parameter component in turn. This is the approach given
in, for example, [33] for non-linear/non-Gaussian state-space analysis, and
also in [129] for a statistical outlier model which is closely related to our
switched noise model. This sampling approach offers generality in that it
is usually feasible to sample from the univariate conditionals even for very
sophisticated non-Gaussian models. However, as noted earlier, improved
convergence can be expected through judicious choice of multivariate pa-
rameter subsets in the sampling steps. In particular, for the models we have
chosen it is possible to sample jointly from the switching vector i and the
reconstructed data vector x.

12.5.1 Interpolation

Consider firstly the conditional densities with the switching vector i fixed
and known. Since no detection process is required to determine which data
samples are corrupted this may be considered as a pure interpolation pro-
cedure in which the corrupted samples are replaced by sampled realisations
of their uncorrupted value. The methods outlined in this section could of
course be used as a stand-alone interpolation technique in cases where im-
pulse locations are known beforehand, although we will usually choose here
to perform the interpolation and detection (see next section) jointly within
the Gibbs sampling framework.

From this point on we split θ into the switching vector i and remaining
model parameters ω = {a, σ2

e , σ
2
vt

(t = 0 . . .N − 1)} for the sake of nota-
tional clarity. The posterior conditionals are then obtained by straightfor-
ward manipulations of the full joint posterior (see appendix H.2) and are
summarised as:

p(a|x, i,ω
−(a),y) = NP (aMAP(x), σ2

e (XT X)−1) (12.11)

p(σ2
e |x, i,ω−(σ2

e),y) = IG(αe + (N − P )/2, βe + E(x,a)/2 ) (12.12)

p(σ2
vt
|x, i,ω

−(σ2
vt

),y) =

{

IG(αv + 1/2, βv + vt
2/2) (t ∈ I)

IG(αv, βv ) (otherwise)
(12.13)

p(x(i)|i,ω,y) = Nl(x
MAP

(i) , σ2
e Φ−1 ) (12.14)

x
−(i) = y

−(i) (12.15)
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where

aMAP(x) = (XT X)−1XT x1

xMAP

(i) = −Φ−1
(

AT
(i)A−(i) y

−(i) − σ2
e R−1

v(i)
y(i)

)

Φ = AT
(i)

A(i) + σ2
eR

−1
v(i)

and ω
−(a) denotes all members of ω except a, etc. A similar notation for

vector/matrix partitioning to that used for the EM interpolator and earlier
chapters should be clear from the context; defined such that subscript ‘(i)’
denotes elements/columns corresponding to corrupted data (i.e. it = 1),
while ‘−(i)’ denotes the remaining elements/columns. The terms vt, required
(12.13) are calculated for a particular x, y and i from (12.1). Rv(i)

is
the covariance matrix for the l corrupting impulses indicated by i, and is
diagonal with elements σ2

vt
in this case. Note also that when it = 0, (12.13)

requires that we sample from the prior on σ2
vt

, since there is no information
available from the data or parameters about this hyperparameter when
the impulsive noise source is switched ‘off’. It is nevertheless important to
carry out this sampling operation since the detection procedure (see next
section) requires sampled values of σ2

vt
for all t.

An important point about the method is that all of the sampling steps
(12.11)-(12.14) involve only simple linear operations and sampling from
multivariate normal and inverted-gamma distributions, for which reliable
and fast methods are readily available (see e.g. [26, 46]). The scheme in-
volves multivariate sampling of the reconstructed data x in order to achieve
reliable convergence properties, in the same spirit as [161, 79, 146], and in-
deed the Gibbs sampling interpolator given in [146] can be derived as a
special case of (12.11)-(12.14) when the corrupted samples are discarded
as ‘missing’.

12.5.1.0.1 Sampling the noise hyperparameters

The above working is all implicitly conditioned upon knowledge of the noise
hyperparameters αv and βv. Within the Gibbs sampling framework there is
no reason in principle why we should not assign priors to these parameters
and treat them as unknowns. The required conditional densities and sam-
pling operations can be obtained straightforwardly and are summarised in
appendix H.3, along with the form of prior distributions chosen. Whether
these variables should be treated as unknowns will depend on the extent
of prior information available. For example, when processing very long sec-
tions of data such as speech or music extracts it will be advisable to split
the data into manageable sub-blocks in which the signal model parameters
can be regarded as constant. However, in such cases it is often reasonable to
assume that the highest level noise parameters αv and βv remain roughly
constant for all blocks within a given extract. Hence it might be best to
‘learn’ these parameters informally through the processing of earlier data
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blocks rather than starting afresh in each new data block with very vague
prior information. Such a procedure certainly speeds up convergence of the
Gibbs Sampler, which can take some time to converge if αv and βv are
randomly initialised and ‘vague’ priors are used. In order to demonstrate
the full capabilities of the methods, however, the results presented later
treat αv and βv as unknowns which are then sampled with the remaining
variables.

12.5.2 Detection

Now consider the remaining unknown, the switch vector i. Sampling for i
as part of the Gibbs Sampling scheme will allow joint detection of impulse
locations as well as reconstruction of clean data values. A straightforward
Gibbs Sampling approach will sample from the conditional for each uni-
variate it element. This is the approach adopted in [129] and it is similar
in principle to the variable selection methods for linear regression given in
[65].

In [129] univariate sampling is performed from the conditionals for all the
elements it and vt (from which the sampled reconstruction can be obtained
as xt = yt − itvt). This scheme has two drawbacks which will affect con-
vergence of the sampler. Firstly, sampling is univariate even though there
are likely to be strong posterior correlations between successive elements
of it and vt. Secondly, the scheme involves sampling from the prior for vt

when it = 0, since vt is conditionally independent of the input data in this
situation. it will then only stand a reasonable chance of detecting a true
outlier when vt happens to take a sampled value close to its ‘true’ value,
with the result that the evolution of it with iteration number is rather slow.
Note that in equation (12.13) of our scheme it is necessary to sample from
the prior on σ2

vt
when it = 0. However, at this level of the ‘hierarchy’ the

convergence of it is less likely to be affected adversely. The drawbacks of
univariate sampling can be overcome by sampling from the joint multivari-
ate conditional for x and i. Note that this is distinct from the approach of
Carter and Kohn for estimation of mixture noise [35], in which indicator
variables (i) are sampled jointly conditional upon state variables (x), and
vice versa.

The proposed scheme uses the joint multivariate conditional distribution
for x and i, which can be factorised as:

p(x, i|ω,y) = p(x|i,ω,y)p(i|ω,y) (12.16)

The first term of this has already been given in (12.14). The second term,
the so-called reduced conditional , is the conditional distribution for i and
x with x ‘integrated out’:

p(i|ω,y) =

∫

x

p(x, i|ω,y)dx (12.17)
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This integral can be performed directly using multivariate normal proba-
bility identities as in [79, equations (10)-(15)] and section 9.2.2.3 of this
book and may be expressed as

p(i|ω,y) ∝ p(y|ω, i) p(i)

where

p(y|ω, i) =
(σ2

e)
l/2

exp(−S2|x(i)=xMAP
(i)

)

(2πσ2
e)(N−P )/2 |Rv(i)

|1/2 |Φ|1/2
(12.18)

and

S2 =
∑

t

et
2/2σ2

e +
∑

{t: it=1}

vt
2/2σ2

vt
(12.19)

Note that S2 in (12.18), which is equivalent to EMIN in section 9.2.2.3,
is evaluated using (12.19) with the conditional MAP reconstruction xMAP

(i)

substituted for x(i).
Joint conditional sampling of i and x could then be achieved using the

method of composition (see e.g. [172]), which involves sampling i from its
reduced conditional p(i|ω,y) (12.18) followed by sampling x from its full
conditional p(x|i,ω,y) equation (12.14). Equation (12.18) is a multivariate
discrete distribution defined for all 2N possible permutations of i. As the
normalising constant c is unknown, direct sampling from this distribution
will require 2N evaluations of (12.18). A suitable scheme is:

1. Evaluate (12.18) for all 2N possible permutations of i.

2. Normalise sum of probabilities to unity and calculate cumulative dis-
tribution for i.

3. Draw a random deviate u from a uniform distribution in the range
0 < u < 1.

4. Select the value of i whose cumulative probability is closest to u on
the positive side (i.e. greater than u).

Clearly such a sampling approach cannot be adopted in practice for any
useful value of N , so some other scheme must be adopted. As stated earlier,
MCMC methods allow a great deal of flexibility in the details of implemen-
tation. Issues such as which subsets of the parameters to sample and the
precise order and frequency of sampling are left to the designer. These fac-
tors, while not affecting the asymptotic convergence of the sampler, will
have great impact on short term convergence properties.

There is less computational burden in the full multidimensional sampling
operation for x(i) (12.14), which is dominated by l-dimensional matrix-
vector operations, so this can be performed on an occasional basis for the
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whole block, in addition to the sub-block sampling described in a later
section. This should eliminate any convergence problems which may arise
as a result of posterior correlation between the xt’s for a given i.

12.5.3 Detection in sub-blocks

There are many possible adaptations to the direct multivariate sampling of
(12.18) which will introduce trade-offs between computational complexity
per iteration and number of iterations before convergence. Here we adopt
a Gibbs sampling approach which performs the sampling given by (12.16)
in small sub-blocks of size q, conditional upon switch values it and recon-
structed data xt from outside each sub-block. A compromise can thus be
achieved between the computational load of operations (12.18) and (12.14)
and convergence properties. An alternative scheme has recently been pro-
posed for general state-space models in [36] in which individual elements it
are conditionally sampled directly from the reduced conditional, given by
equation 12.17 in our case. This is an elegant approach, but quite complex
to implement and we leave a comparative evaluation as future work.

If we denote a particular sub-block of the data with length q samples by
x(q) and the corresponding sub-block of detection indicators by i(q) then
the required joint conditional for x(q) and i(q) is factorised as before:

p(x(q), i(q)|x−(q), i(q),ω,y) = p(x(q)|x−(q), i,ω,y)p(i(q)|x−(q), i−(q),ω,y)
(12.20)

where x
−(q) and i

−(q) are vectors containing the N − q data points and
switch values respectively which lie outside the sub-block. The joint sam-
ple x(q), i(q) is then obtained by composition sampling for i(q) and x(q) as
described above.

The required full and reduced conditional distributions for x(q) and i(q)

are obtained as an adaptation to the results for the complete data block
(equations (12.18) and (12.14)). Since both distributions in (12.20) are con-
ditioned upon surrounding reconstructed data points x

−(q) it is equivalent
for the purposes of conditional sampling to consider x

−(q) as uncorrupted
input data. In other words we can artificially set y

−(q) = x
−(q) and fix

i
−(q) = 0 to obtain:

p(y|i(q),x−(q), i−(q),ω) = p(y(q),y−(q) = x
−(q)|i(q), i−(q) = 0,ω) (12.21)

and

p(x(q)|x−(q), i,ω,y) = p(x(q)|x−(q), i(q), i−(q) = 0,ω,y(q),y−(q) = x
−(q))

(12.22)

This is a convenient form which allows direct use of equations (12.18) and
(12.14) without any rearrangement. We now use the standard proportion-
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ality between joint and conditional distributions (see appendix H.2):

p(i(q)|i−(q),ω,y) ∝ p(i|,ω,y) (12.23)

p(x(q)|x−(q), i,ω,y) ∝ p(x|i,ω,y) (12.24)

to obtain the required results:

p(i(q)|x−(q), i−(q),ω,y) ∝ p(y|i,ω)|(i
−(q)=0, y

−(q)=x
−(q))p(i) (12.25)

and,

p(x(q)|x−(q), i,ω,y) ∝ p(x|i,ω,y)|(i
−(q)=0, y

−(q)=x
−(q)) (12.26)

Thus equations (12.18) and (12.14) are used directly to perform sub-block
sampling. The scheme is, then:

1. Sample the reduced conditional for i(q) using (12.25) and (12.18).
i(q) is a binary vector of length q samples. Therefore 2q probability
evaluations must be performed for each sub-block sample.

2. Sample the conditional for x(q) using (12.26) and (12.14) with the
value of i(q) obtained in step 1. This involves drawing a random sam-
ple from the multivariate Gaussian defined in 12.14. Since i

−(q) is
constrained to be all zeros, the dimension of the Gaussian is equal to
the number of non-zero elements in i(q) (a maximum of q).

Note that in the important case q = 1 these sampling steps are very effi-
cient, requiring no matrix inversion/factorisation and only O(p) operations
per sub-block sample.

12.5.3.0.2 Sampling the Markov Chain transition probabilities

In the same way as the noise hyperparameters were treated as unknowns in
the last section, the Markov chain transition probabilities P01 and P10 can
be sampled as part of the detection procedure. The details, summarised
in appendix H.3, are straightforward and involve sampling from beta den-
sities which is a standard procedure [46]. We have observed that conver-
gence of the algorithm is successful when the noise hyperparameters αn

and βn are known a priori . However, when processing real audio data
and with these parameters treated as unknowns (as described in appendix
H.3) performance was not good and the sampler chose very low values for
P00 = 1−P01 and high values for P11 = 1−P10. This is most likely a prob-
lem of modelling ambiguity: the sampler can either fit a very heavy-tailed
noise model at most data points (setting it = 1 nearly everywhere) or it
can fit a high amplitude noise model at a few data points. It appears to
choose the former case, which is not unreasonable since there will always
be some low-level white noise at every data point in a real audio signal. We



248 12. Fully Bayesian Restoration using EM and MCMC

are not attempting to model this low level noise component in this work,
however (see [81, 72] for discussion of a related approach to this problem).
In practice, then, we fix the transition probabilities to appropriate values
for the type of impulsive noise present on a particular recording. We have
found the methods to be fairly insensitive to the precise values of these
parameters. For example, the values P00 = 0.93 and P11 = 0.65 have given
successful results in all of the examples we have processed to date. A more
elaborate approach (not pursued here) might attempt to estimate the tran-
sition probabilities from a ‘silent’ section of audio data in which no speech
or music signal is present.

12.6 Results for EM and Gibbs sampler
interpolation

Results are presented for a simple interpolation of a scratch-degraded audio
signal, figure 12.1. The region of interpolation is indicated by the vertical
dotted lines, which includes the scratch and a ‘guard zone’ of uncorrupted
samples either side.

Figure 12.2 shows the results of interpolations using the Gibbs-estimated
posterior mean (over 50 iterations following convergence) and the EM-
estimated posterior mode (after 10 iterations). Both iterative schemes were
informally judged to have converged in less than 10 iterations for this exam-
ple. Figure 12.2(a) shows the missing data interpolator [192, 146], in which
the corrupted samples are discarded prior to estimation. This interpolator
makes a reasonable estimate, but clearly will not fit an interpolate close to
samples in the guard zone. The common variance model (figure 12.2(b))
does a better job in the samples preceding the scratch, but is more wayward
afterwards. Clearly the variance term is being biased upwards by some very
high scratch amplitudes. The independent variance model (figure 12.2(c))
is able to fit the data in the guard zone almost perfectly, while performing
a good interpolation of the main scratch, and even removing some very low
amplitude noise material following the scratch. Thus we can expect greater
fidelity to the source material with this method, and this is borne out by a
‘brighter’ sound to material restored in this way. There is not much differ-
ence to be seen in performance between the Gibbs and EM interpolation
methods.
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FIGURE 12.1. Corrupted audio waveform (78rpm disk)

12.7 Implementation of Gibbs sampler
detection/interpolation

12.7.1 Sampling scheme

The Gibbs Sampler as implemented for joint detection and interpolation
can be summarised as follows:

1. Assign initial values to unknowns: x0, i0, ω0 = {a0, σ2
e
0
, σ2

vt

0
(t =

0 . . .N − 1)}.

2. Repeat for i = 0 . . . Nmax − 1:

(a) Set ωi+1 = ωi, ii+1 = ii, xi+1 = xi.

(b) Draw samples for unknown parameters:

i. ai+1 ∼ p(a|ii+1,xi+1,ωi+1
−(a),y) (see (12.11))

ii. (σ2
e)i+1 ∼ p(σ2

e |ii+1,xi+1,ωi+1
−(σ2

e )
,y) (see (12.12))

iii. (σ2
vt

)i+1 ∼ p(σ2
vt
|ii+1,xi+1,ωi+1

−(σ2
vt

)
,y), (t = 0 . . .N −1) (see

(12.13))

(c) Draw samples from reconstructed data and switch values:

i. For all (non-overlapping) sub-blocks x(q) of length q samples
in x and i(q) in i:

A. ii+1
(q) ∼ p(i(q)|xi+1

−(q), i
i+1
−(q),ω

i+1,y) (see (12.25))
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(b) COMMON VARIANCE INTERPOLATION
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(c) INDEPENDENT VARIANCE INTERPOLATION

FIGURE 12.2. Interpolations using various noise models and AR(40)
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B. xi+1
(q) ∼ p(x(q)|xi+1

−(q), i
i+1,ωi+1,y) (see (12.26))

ii. If ((i mod M)=0): xi+1 ∼ p(x|ii+1,ωi+1,y) (see (12.14))

(d) (Optional) Sample top level hyperparameters: αv , βv , P01, P10

(see appendix H.3).

3. Calculate histograms and Monte Carlo estimates of posterior func-
tionals (see (4.62)). For example, a Monte Carlo estimate of the pos-
terior mean is given by:

E[x|y] ≈
∑Nmax

i=N0+1 xi

Nmax −N0

where N0 is the number of iterations before convergence is achieved.

Note that the multivariate sampling operation of 2(c)ii is carried out
here once every M iterations.

12.7.2 Computational requirements

MCMC methods are generally considered to be highly computationally
intensive, with typical applications requiring perhaps multiple runs, each
with hundreds of iterations. Such schemes are clearly impractical in many
engineering applications, particularly where large amounts of data must be
processed. Such computational extremes will not, however, be necessary in
cases where only point estimates of the data are required rather than a full
analysis of all the posterior distributions. In the examples considered here
it will be seen that useful results can be achieved after very few iterations,
particularly if robust starting points are chosen for critical parameters.
Nevertheless, each iteration of the scheme described in section 12.7.1 is
itself quite intensive. Taking the items in the same order as section 12.7.1
we have:

• Assigning initial values: x0, i0 and ω0 (step 1). This step need not
take any significant computation since the unknowns can be assigned
arbitrary random starting values. However, as discussed in the next
section, it is beneficial to convergence of the algorithm if a reasonable
starting point can be obtained using some other technique. The com-
putation involved will usually be much smaller than the subsequent
iterations of the Gibbs Sampler.

• Sampling the AR parameters: a (step 2(b)i). This step requires
a sample from a P -dimensional Gaussian distribution, given in equa-
tion 12.11. The most significant computation here is a square-root
factorisation of the covariance matrix, which can be achieved using
for example the Cholesky Decomposition (complexity O(P 3)). De-
tails of techniques for sampling multivariate Gaussians can be found
in, for example, [46] or [168, pages 207-8].
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• Noise variances: σ2
e (step 2(b)ii) and σ2

vt
(step 2(b)iii). The condi-

tionals for all the noise variance terms are of Inverted Gamma form
(see equations 2(b)ii and 2(b)iii and appendix A.4). Sampling from
the Inverted Gamma distribution is straightforward (see e.g. [168],
pp. 137-8 and [153]) and requires very little computation compared
to other parts of the algorithm.

• Joint sampling of switch and data values (step 2(c)i). This step,
as detailed in section 12.5.2, requires firstly the evaluation of the re-
duced conditional (equation 12.25) for all 2q possible values of the
current detection sub-block i(q), where q is the size of sub-block. Each
such evaluation requires the calculation of xMAP

i , involving the solu-
tion of a lq × lq matrix-vector equation (lq is the number of corrupted
samples indicated by a particular i(q)). This can be solved using a
Cholesky decomposition of Φ, which then facilitates the sampling of
x(q). The detection step rapidly becomes infeasible for all but small
values of q. However, the experimental results show that small values
of q give acceptable performance. In particular the case q = 1 leads
to a very efficient scheme which requires only O(NP ) calculations for
one complete sweep of all the sub-blocks. Note that q = 1 retains
the important advantage of sampling jointly for data values xt and
switch values it.

Having sampled i(q) from its reduced conditional the joint sample
is completed by sampling for x(q) from its full conditional (12.26).
The significant calculations for this operation will already have been
carried out while sampling i(q), since both stages require xMAP

(i) and
the Cholesky decomposition of the matrix Φ.

The precise balance of computational requirements will depend on
the choice of sub-block size q, which in turn has a strong impact
on the number of iterations required for convergence. In the absence
of concrete results on the rate of convergence for the scheme, it is
probably best to tune the sub-block size q by trial and error to give
acceptable performance for a given application.

• Sampling of complete data vector (interpolation): x (step
2(c)ii). Joint sampling of the complete data vector x conditional upon
all of the other unknowns is achieved using equation 12.14. As for
the AR parameters this involves sampling from a multivariate Gaus-
sian distribution, this time of dimension l, where l is the number of
impulse-corrupted data points indicated by i. Direct sampling, re-
quiring matrix Cholesky factorisation, can be very intensive (O(l3))
for large l. This is significantly reduced, however, by observing that
matrix Φ is quite sparse in structure, owing to the Markov property
of the assumed AR model. This sparse structure can be explicitly ac-
counted for in the calculation of the Cholesky Decomposition, which



12.7 Implementation of Gibbs sampler detection/interpolation 253

leads to a dramatic reduction in the computation (see [168], p.137
for discussion of the closely related problem of missing data interpo-
lation). Possibly the best and most flexible way to take advantage of
this structure, however, is by use of the standard state-space form
for an AR model (see e.g. [5], pp.16-17). This then allows the use of
the Kalman filter-smoother [5] for sampling of the whole data vector.
Recent methods for achieving this efficiently in general state-space
models can be found in [35, 61, 42]. In fact we implemented [42] be-
cause of its speed and efficient memory usage. Computations are then
reduced to approximately O(lP 2).

12.7.2.1 Comparison of computation with existing techniques

The computational requirements of the Gibbs Sampling method can be
compared with the detection and interpolation techniques of Vaseghi and
Rayner [84, 191]. Here we have processing steps which are closely related
in functionality and computation.

The parameter estimation stage of [191] involves estimation of AR pa-
rameters for the corrupted data. If a covariance-based AR parameter es-
timation method [119] is used then the computations will be of a similar
complexity to the AR parameter sampling step in the Gibbs Sampler (note,
however, that an autocorrelation method of estimation [119] would make
this step faster for the simple scheme). Furthermore, the detection step in
[191] is quite closely related to the sampling of detection vector and data
vector in the Gibbs Sampler. In particular the computations are very sim-
ilar (both O(NP ) operations for one complete sweep through the data)
when a sub-block length of q = 1 is chosen for the Gibbs Sampler (the
relationship between simple detectors and Bayesian detection schemes is
discussed further in [70], appendix H). Finally, a close relationship can be
found between the computation of the Least Squares AR-based interpo-
lator in [191] and the Bayesian interpolation scheme. The computational
requirements here are almost identical when the Least Squares-based inter-
polation is performed jointly over all corrupted samples in the data block.
The only item not present in the simple scheme but required for the Gibbs
Sampler is the estimation of noise hyperparameters, including noise vari-
ances. These can be neglected as they take up a very small fraction of the
overall computation in the Gibbs Sampler.

Overall, then, one iteration of the Gibbs Sampler has roughly the same
complexity as one complete pass of the simple detector/interpolator, with
some small overheads in setting up the equations and drawing random
variates. The chief difference lies in the large number of iterations required
for the Gibbs Sampler compared with perhaps less than five passes required
for the simple scheme.
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12.8 Results for Gibbs sampler
detection/interpolation

12.8.1 Evaluation with synthetic data

In order to demonstrate the operation of the proposed methods and for
some comparison with other related techniques under idealised conditions
we consider firstly a synthetic AR sequence with N = 300 data points, see
figure 12.3. The poles of the AR process have been selected arbitrarily with
order p = 6 and the excitation is white Gaussian noise with variance unity.
The noise source vt is Gaussian with independent variance components
generated by sampling from an IG(0.3, 40) process. The switching process
it is a first order Markov chain with transition probabilities defined by
P00 = 0.93 and P11 = 0.65. The resulting corrupted waveform is shown in
figure 12.4, with the highest amplitude impulses not shown on the graph.

The Gibbs sampler was run under two noise modelling assumptions. The
first model is the independent variance case, using the variance sampling
methods given in (12.13). This corresponds to the true noise generation pro-
cess and so can be considered as a somewhat idealised scenario. P00 and
P11 are fixed at their true values, while all other parameters are sampled as
unknowns. αv and βv are reparameterised as mv = βv/αv and αv to give
a more physically meaningful model (see appendix H.3). The transformed
variables are treated as a priori independent in the absence of further
knowledge. αv treated as a discrete variable with a uniform prior, taking
on values uniformly spread over the range 0.1 to 3, while mv is assumed
independent of αv and given a very vague gamma prior G(10−10, 10−10).
The second noise model assumes Gaussian noise with constant (unknown)
variance but is otherwise identical to the first. This corresponds to the
impulse models investigated in [79] with the generalisation that noise vari-
ances and AR parameters are unknown. A prior IG(10−10, 10−10) is used
for the common noise variance term. This noise model can be expected to
give poorer results than the first, since it does not reflect the true noise
generation process.

Both models were run for 1000 iterations of the Gibbs Sampler follow-
ing a burn-in period of 100 iterations. The burn-in period was chosen as
the number of iterations required for convergence of the Markov chain, as
judged by informal examination of the sampled reconstructions. This figure
is intentionally over-generous and was obtained after running the sampler
with many different realisations of the corrupted input data. The detection
vector i was initialised to all zeros, while other parameters were initialised
randomly. A minimal sub-block size q = 1 was found to be adequate for
the joint sampling of the switch and reconstructed data values 2(c)i, while
multivariate sampling of the data elements 2(c)ii was performed once per
iteration in sub-blocks of 100 samples.
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MMSE reconstruction estimates were obtained as the arithmetic mean
of the sampled reconstructions xi following the burn-in period. For the
independent variance model, results are shown in figure 12.5. As hoped,
comparison with the true signal shows accurate reconstruction of the orig-
inal data sequence. Where significant errors can be seen, as in the vicinity
of sample number 100, the impulsive noise can be seen to take very high
values. As a result, the algorithm must effectively treat the data as ‘miss-
ing’ at these points. The corresponding result from the common variance
model can be seen in figure 12.6. While the large impulses have all been
removed, many smaller scale disturbances are left untouched. As expected,
the common variance model has not been able to adjust locally to the scale
of the noise artefacts.

While the reconstructed data is strictly all that is required in a restora-
tion or enhancement framework, there is much additional information which
can be extracted from the parameter and noise detection samples. These
will assist in the assessment of convergence of the Markov chain, allow
data analysis and parameter estimation and may ultimately help in the
development of improved methods.

Consider, for example, samples drawn from the AR parameters, ai. Pole
positions calculated from these sampled values can be plotted as scatter
diagrams, which gives a useful pictorial representation of the posterior pole
position distribution. This is shown for both noise models in figures 12.9
and 12.10. The true poles are at radii 0.99, 0.9 and 0.85 with angles 0.1π,
0.3π and 0.7π, respectively. The scatter diagram for the independent vari-
ance model shows samples clustered tightly around the most resonant pole
(radius 0.99) with more posterior uncertainty around the remaining poles.
The common variance model, however, indicates pole positions well away
from their true values, since small impulses are still present in the data.
Pole positions calculated from the MMSE AR parameter estimates are also
indicated on both plots.

The excitation variance samples for the independent variance noise model
are displayed in figures 12.11 and 12.12. Plotted against iteration number
(figure 12.11) the variance can be seen to converge rapidly to a value of
around 1.4, which is quite close to the true value of unity, while the his-
togram of samples following burn-in indicates that the variance is fairly
well-determined at this value.

An important diagnostic is the detection vector i. The normalised his-
togram of ii samples gives an estimate of posterior detection probabilities
at each data sample. Regions of impulses are clearly indicated in figure
12.7, and a procedure which flags an impulse for all samples with prob-
ability values greater that 0.5 yields an error rate of 0.2% for this data
sequence. By comparison, the common variance model gave an error rate
of 5% (figure 12.8). Error rates are measured as the percentage of samples
mis-classified by the detector.
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Finally, histograms for αv and mv are shown in figures 12.13 and 12.14.
The true values are 0.3 and 40/1.3 respectively, obtained from the IG(0.3, 40)
process which generated the noise variances. αv is well-centred around its
true value, which is typical of all the datasets processed.mv exhibits a much
wider spread, centred at a value much larger than its true value. This can
probably be accounted for by the relatively small number of noise samples
used in the sampling of mv . In any case the precise value of mv within
roughly an order of magnitude does not seem to have great impact on re-
construction results, which is a desirable consequence of the hierarchical
noise modelling structure used.

12.8.2 Evaluation with real data

For evaluation with real data the method was tested using data digitally
sampled at 44.1kHz and 16-bit integer resolution from degraded gramo-
phone recordings containing voice and music material. The autoregressive
parameters are assumed fixed for time intervals up to 25ms; hence data
block lengths N of around 1100 samples are used. Processing for listening
purposes can then proceed sequentially through the data, block by block,
re-initialising the sampler for each new block and storing the reconstructed
output data sequentially in a new data file. Continuity between blocks is
maintained by using an overlap of P samples from block to block and fixing
the first P elements of restored data in a new data block to equal the last
P restored elements from the previous block. This is achieved by fixing
the first P elements of the switch vector i in the new block equal to zero
and the first P elements of the new data vector y to equal the last P re-
stored output data points from the most recent block. Then the detection
algorithm is only operated upon elements P . . .N − 1 of i.

Figures 12.16-12.18 show results from running one instance of the Gibbs
Sampler for a single block of classical music, digitised from a typical noisy
78rpm recording (figure 12.15 shows this data block). An AR model order
P = 30 was chosen, which is adequate for representation of moderately
complex classical music extracts. As for the synthetic example the switch
values it were all initialised to ‘off’, i.e. no impulses present, the AR param-
eters and excitation variance were initialised by maximum likelihood (ML)
from the corrupted data, and the noise variances were sampled randomly
from their prior distribution. An informative gamma prior G(2, 0.0004) was
assigned to mv , a distribution whose mean value of 5000 was roughly esti-
mated as the mean noise variance obtained from processing earlier blocks of
the same dataset. A uniform prior was assigned to αv over the range 0.1 to
3. The Markov chain probabilities were fixed at P00 = 0.93 and P11 = 0.65
which had been found to be reasonable in earlier data.

The sampler was run for Nmax = 1000 iterations with a ‘burn-in’ pe-
riod of N0 = 100 iterations. Figure 12.16 shows the MMSE estimate re-
construction and figure 12.17 shows the estimated detection probabilities.
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While most samples appear to have a small non-zero posterior probabil-
ity of being an outlier (since there must be some continuous measurement
noise present in all samples), time indices corresponding to high probabil-
ities can be identified clearly with ‘spikes’ in the input waveform, figure
12.15. The detection procedure thus appears to be working as we would
expect for the real data. All major defects visible to the naked eye have
been rejected by the algorithm. Histograms for noise variance parameters
are given in figures 12.18 and 12.19.

Some qualitative assessment of various possible sampling schemes can be
obtained by examining the evolution with time of σ2

e , since this parameter
will be affected by impulses at any position in the waveform. The first
20 iterations of σ2

e are displayed in figure 12.20(a) and (b) under various
sub-block sampling schemes and initialising i to be all zeros. Under our
proposed scheme elements of it and xt are sampled jointly in sub-blocks of
size q. This is contrasted with the independent sampling scheme used in
[129], adapted here to use our noise model and applied also in sub-blocks.
Figure 12.20(a) shows the comparison for the minimal sub-block size q = 1.
The joint sampling scheme is seen to converge significantly faster than the
independent scheme which did not in fact reach the ‘true’ value of σ2

e

for many hundreds of iterations. In figure 12.20(b) the sub-block size is 4.
Once again convergence is significantly faster for the joint sampling method,
although the independent method does this time converge successfully after
approximately 10 iterations. Note that the initial rate of change in σ2

e

does not depend strongly on the block length chosen. This is a result of
the additional reconstruction operation (12.14) which is performed each
iteration in large sub-blocks and helps to reduce the dependency on q. Thus
we recommend that a small value of q be used in a practical situation. The
convergence time of the independent sampling scheme was also found to
be far less reliable than the joint scheme since it can take many iterations
before very large impulses are first detected under the independent scheme.
The differences in convergence demonstrated here will be a significant factor
in typical applications such as speech and audio processing where speed is
of the essence.

12.8.3 Robust initialisation

Initialisation of the sampler can be achieved in many ways but, if the
method is to be of practical value, we should choose starting points that
lead to very rapid and reliable convergence. Possibly the most critical ini-
tialisation is for the detection vector i. Results presented thus far used a
completely ‘blind’ initialisation with all elements of i0 set to zero. Such a
scheme shows the power of the sampling algorithm acting in ‘stand-alone’
mode. An alternative scheme might initialise i0 to a robust estimate ob-
tained from some other simple detection procedure. A rough and ready
initial value for i is obtained by thresholding the estimated AR excitation



258 12. Fully Bayesian Restoration using EM and MCMC

sequence corresponding to the corrupted data and initial ML parameter
estimates [191, 84], with a threshold set low enough to detect all sizeable
impulses. One can then perform a least squares AR interpolation of the cor-

rupted samples as in [191, 84] and then estimate σ2
e
0

and a0 by standard
maximum likelihood from the interpolated sequence. This gives the algo-
rithm a good starting point from which the detection vector i will converge
very rapidly. Such an initialisation was used for processing of long sections
of data where fast operation is essential. Convergence times were informally
observed to be significantly reduced, with usable results obtained within the
first 5-10 iterations. Take for example a synthetic example generated with
the same modelling parameters as the example of section 12.8.1. We com-
pare convergence properties for the proposed robust initialisation and for a
random initialisation (parameters generated at random, x0 set equal to y).
Figure 12.21 shows the evolution with time of the innovation variance σ2

e .
This is plotted on a log-scale to capture the wide variations observed in the
randomly initialised case. Note that in the random case σ2

e was initialised
as a uniform deviate between 0 and 100, so the huge values plotted are not
just the result of a very unfortunate initialisation for this parameter alone.
It is clear that from the robust starting point the sampler settles down at
least twice as quickly as for random initialisation. Note also that the actual
squared error between the long-term MMSE estimates from the samplers
and the true data (available for this synthetic example) settled down to
around 0.66 per sample in both cases, indicating that both initialisations
give similar performance in the long term.

12.8.4 Processing for audio evaluation

From a computational point of view it will not be possible to run the sam-
pler for very many iterations if the scheme is to be of any practical use
with long sections of data. Longer extracts processed using the sampler
were thus limited to 15 iterations per data block. Restorations were taken
as either the mean of the last 5 reconstructions or the last sampled recon-
struction from the chain. This latter approach is appropriate for listening
purposes since it can be regarded as a typical realisation of the restored
data (see [161, 146, 168] for discussion of this point). This is an interesting
matter, since most methods aim to find some estimator which minimises
a mathematical risk function, such as a MAP or MMSE estimator. Here,
however, we recognise that such estimators can sometimes lead to results
which are atypical of the signals concerned. In short, they have to make
a conservative choice of reconstruction in order to minimise the expected
risk associated with the estimator. In audio processing this often manifests
itself in reconstructions which are oversmooth compared to typical signals.
A random sample drawn from the posterior distribution on the other hand
will have a lower posterior probability than a MAP estimator but exhibits
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characteristics more typical of the signal under consideration and therefore
preferable for listening purposes. Informal evaluation in fact shows that
either the sampled scheme or the MMSE scheme leads perceptually to very
high quality restorations with the models used here. The criteria for eval-
uation are the amount of reduction in audible clicks/crackles, etc. and the
degree of audible distortion (if any) to the program material itself com-
pared with the corrupted input. The processed material is rendered almost
entirely free from audible clicks and crackles in one single procedure, with
minimal distortion of the underlying audio signal quality. The same degree
of click reduction is not achievable by any other single procedure known to
us for the removal of impulses from audio signals, and certainly not without
much greater distortion of the sound quality.

12.8.5 Discussion of MCMC applied to audio

Markov chain Monte Carlo methods allow for inference about very sophis-
ticated probabilistic models which cannot easily be addressed using deter-
ministic methods. Their use here allows for joint parameter estimation and
reconstruction for signals in the presence of non-Gaussian switched noise
processes, which are encountered in many important applications. The al-
gorithms developed are computationally intensive, but give high quality
results which we believe are not attainable using standard techniques. In
particular, compared with earlier methods such as [191, 79], these tech-
niques can reliably detect and remove impulses occurring on many different
amplitude scales in one single procedure. We have tested the methods us-
ing synthetic data and examples obtained from corrupted voice and music
recordings. It is hoped, however, that the methods are sufficiently general
and robust to find application in a wide range of other areas, from commu-
nication systems to statistical data processing.

In this chapter we have provided only one example of the application of
MCMC to audio signals. The methods can however be applied to any of
the other applications described in the book. In particular, it is relatively
straightforward to extend the work of this chapter to performing noise
reduction as well as click removal, and to extend the signal models to
ARMA rather than just AR. These areas are addressed in some of our
recent papers [72, 73, 81]. For further applications in image enhancement,
non-linear system modelling and Hidden Markov models, see [74, 105, 75,
106, 177, 178, 179, 182, 181, 180, 8, 50, 49].
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FIGURE 12.3. Synthetic AR data (p = 6)
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FIGURE 12.4. Noisy AR data
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FIGURE 12.5. Reconstructed data (independent variance noise model)
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FIGURE 12.6. Reconstructed data (common variance noise model)
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FIGURE 12.7. Detection probabilities (independent variance noise model)
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FIGURE 12.8. Detection probabilities (common variance noise model)
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FIGURE 12.9. Reconstructed AR poles (independent variance noise model)
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FIGURE 12.10. Reconstructed AR poles (common variance noise model)
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FIGURE 12.11. Excitation variance samples (independent variance noise model)
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FIGURE 12.12. Excitation variance histogram (independent variance noise
model)
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FIGURE 12.13. Histogram of αv samples (independent variance noise model)
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FIGURE 12.14. Histogram of mv samples (independent variance noise model)



266 12. Fully Bayesian Restoration using EM and MCMC

100 200 300 400 500 600 700 800 900 1000 1100
−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

3000

time index, t

am
pl

itu
de

Noisy data

FIGURE 12.15. Noisy audio data
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FIGURE 12.20. Convergence of excitation variance under different sampling
strategies.
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13

Summary and Future Research
Directions

In this book a wide range of techniques has been presented for the reduc-
tion of degradation in audio recordings. In Part II an attempt was made
to provide a comprehensive overview of existing methods in click and hiss
reduction, while also presenting some new developments and interpreta-
tions of standard techniques. The emphasis in the section on click removal
was on model-based methods, which provide the opportunity to incorpo-
rate signal-specific prior information about audio. This is believed to be
one of the key ways to improve on current technology and is the approach
adopted throughout Part III on advanced methods. The section on back-
ground noise reduction, however, concentrates on spectral domain methods
which can be regarded as non-parametric; this is a result of the history of
the subject in which spectral domain methods have been applied almost
without exception. Nevertheless, it is believed that model based methods
will form a part of the future for hiss reduction. The difficulty here is
that hiss reduction, being a global degradation, is a much more subtle and
sensitive procedure than click removal, and model choice can be a criti-
cal consideration. Experimentation with standard speech based time series
models such as the AR and ARMA models has led to some promising re-
sults for hiss reduction and joint hiss/click reduction, especially when the
fully Bayesian methods of chapter 12 are employed [81, 72, 73], but it seems
that to exceed the performance of the best spectral domain methods more
realistic models will have to be used. These should include elements of non-
stationarity, non-Gaussianity and the ability to model musical transients
(note ‘attacks’, decays, performance noises) as well as steady state tonal
sections. Combinations of elementary signals, such as wavelets or sinusoids,



272 13. Summary and Future Research Directions

with stochastic models (AR, ARMA, etc.) may go some way to providing
the solutions and have already proved quite successful in high level mod-
elling for coding, pitch transcription and synthesis [158, 169, 165, 194].

In Part III we present research work carried out over the last ten years
into various aspects of digital audio restoration. The approach is generally
model based and Bayesian, ranging from empirical Bayes methods which
rely upon sub-optimal prior parameter estimation for efficiency (chapters
7-11) through to highly computationally intensive fully Bayesian methods
which apply Monte Carlo simulation techniques to the optimal extraction
of signals from noise (chapter 12). We present novel solutions to the areas
of automatic pitch defect correction, an area where we are not aware of
any other work, and for correction of low frequency noise pulses caused
by breakages and deep scratches on gramophone discs and optical sound
tracks. Finally we present a range of Bayesian techniques for handling click
and crackle removal in a very accurate way.

13.1 Future directions and new areas

We have already stated that realistic signal modelling and sophisticated
estimation procedures are likely to form the basis of future advances in
audio restoration. A further area which has not been mentioned in depth is
the incorporation of human perceptual criteria [137, 24] into the restoration
process. It is well known that standard optimality criteria such as the mean-
squared error (MSE) or MAP criterion are not tuned optimally to the
human auditory system. Attempts have been made to incorporate some
of the temporal and frequency domain (simultaneous) masking properties
into coding and noise reduction systems, see chapter 6. However, these use
heuristic arguments for incorporation of such properties. We believe that it
may be possible to formulate a scheme using perceptually-based Bayesian
cost functions, see chapter 4, combined with a Monte Carlo estimation
method. This would formalise the approach and should show the potential
of perceptual methods, which may as yet not have been exploited to the
full. This is a topic of our current research.

We have covered in this text a very wide range of audio defects. One
area which has scarcely been touched upon is that of non-linear distortion,
a defect which is present in many recordings. This might be caused by sat-
uration of electronics or magnetic recording media, groove deformation and
tracing distortion in gramophone recordings or non-linearity in an analogue
transmission path, which gives rise to unpleasant artefacts in the sound of
the recording which should ideally be corrected. In general we will not have
any very specific knowledge of the distortion mechanisms, so a fairly gen-
eral modelling approach might be adopted. Many models are possible for
non-linear time series, see e.g. [176]. In our initial work [130, 177, 179, 180]
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we have adopted a cascade model in which the undistorted audio {xt} is
modelled as a linear autoregression and the non-linear distortion process
as a ‘with memory’ polynomial non-linear autoregressive (NAR) filter con-
taining terms up to a particular lag p and order q, so that the observed
output yt can be expressed as:

yt = xt +

p
∑

i1=1

i1
∑

i2=1

bi1i2 yt−i1 yt−i2 +

p
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

bi1i2i3 yt−i1 yt−i2 yt−i3

+ . . .+

p
∑

i1=1

i1
∑

i2=1

. . .

iq−1
∑

iq=1

bi1...iq yt−i1 . . . yt−iq (13.1)

The model is illustrated in figure 13.1. The problem here is to identify the
significant terms which are present in the non-linear expansion of equation
13.1 and to neglect insignificant terms, otherwise the number of terms in
the model becomes prohibitively large. Results are very good for blind
restoration of audio data which are artificially distorted with a NAR model
(see e.g. figure 13.2). However, the models do not appear to be adequate
for many of the distortions generally encountered in audio. The study of
appropriate non-linear models would seem to be a fruitful area for future
research. More specific forms of non-linear distortion are currently being
studied, including clipping/pure saturation and coarsely quantised data.
These are much more readily modelled and some progress is expected with
such problems in the near future.

AR
y

NAR
e x

FIGURE 13.1. Block diagram of AR-NAR model
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FIGURE 13.2. Example of AR-NAR restoration: Top - Non-linearly distorted
input (solid), Undistorted input (dotted); Middle - Restored data (100 iterations
of Gibbs sampler; Bottom - Restored data (3000 iterations of Gibbs sampler)

To conclude, we have presented here a set of algorithms which are based
on principles which are largely new to audio processing. As such, this work
might be regarded as a ‘new generation’ of audio restoration methods.
The potential for improved performance has been demonstrated, although
there is a corresponding increase in computational complexity. Computing
power is still increasing rapidly, however, especially with the availability
of high speed parallel DSP systems. In the same way that the first wave
of restoration algorithms (see Part II) can now be implemented in real-
time on standard DSP processors, it is hoped that the new generation of
algorithms presented in Part III may soon be implemented in real-time on
new processing platforms.
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Appendix A

Probability Densities and Integrals

A.1 Univariate Gaussian

The univariate Gaussian, or normal, density function with mean µ and
variance σ2 is defined for a real-valued random variable as:

N(x|µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 (A.1)

Univariate normal density

A.2 Multivariate Gaussian

The multivariate Gaussian probability density function (PDF) for a column
vector x with N real-valued components is expressed in terms of the mean
vector mx and the covariance matrix Cx = E[(x − mx)(x − mx)T ] as:

NN (x|m,Cx) =
1

(2π)N/2 | Cx |1/2
exp

(

−1

2
(x − mx)

T
Cx

−1 (x − mx)

)

(A.2)

Multivariate Gaussian density
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An integral which is used on many occasions throughout the text is of
the general form:

I =

∫

y

exp

(

−1

2

(

a+ bT y + yTC y
)

)

dy (A.3)

where dy is interpreted as the infinitesimal volume element:

dy =

N
∏

i=1

dyi

and the integral is over the real line in all dimensions, i.e. the single inte-
gration sign should be interpreted as:

∫

y

≡
∫ ∞

y1=−∞

. . .

∫ ∞

yN=−∞

For non-singular symmetric C it is possible to form a ‘perfect square’ for
the exponent and express I as:

I =

∫

y

exp

(

−1

2

(

(y − my)T C (y − my)
)

)

exp

(

−1

2

(

a − bTC−1b

4

))

dy (A.4)

where

my = −C−1b

2

Comparison with the multivariate PDFof A.2 which has unity volume
leads directly to the result:

∫

y

exp

(

−1

2

(

a+ bTy + yTC y
)

)

dy

=
(2π)N/2

| C |1/2
exp

(

−1

2

(

a − bTC−1b

4

))
(A.5)

Multivariate Gaussian integral

This result can be also be obtained directly by a transformation which
diagonalises C and this approach then verifies the normalisation constant
given for the PDFof A.2.
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A.3 Gamma density

Another distribution which will be of use is the two parameter gamma
density G(α, β), defined for α > 0, β > 0 as

G(y|α, β) =
βα

Γ(α)
yα−1 exp(−βy) (0 < y <∞) (A.6)

Gamma density
Γ() is the Gamma function (see e.g. [11]), defined for positive arguments.

This distribution with its associated normalisation enables us to perform
marginalisation of scale parameters with Gaussian likelihoods and a wide
range of parameter priors (including uniform, Jeffreys, Gamma and Inverse
Gamma (see [121]) priors) which all require the following result:

∫ ∞

y=0

yα−1 exp(−βy) dy = Γ(α)/βα (A.7)

Gamma integral

Furthermore the mean, mode and variance of such a distribution are
obtained as:

µ = E[Y ] = α/β (A.8)

m = argmax
y

(p(y)) = (α− 1)/β (A.9)

σ2 = E[(Y − µ)2] = α/β2 (A.10)

A.4 Inverted Gamma distribution

A closely related distribution is the inverted-gamma distribution, IG(α, β)
which describes the distribution of the variable 1/Y , where Y is distributed
as G(α, β):

IG(y|α, β) =
βα

Γ(α)
y−(α+1) exp(−β/y) (0 < y <∞) (A.11)

Inverted-gamma density
The IG distribution has a unique maximum at β/(α + 1), mean value

β/(α− 1) (for α > 1) and variance β2/((α− 1)2(α− 2)) (for α > 2).
It is straightforward to see that the improper Jeffreys prior p(x) = 1/x

is obtained in the limit as α→ 0 and β → 0.
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FIGURE A.1. Inverted-gamma family with mode=1, α = 0.01 . . . 1000

The family of IG distributions is plotted in figure A.1 as α varies over
the range 0.01 to 1000 and with maximum value fixed at unity. The variety
of distributions available indicates that it is possible to incorporate either
very vague or more specific prior information about variances by choice of
the mode and degrees of freedom of the distribution. With high values of α
the prior is very tightly clustered around its mean value, indicating a high
degree of prior belief in a small range of values, while for smaller α the
prior can be made very diffuse, tending in the limit to the uninformative
Jeffreys prior. Values of α and β might be chosen on the basis of mean
and variance information about the unknown parameter or from estimated
percentile positions on the axis.
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Appendix B

Matrix Inverse Updating Results and
Associated Properties

Here we are concerned with updates to a non-singular (N ×N) matrix Φ
which are of the form:

Φ → Φ + u vT (B.1)

for some column vectors u and v. Results given here can be found in [153]
(and many other texts) but since these results are used several times in the
main text they are presented here in full for reference purposes.

Consider firstly a block partitioned matrix A:

A =

[

Φ U
VT W

]

(B.2)

Matrix A can be inverted by row/column manipulations in two ways to
give the following equivalent results:

A−1

=

[

(Φ − UW
−1

V
T )−1 −(Φ − UW

−1
V

T )−1
UW

−1

−W
−1

V
T (Φ − UW

−1
V

T )−1 (W−1 + W
−1

V
T (Φ − UW

−1
V

T )−1
UW

−1)

]

(B.3)

=

[

(Φ−1 + Φ
−1

U(W − V
T
Φ

−1
U)−1

V
T
Φ

−1) −Φ
−1

U(W − V
T
Φ

−1
U)−1

−(W − V
T
Φ

−1
U)−1

V
T
Φ

−1 (W − V
T
Φ

−1
U)−1

]

(B.4)
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An intermediate stage of this inversion procedure obtains an upper or lower
block triangular matrix form from which the determinant of A can be
obtained as

| A |=| Φ || (W − VTΦ−1U) |=| W || (Φ − U W−1VT) | (B.5)

If we equate the top left hand elements of the two inverse matrices B.3 and
B.4 the result is

(Φ − U W−1VT )−1 = Φ−1 + Φ−1U (W − VT Φ−1U)−1VT Φ−1 (B.6)

which is the well known Woodbury update formula or Matrix Inversion
Lemma.

If U = u, V = v and W = −1 the update is then as required for B.1,
giving the Sherman-Morrison formula:

(Φ + u vT )−1 = Φ−1 − Φ−1u vT Φ−1

1 + vT Φ−1u
(B.7)

which is an order O(N2) operation and hence more efficient than direct
matrix inversion using Cholesky decomposition, an O(N3) operation.

Suppose we are in fact solving a set of linear equations at time index n
such that Φn xn = θn and the current solution xn is known. Matrix Φn is
now updated according to:

Φn+1 = Φn + unun
T (B.8)

while θn is updated as

θn+1 = θn + undn. (B.9)

Some further manipulation and the use of B.7 and B.5 leads to the following
extended form of the recursive least squares (RLS) update employed in
adaptive filtering:

kn+1 =
Φn

−1un

1 + un
TΦn

−1un

(B.10)

αn+1 = dn − xn
Tun (B.11)

xn+1 = xn + kn+1 αn+1 (B.12)

Φn+1
−1 = Φn

−1 − kn+1un
TΦn

−1 (B.13)

| Φn+1 | = | Φn | (1 + un
T Φn

−1un) (B.14)

EMIN

n+1 = EMIN

n + αn+1 (dn − xT
n+1un) (B.15)

where EMIN
n is the minimum sum of error squares for the least squares

problem solved by xn = Φn
−1θn
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Appendix C

Exact Likelihood for AR Process

In this appendix we derive the exact likelihood for a stable (stationary) AR
process with parameters {a, σ2

e}. The conditional likelihood has already
been obtained as:

p(x1 | x0,a) =
1

(2πσ2
e)

N−P
2

exp

(

− 1

2σ2
e

xT ATA x

)

. (C.1)

In order to obtain the true likelihood for the whole data block x use the
probability chain rule:

p(x | a) = p({x0,x1} | a) = p(x1 | x0,a) p(x0 | a) (C.2)

and the missing term is thus p(x0,a), the joint PDFfor P samples of the
AR process. Since the data is assumed zero mean and Gaussian we can
write

p(x0 | a) =
1

(2πσ2
e)P/2 | Mx0 |1/2

exp(− 1

2σ2
e

xT
0 Mx0

−1x0) (C.3)

where Mx0 is the covariance matrix for P samples of data with unit variance
excitation, which is well-defined for a stable model.

The exact likelihood expression is thus:

p(x | a) =
1

(2πσ2
e)

N
2 | Mx0 |1/2

exp

(

− 1

2σ2
e

xT Mx
−1 x

)

(C.4)
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where

Mx
−1 = AT A +

[

Mx0

−1 0
0 0

]

(C.5)

is the inverse covariance matrix for a block of N samples with σ2
e = 1.

Matrix Mx0 can easily be calculated since it is composed of elements from
the covariance sequence of the AR process which may be known beforehand
(e.g. if an asymptotic approximation is made for the parameter estimation
stage then the covariance values will be specified before estimation of the
parameters).

In any case Mx0

−1 is easily obtained owing to the reversible character
of the AR process which implies that Mx

−1 must be persymmetric, i.e.
symmetrical about both principal axes. Consider partitioning A for N ≥
2P into three components: A0 contains the first P columns of A, A1b

contains the last P columns of A and A1a contains the remaining columns,
so that

A = [A0 A1a A1b] (C.6)

and

ATA =





A0
TA0 A0

TA1a A0
TA1b

A1a
TA0 A1a

TA1a A1a
TA1b

A1b
TA0 A1b

T A1a A1b
TA1b



 (C.7)

Comparing (C.7) with (C.5) and using the persymmetric property of Mx
−1

gives the following expression for Mx0

−1:

Mx0

−1 = (A1b
T A1b)

R − A0
TA0 (C.8)

where the operator R reverses row and column ordering of a matrix. Since
elements of A0 and A1b are AR coefficient values elements of Mx0

−1 are
quadratic in the AR coefficients. Since AT A is also quadratic in the co-
efficients it follows that the exponent of the exact likelihood expression
xT Mx

−1 x can be expressed as a quadratic form in terms of the parame-
ter vector ae = [1 − a]:

xT Mx
−1 x = aeT D ae (C.9)

and Box, Jenkins and Reinsel [21] show that the elements of D are sym-
metric sums of squared and lagged products of the data elements. This
would appear to be helpful for obtaining exact ML estimates for the AR
parameters since this exponent can easily be minimised w.r.t. a. Note how-
ever that the determinant term | Mx0 | of the exact likelihood expression
is variable with a and its differentials w.r.t. a are complicated functions of
the AR coefficients, making the exact ML solution intractable to analytic
solution.
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Appendix D

Derivation of Likelihood for i

In this appendix the likelihood p(y | i) for a particular noise configuration
i is derived for general noise amplitude and data models. Consider firstly
the PDFfor n, the additive noise component for a particular data block
of length N . Wherever im = 0 we know with certainty 1 that the noise
component is zero. Otherwise im = 1 and the noise takes some random
amplitude defined by the noise burst amplitude PDFpn(i)|i which is the joint
distribution for noise amplitudes at the l sample locations where im = 1.
Overall we have:

pn(n) = δ(N−l)(n−(i)) pn(i)|i(n(i) | i) (D.1)

where δ(k)() is the k-dimensional delta function with unity volume and (i)

and −(i) are the partitions as defined before. This delta function expresses
the certainty that noise amplitudes are zero wherever im = 0.

We have the additive relationship

y = x + n

for the data block. If the noise n is assumed statistically independent of
the data x the PDFfor y conditional upon x may be directly expressed as:

p(y | x, i) = pn(y − x) = δ(N−l)(y−(i) − x
−(i)) pn(i)|i(y(i) − x(i)) (D.2)

For a particular data model with PDFpx the joint probability for data and
observations is then given by

p(y, x | i) = p(y | x, i) px(x) (D.3)

= δ(N−l)(y−(i) − x
−(i)) pn(i)|i(y(i) − x(i) | i) px(x) (D.4)
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where we have used the assumption that the noise generating process is
independent of the data to assign px|i = px.

The likelihood is now obtained by a marginalisation integral over x:

p(y | i) =

∫

x

δ(N−l)(y−(i) − x
−(i)) pn(i)|i(y(i) − x(i) | i) px(x) dx (D.5)

and the integration may be immediately simplified using the sifting prop-
erty of the delta function as:

p(y | i) =

∫

x(i)

pn(i)|i(y(i) − x(i) | i) px(x) |x
−(i)=y

−(i)
dx(i) (D.6)

=

∫

x(i)

pn(i)|i(y(i) − x(i) | i) px(x(i), y
−(i)) dx(i) (D.7)

where px(x(i), y
−(i)) = px(x) |x

−(i)=y
−(i)

is simply px with observed data
y

−(i) substituted at the appropriate locations.
This expression for evidence can now be evaluated by substitution of the

relevant functional forms for px and pn|i, both of which will be determined
from modelling considerations.

D.1 Gaussian noise bursts

Substituting the Gaussian noise PDF(9.10) and Gaussian AR data PDF
(9.8) into the likelihood expression of equation (9.5) we arrive at the fol-
lowing integral:

p(y | i) = k

∫

x(i)

exp

(

−1

2

(

a+ bTx(i) + xT
(i)C x(i)

)

)

dx(i) (D.8)

where the terms k,a,b,C are defined as

k =
1

(2π)l/2 | Rn(i)
|1/2 (2πσ2

e)(N−P )/2
(D.9)

a =
y

−(i)
TA

−(i)
TA

−(i) y
−(i)

σ2
e

+ y(i)
TRn(i)

−1y(i) (D.10)

b =
2A(i)

T A
−(i) y

−(i)

σ2
e

− 2 Rn(i)

−1y(i) (D.11)

C =
AT

(i)A(i)

σ2
e

+ R−1
n(i)

. (D.12)

Note that in equation (D.8) p(x0) has been placed outside the integral and
treated as a multiplicative constant since, as discussed in the main text, the
first P samples of the block are assumed to be uncorrupted. The integrand
is of the same form as (A.3) and hence result (A.5) applies.

Substituting for k, a, b and C gives equations (9.11)-(9.16)
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Appendix E

Marginalised Bayesian Detector

The likelihood calculations of (9.19)-(9.24) are implicitly conditional upon
the AR coefficients a, the excitation variance σ2

e , the noise variance σ2
n, the

first P data samples x0 (through use of the conditional likelihood) and all
remaining modelling assumptions M. For fixed σ2

e , a and x0 it was noted
that the PDFp(x0) (C.3) was a constant which could be neglected. If σ2

e is
allowed to vary, this term is no longer a constant and must be accounted
for. The exact likelihood expression (4.55) can be used to overcome this
difficulty. We use the conditional likelihood expression for compatibility
with the results of chapter 9.

The likelihood expression of (9.19) is then rewritten as

p(y | i, σ2
e , µ,a,M) ∝

µl exp
(

− 1
2σ2

e
EMIN

)

(2πσ2
e)

N
2 | Φ |1/2

(E.1)

while results (9.20)-(9.24) remain unchanged.
We might wish to marginalise σ2

e from the evidence. Note, however, that
µ = σe

σn
, which means that (9.20)-(9.24) are strongly dependent on σe. If

we are prepared to assume that µ is independent of σe then these depen-
dencies disappear. This assumption implies that the click variance σ2

n is
determined by a constant 1

µ2 times the excitation variance, i.e. click ampli-
tudes are scaled relative to excitation energy. There is no reason to assume
that noise variances should be related to the signal excitation in the case of
degraded audio sources. It is also debatable as to whether marginalisation
is preferable to long-term adaptive estimation of the unknown parameters
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beforehand. However, it is hoped that marginalisation under this assump-
tion may give improved robustness when the value of σe is uncertain.

Supposing σ2
e is reparameterised as λ = 1

σ2
e

and λ is independent of i,

µ, a and the modelling assumptions, then p(λ | i, µ,a,M) = p(λ), and the
joint distribution is given by:

p(y, λ | i, µ,a,M) ∝ p(λ)
µl exp

(

− 1
2σ2

e
EMIN

)

(2πσ2
e)

N
2 | Φ |1/2

(E.2)

Suppose λ ∼ G(α, β), i.e. Y is drawn from the two-parameter Gamma
density (see appendix A). Then the joint posterior density of (E.2) is:

p(y, λ | i, µ,a,M) ∝ λ(N/2+α−1) µ
l exp (−λ (β + EMIN/2))

| Φ |1/2
(E.3)

Considered as a function of λ this expression is proportional to G(α +
N/2, β + EMIN/2). Using result A.7 for the integration of such functions we
obtain the following marginalised evidence expression:

p(y | i, µ,a,M) =

∫

λ

p(y, λ | i, µ,a,M) dλ ∝ µl (β + EMIN/2)−(α+N/2)

| Φ |1/2

(E.4)

This expression can be used in place of (9.19) for detection. Values of α and
β must be selected beforehand. If a long-term estimate σ̂2

e of σ2
e is available

it will be reasonable to choose α and β using (A.8)-(A.10) such that the

mean or mode of the Gamma density is λ̂ = 1
σ̂2

e
and the covariance of the

density expresses how confident we are in the estimate λ̂. Initial results
indicate that such a procedure gives improved detection performance when
values of σ2

e and µ are uncertain.
If a long-term estimate of σ2

e is not available the general Gamma prior
may be inappropriate. Comparison of (E.2) with (E.3) shows that a uniform
or Jeffreys’ prior can be implemented within this framework. In particular,
α = 1, β → 0 corresponds to a uniform prior on λ, while α = 0, β → 0
gives a Jeffreys’ prior p(λ) = 1/λ.

Under certain assumptions we have shown that it is possible to marginalise
σ2

e from the evidence expression. It is not, however, straightforward to elim-
inate µ, since this appears in the matrix expressions (9.20)-(9.24). The only
case where marginalisation of µ is straightforward is when the approxima-
tion of (9.25)-(9.27) is made, i.e. µ is very small. In this case a second
marginalisation integral can be performed to eliminate µ from (E.4). Eval-
uation of such a procedure is left as future work.
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Appendix F

Derivation of Sequential Update
Formulae

This appendix derives from first principles the sequential update for the
detection likelihood in chapter 10

Consider firstly how the (n − P ) × n matrix An (see 4.53) is modified
with a new input sample yn+1. When the data block increases in length by
one sample, matrix An (by inspection) will have one extra row and column
appended to it as defined by:

An+1 =

[

An 0n

−bn
T 1

]

(F.1)

where bn is defined as

bn =
[

0(n−P )
T aP aP−1 . . . a2 a1

]T
(F.2)

and 0q is the column vector containing q zeros.
bn is a length n column vector and can thus be partitioned just as yn

and xn into sections b(i)n and b
−(i)n corresponding to unknown and known

data samples for detection state estimate in.

F.1 Update for in+1 = 0.

Consider firstly how A(i)n and A
−(i)n are updated when in+1 = 0. In this

case the incoming sample yn+1 is treated as uncorrupted. Hence the true
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data sample xn+1 is considered known and A(i)(n+1) is obtained by the
addition of just a single row to A(i)n:

A(i)(n+1) =

[

A(i)n

−b(i)n
T

]

, (F.3)

while A
−(i)(n+1) is obtained by the addition of both a row and a column:

A
−(i)(n+1) =

[

A
−(i)n 0n

−b
−(i)n

T 1

]

. (F.4)

In addition the partitioned input data vector is straightforwardly updated
as:

y(i)(n+1) = y(i)n, y
−(i)(n+1) = [ y

−(i)n
T yn+1 ]T (F.5)

We now proceed to update Φn (10.4). The first term is updated by direct
multiplication of (F.3):

A(i)(n+1)
T A(i)(n+1) = A(i)n

T A(i)n

+ b(i)n b(i)n
T (F.6)

The second term of Φn is unchanged by the input of yn+1. Hence Φn is
updated as:

Φ(n+1) = Φn + b(i)n b(i)n
T (F.7)

The first term of θn (10.5) is updated similarly using direct multiplication
of results (F.3), (F.4), (F.5) to give:

A(i)(n+1)
TA

−(i)(n+1) y
−(i)(n+1) = A(i)n

TA
−(i)n y

−(i)n

+ b(i)n

(

b
−(i)n

T y
−(i)n − yn+1

)

(F.8)

As for Φn, the second term of θn is unchanged for in+1 = 0. Hence the
update for θn is:

θ(n+1) = θn + b(i)n

(

yn+1 − b
−(i)n

Ty
−(i)n

)

(F.9)

= θn + b(i)n dn+1 (F.10)

where

dn+1 = yn+1 − b
−(i)n

Ty
−(i)n (F.11)

The recursive updates derived for Φn (F.7) and θn (F.10) are now in the
form required for application of the results given in appendix B (equations
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(B.10)-(B.15)). Use of these results leads to recursive updates for the terms
in the state likelihood (9.37), i.e. xMAP

(i)n , EMINn and | Φn |.
Now, defining

Pn = Φn
−1, (F.12)

the update for in+1 = 0 is given by

kn+1 =
Pn b(i)n

1 + b(i)n
TPn b(i)n

(F.13)

dn+1 = yn+1 − b
−(i)n

Ty
−(i)n (F.14)

αn+1 = dn+1 − xMAP

(i)n
T
b(i)n (F.15)

xMAP

(i)(n+1) = xMAP

(i)n + kn+1 αn+1 (F.16)

Pn+1 = Pn − kn+1 b(i)n
TPn (F.17)

| Pn+1 | =| Pn |
(

1 + b(i)n
TPn b(i)n

)−1

(F.18)

EMIN(n+1) = EMINn + αn+1

(

dn+1 − xMAP

(i)(n+1)
T
b(i)n

)

(F.19)

p(y(n+1) | i(n+1)) = p(yn | in)
1

√

2πσ2
e

(

1 − b(i)n
Tkn+1

)1/2

exp

(

− 1

2σ2
e

αn+1

(

dn+1 − xMAP

(i)(n+1)
T
b(i)(n)

)

)

(F.20)

Note that the values of | Pn+1 |, y
−(i)n and EMIN(n+1) are not specifically

required for the likelihood update given in (F.20), but are included for
completeness and clarity. In fact the update only requires storage of the
terms Pn, xMAP

(i)n and the previous likelihood value p(yn | in) in order to
perform the full evidence update when yn+1 is input.

F.2 Update for in+1 = 1.

As stated above, when in = 1 the length of the MAP data estimate xMAP

(i)(n+1)

is one higher than at the previous sample number. Correspondingly the
order of Φ(n+1) and θ(n+1) are also one higher. This step-up in solution
order is achieved in two stages. The first stage is effectively a prediction
step which predicts the MAP data vector without knowledge of yn+1. The
second stage corrects this prediction based on the input sample yn+1.
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We follow a similar derivation to the in+1 = 0 case. Matrices A(i)n and
A

−(i)n are updated as follows (c.f. (F.3)) and (F.4)):

A(i)(n+1) =

[

A(i)n 0n

−b(i)n
T 1

]

(F.21)

and

A
−(i)(n+1) =

[

A
−(i)n

−b
−(i)n

T

]

(F.22)

The input data partitioning is now given by (c.f. (F.5)):

y(i)(n+1) = [ y(i)n
T yn+1 ]T y

−(i)(n+1) = y
−(i)n (F.23)

A similar procedure of direct multiplication of the required terms leads to
the following updates:

A(i)(n+1)
TA(i)(n+1) =

[
(

A(i)n
TA(i)n + b(i)n b(i)n

T
)

−b(i)n

−b(i)n
T 1

]

(F.24)

and

A(i)(n+1)
TA

−(i)(n+1) y
−(i)(n+1)

=

[

A(i)n
TA

−(i)n y
−(i)n + b(i)nb

−(i)n
Ty

−(i)n

b
−(i)n

Ty
−(i)n

]

(F.25)

By inspection the updates to Φn (10.4) and θn (10.5) are now given by:

Φ(n+1) =

[ (

Φn + b(i)n b(i)n
T
)

−b(i)n

−b(i)n
T 1 + µ2

]

(F.26)

and

θ(n+1) =

[

θn − b(i)nb
−(i)n

Ty
−(i)n

b
−(i)n

T y
−(i)n + µ2yn+1

]

(F.27)

Various approaches are possible for updating for xMAP
(i)n , etc. The approach

suggested here is in two stages. It is efficient to implement and has a useful
physical interpretation. The first step is effectively a prediction step, in
which the unknown data sample xn+1 is predicted from the past data based
on the model and without knowledge of the corrupted input sample yn+1.
The second stage corrects the prediction to incorporate yn+1.

In the prediction step we solve for xPRED

(i)(n+1) using:

[
(

Φn + b(i)n b(i)n
T
)

−b(i)n

−b(i)n
T 1

]

xPRED

(i)(n+1)

=

[

θn − b(i)nb
−(i)n

Ty
−(i)n

b
−(i)n

Ty
−(i)n

]

(F.28)
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or equivalently

ΦPRED

n+1 xPRED

(i)(n+1) = θPRED

n+1 (F.29)

It is easily verified by direct multiplication and use of the identity ΦnxMAP
(i)n =

θn that the prediction estimate xPRED

(i)(n+1) is given by:

xPRED

(i)(n+1) =

[

xMAP
(i)n

b(i)n
T xMAP

(i)n + b
−(i)n

Ty
−(i)n

]

(F.30)

This is exactly as should be expected, since the last element of xPRED

(i)(n+1) is
simply the single step linear prediction with values from xMAP

(i)n substituted
for unknown samples. Since the linear prediction will always have zero
excitation the previous missing samples remain unchanged at their last
value xMAP

(i)n .
The inverse of matrix ΦPRED

n+1 is easily obtained from the result for the
inverse of a partitioned matrix (see B.3) as:

ΦPRED

(n+1)
−1

=

[

Φn
−1 Φn

−1b(i)n

b(i)n
TΦn

−1
(

1 + b(i)n
TΦn

−1b(i)n

)

]

(F.31)

all of whose terms are known already from the update for in+1 = 0. The
determinant of ΦPRED

n+1 can be shown using result (B.5) to be unchanged by
the update. The error energy term EMIN(n+1) is also unaffected by this part
of the update, since the single sample data prediction adds nothing to the
excitation energy.

The second stage of the update involves the correction to account for
the new input data sample yn+1. By comparison of (F.26) and (F.27) with
(F.28) and F.29) we see that the additional update to give Φn+1 and θn+1

is:

Φn+1 = ΦPRED

n+1 +

[

0n×n 0n

0T
n µ2

]

(F.32)

and

θn+1 = θPRED

n+1 +

[

0n

µ2 yn+1

]

(F.33)

where 0n×n is the all-zero matrix of dimension (n×n). This form of update
can be performed very efficiently using a special case of the extended RLS
equations given in (B.10) (B.15) in which ‘input’ vector un and ‘desired
signal’ dn+1 are given by:

un = [ 0n
T µ ]T and dn+1 = µ yn+1 (F.34)

ΦPRED

n+1 is associated with Φn in the appendix and xPRED
n+1 with xn. Significant

simplifications follow directly as a result of un having only one non-zero
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element. The majority of the terms required to make this second stage of
update will already have been calculated during the update for in+1 = 0
and they will thus not generally need to be re-calculated. Section 10.2.1 in
the main text summarises the full update for both in+1 = 0 and in+1 = 1
and explicitly shows which terms are common to both cases.
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Appendix G

Derivations for EM-based
Interpolation

This appendix derives the EM update equations for the Bayesian inter-
polation problem of chapter 12. Section 4.5 summarises the general form
of the EM algorithm. The first stage calculates an expectation of the log
augmented posterior p(z|θ,y) conditional upon the current estimate zi. A
notation to make the expectations clear is introduced such that:

Eφ[x|y] =

∫

φ

x p(φ|y)dφ.

We define the latent data z = x(i) for this derivation. For the interpolation
model the expectation step can be split into separate expectations over
noise and signal parameters θv and θx:

Q(z, zi) = E�[log(p(z|θ,y)|zi,y] (G.1)

= E�[log(p(z,y|θ)) − log(p(y|θ))|zi,y]

= E�[log(p(z,y|θ))|zi,y] − C

= E�[log(p(x|θx)) + log(p(v(i)|θv))|zi,y] − C

= E�
x
[log(p(x|θx))|xi] + E�

v
[log(p(v(i)|θv)|vi)] − C

= Ex + Ev − C (G.2)

where C is constant since p(y|θ) does not depend on z. In the third line
p(z,y|θ) has been expanded as:

p(z,y|θ) = p(x(i),x−(i),y(i)|θ)
= p(x|θx)p(v(i)|θv)
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We now present the signal and noise expectations, Ex and Ev .

G.1 Signal expectation, Ex

The signal expectation is taken over the signal parameters θx = {a, λe}
conditional upon the current estimate of the reconstructed data xi.

The expectation over signal parameters can be rewritten as:

Ex = E�x [log(p(x|θx))|xi]

= Eλe

[

Ea

[

log(p(x|θx))|λe ,x
i
]

|xi
]

= Eλe

[

λe/2 Ea

[

−E(x,a)|λe ,x
i
]

|xi
]

+ D (G.3)

where D is a constant which does not depend upon x and (12.6) has
been substituted for p(x|θx). The resulting ‘nested’ expectations are taken
w.r.t. p(a|λe ,x

i) and p(λe |xi) which can be obtained using Bayes’ Theorem
as:

p(θx |x) ∝ p(x|θx) p(θx)

∝ ARN (x|a, λe)G(λe |αe, βe) (G.4)

= NP (a|aMAP(x), (λeX
TX))−1

G(λe |αe + (N − P )/2, βe + E(x,aMAP(x))/2) (G.5)

= p(a|λe ,x)p(λe |x) (G.6)

where the rearrangement between (G.4) and (G.5) is achieved by expanding
and noting that the resulting density must be normalised w.r.t. θx , and the
term ARN (x|a, λe) denotes the conditional likelihood of the AR process,
as defined in (12.6). aMAP(x) is defined as the MAP parameter estimate for
data x: aMAP(x) = (XT X)−1XT x1.

The required densities p(a|λe ,x) and p(λe |x) can be directly identified
from comparison of (G.5) and (G.6) as

p(a|λe ,x) = NP (aMAP(x), (λeX
TX)−1)

and p(λe |x) = G(αe + (N − P )/2, βe + E(x,aMAP(x))/2)

The inner expectation of (G.3) is now taken w.r.t. p(a|λe ,x
i), giving:

Ea

[

−E(x,a)|λe ,x
i
]

= −xT
1 x1 + 2xT

1 XEa

[

a|λe ,x
i
]

− trace
(

XEa

[

aaT |λe ,x
i
]

XT
)

= −xT
1 x1 + 2xT

1 Xai − trace

(

X

(

(

λeX
iTXi

)−1

+ aiaiT
)

XT

)

= −E(x,ai) − 1

λe
trace

(

X
(

XiTXi
)−1

XT

)

= −E(x,ai) − T (x,xi)/λe (G.7)
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In this expression the mean and covariance of the conditional density

p(a|λe ,x
i) = NP (ai, (λeX

iTXi)−1), where ai = aMAP(xi), lead directly

to the result Ea

[

aaT |λe ,x
i
]

= aiaiT +
(

λeX
iTXi

)−1

. Note that (G.7) is

equivalent to the E-step derived in Ó Ruanaidh and Fitzgerald [167, 166]
for missing data interpolation.
T (x,xi) can be written as a quadratic form in x:

T (x,xi) = trace

(

X
(

XiT Xi
)−1

XT

)

= xT T(xi)x

where T(xi) =

N−P+1
∑

q=1

Nq(x
i) (G.8)

Nq(x
i) is the all-zero (N×N) matrix with the (P×P ) sub-matrix

(

XiTXi
)−1

substituted starting at the qth element of the leading diagonal:

Nq(x
i) =











0q−1,q−1 . . .
. . .

...
(

XiT Xi
)−1 ...

. . . . . . 0N−q−p+1,N−q−p+1











(G.9)

where 0nm denotes the (n × m) all-zero matrix. T(xi) is thus a band-
diagonal matrix calculated as the summation of all N−P+1 configurations
of Nq(x

i). Note that the structure of T(xi) is symmetrical throughout and
almost Toeplitz except for its first and last P columns and rows.

The outer expectation of (G.3) is then taken w.r.t. p(λe |xi) to give:

Ex = Eλe

[

−λeE(x,ai)/2 − T (x,xi)/2|xi
]

+D

= −E(x,ai)(αe + (N − P )/2)

2(βe + E(xi,ai)/2)
− T (x,xi)

2
+D

= −λ
i
eE(x,ai)

2
− T (x,xi)

2
+D

(G.10)

The term λi
e is the expected value of λe conditional upon xi and is obtained

directly as the mean of the gamma distribution p(λe |xi).
The termD does not depend upon x and so may be ignored as an additive

constant which will not affect the maximisation step.
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G.2 Noise expectation, Ev

The noise parameters are θv = Λ(i) where Λ = [λ1 . . . λN ]T and λt =
1/σ2

vt
. In the common variance noise model we have that σ2

vt
= σ2

v , a
constant for all t. The noise parameter expectation depends now upon the
form of noise model chosen:

1. Independent variance. The expectation is taken w.r.t. p(θv |vi
(i)),

which is given by:

p(θv |v(i)) = p(Λ(i)|v(i))

∝ p(v(i)|Λ(i)) p(Λ(i))

∝ Nl(v(i)|0, (diag(Λ(i)))
−1)

∏

t∈I

G(λvt |αv, βv)

=
∏

t∈I

G(λvt |αv + 1/2, βv + vt
2/2) (G.11)

where we have substituted the noise likelihood and prior expressions
and noted that the resultant densities must be normalised w.r.t. λvt .
Recall also that l is the number of degraded samples.

The noise expectation is then obtained as

Ev = E�
v
[log(p(v(i)|θv))|vi

(i)
]

= −
∑

t∈I

vt
2Eλvt

[

λvt |vt
i
]

/2 +G

= −
N
∑

t∈I

vt
2λi

vt
/2 +G (G.12)

where λi
vt

= αv+1/2
βv+vt

2/2 is the expected value of the gamma distribution

G(λvt |αv + 1/2, βv + vt
2/2) (see appendix A.3). G is once again a

constant which is independent of x.

2. Common variance. A similar argument gives for the common vari-
ance model:

En = Eλv

[

−
∑

t∈I

λvvt
2/2|vi

(i)

]

+G

= −λi
vv

T
(i)v(i)/2 +G (G.13)

where λi
vt

= λi
v = (αn + l/2)/(βn + vi

(i)

T
vi

(i)
/2) is the expected value

of the gamma distribution p(λv |vi
(i)).

The two results can be summarised as:

En = −vT
(i)M

iv(i)

2
+G (G.14)
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where Mi = diag({λi
vt

; t ∈ I}) is the expected value of the noise inverse-
covariance matrix conditioned upon the current estimate of the noise, vi

(i) =
y(i) − xi

(i)
. G is an additive constant which does not depend upon x.

G.3 Maximisation step

The Q(., .) function (G.2) is now obtained as the sum of Ex (G.10) and En

(G.14). The individual components of Q(., .) are all quadratic forms in the
reconstructed data x and hence also quadratic in z, which is a sub-vector
of x. Maximisation of Q(., .) is thus a linear operation, obtained as the

solution of
∂Q(z, zi)

∂z
= 0:

zi+1 = −Ψ−1

(

(

λi
eA

iTAi + T(xi)
)

(i)−(i)

y
−(i) − Miy(i)

)

(G.15)

where Ψ =
(

λi
eA

iT Ai + T(xi)
)

(i)(i)

+ Mi

and the notation ‘(i)(i)’ denotes the sub-matrix containing all elements
whose row and column numbers are members of I. Similarly, ‘(i)−(i)’ extracts
a sub-matrix whose row numbers are in I and whose column numbers are
not in I.

The complete iteration for EM interpolation is summarised in the main
text.
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Appendix H

Derivations for Gibbs Sampler

In this appendix results required for the Gibbs sampler detection and in-
terpolation scheme are derived (see chapter 12).

H.1 Gaussian/inverted-gamma scale mixtures

With the assumption of a zero mean normal distribution with unknown
variance for a noise source v, the joint distribution for noise amplitude and
noise variance is given by:

p(v, σ2) = p(v|σ2)p(σ2)

= N(v|0, σ2)p(σ2)

The ‘effective’ distribution for v is then obtained by marginalisation of
the joint distribution:

p(v) =

∫

σ2

N(0, σ2)p(σ2)dσ2

The convolving effect of this mixture process will generate non-Gaussian
distributions whose properties depend on the choice of prior p(σ2). In the
case of the IG prior, simple analytic results exist, based on the use of the
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IG normalising constant in (A.4):

p(v) =

∫

σ2

N(v|0, σ2)IG(σ2|α, β)dσ2

=

∫

σ2

1√
2πσ2

exp(−v2/2σ2)

× βα

Γ(α)
(σ2)−(α+1) exp(−β/σ2)dσ2

=
1√
2π

βα

Γ(α)

Γ(α+ 1/2)

(β + v2/2)(α+1/2)

×
∫

σ2

IG(σ2|α+ 1/2, β + v2/2)dσ2

=
1√
2π

βα

Γ(α)

Γ(α+ 1/2)

(β + v2/2)(α+1/2)

= St(v|0, α/β, 2α)

where St(.) denotes the Student-t distribution:

St(x|µ, λ, α) = k(1 + (x− µ)2λ/α)−(α+1)/2 (H.1)

The Student distribution, which has both Gaussian and Cauchy as limiting
cases, is well known to be robust to impulses, since the ‘tails’ of the distri-
bution decay algebraically, unlike the much less robust Gaussian with its
exponentially decaying tails. The family of Student-t curves which arises as
a result of the normal/inverted-gamma scale mixture is displayed in figure
H.1, for the same set of α and β parameters as in figure A.1. It can be seen
that with suitable choice of α and β the Student distribution can assign
significant probability mass to high amplitude impulses which would have
negligible mass in the corresponding normal distribution.

H.2 Posterior distributions

H.2.1 Joint posterior

The joint posterior distribution for all the unknowns is obtained from the
likelihood, signal model and the prior distribution p(θ). Note that elements
from the unknown parameter set θ = {i,a, σ2

e , σ
2
vt

(t = 0 . . .N − 1)} are
assumed independent a priori , so that the prior can be expressed as:

p(θ) = p(i)p(a)p(σ2
e)
∏

t

p(σ2
vt

) (H.2)
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mode=1, α = 0.01 . . . 1000
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which is simply the product of the individual prior terms for each param-
eter. The full posterior distribution is then obtained as:

p(x,θ|y) ∝ p(i0)
∏

{t:it=0}

δ(yt − xt)
∏

{t:it=1}

N(yt − xt|0, σ2
vt

)

× NN (x|0, σ2
e(AT A)−1)

×
∏

t

Pit−1it

× IG(σ2
e |αe, βe)

∏

t

IG(σ2
vt
|αv , βv)

(H.3)

H.2.2 Conditional posteriors

The conditional posteriors are obtained by simple manipulation of the full
posterior (H.3). For example, the conditional for a is expressed as:

p(a|x,θ
−(a),y) =

p(θ,x|y)

p(x,θ
−(a)|y)

where θ
−(a) denotes all elements of θ except for a. Note, however, that the

denominator term is simply a normalising constant for any given values
of x, θ

−(a) and y. The required conditional for a can thus be obtained
simply by grouping together all the terms in the joint posterior expression
which depend upon a and finding the appropriate normaliser to form a
proper density. In the simplest cases this can be achieved by recognising
that the terms depending on a can be rewritten in the form of a well-
known distribution. Here, the only term depending on a is the signal model
NN (x|0, σ2

e(AT A)−1) which is easily rewritten using (12.4) to give the
normalised conditional expression (12.11). Similar manipulations lead to
the multivariate normal conditional for x (12.14), obtained by rearranging
the product of likelihood and signal model, both of which depend upon x.

The noise variance terms can be treated similarly. For example, σ2
e is

present in both its own prior density IG(σ2
e |αe, βe) and the signal model.

Grouping together the exponential and power-law terms in σ2
e leads to a

conditional which is still in the general form of the IG(.) density, as given
in (12.12).

The detection indicator variables are discrete, but the same principles
apply. In this case the conditional distribution has no well-known form and
the normalising constant must be determined by evaluation of the joint
posterior at all 2N possible values of i. In this work, the indicator vector
is treated jointly with the reconstructed data x, as discussed more fully in
section 12.5.2.
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H.3 Sampling the prior hyperparameters

Noise variance parameters αv and βv . Conditional posterior distribu-
tions for the noise variance parameters αv and βv can be obtained directly
from the noise variance prior as follows:

p(αv , βv |x,θ−(αv ,βv ),y) = p(αv , βv |σ2
vt

(t = 0 . . .N − 1))

∝ p(σ2
vt

(t = 0 . . .N − 1)|αv , βv)p(αv)p(βv)

∝
∏

t

IG(σ2
vt
|αv , βv)p(αv)p(βv)

where we have assumed αv and βv independent a priori
Rearrangement of this expression leads to the following univariate con-

ditionals:

p(αv |x,θ−(αv ),y) ∝ β
Nαv
v Π−(1+αv )

Γ(αv)N
p(αv) (H.4)

and

p(βv |x,θ−(βv ),y) = G (Nαv + a,Σ + b) (H.5)

where Σ =
∑

t 1/σ2
vt

, Π =
∏

t σ
2
vt

and G(.) denotes the Gamma dis-
tribution, p(x|α, β) ∝ xα−1 exp(−βx), and we have assigned the prior
p(βv) = G(a, b). Sampling from the distribution of equation (H.5) is a
standard procedure. Non-informative or informative priors can be incor-
porated as appropriate by suitable choice of a and b. (H.4) is not a well
known distribution and must be sampled by other means. This is not diffi-
cult, however, since the distribution is univariate. In any case, the precise
value of αv is unlikely to be important, so we sample αv from a uniform
grid of discrete values with probability mass given by (H.4). In principle
any prior could easily be used for αv but we choose a uniform prior in the
absence of any further information.

As an alternative to the above it may be reasonable to reparameterise αv

and βv in terms of variables with a more ‘physical’ interpretation, such as
the mean or mode of the noise variance distribution, the idea being that it
is usually easier to assign a prior distribution to such parameters. Since the
mean of the IG(.) distribution is only defined for αv > 1 (see appendix A.4)
we use the mode here, given bymv = βv/(αv+1). Another possibility would
be the ratio βv/αv which corresponds to the inverse precision parameter
1/λ of the equivalent Student-t noise distribution (see appendix H.1).

Similar working to the above leads to the following conditionals for αv

and mv :

p(αv |x,θ−(αv ),y) ∝ (mv(αv + 1))Nαv Π−(1+αv ) exp(−(αv + 1)mvΣ)

Γ(αv)N
p(αv)

(H.6)
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and

p(mv |x,θ−(mv ),y) = G (Nαv + a, (αv + 1)Σ + b) (H.7)

Markov chain transition probabilities, P01 and P10. Conditionals
for P01 and P10 are obtained in a similar fashion, since they are condition-
ally dependent only upon the switching values it:

p(P01, P10|θ−(P01,P10),y) = p(P01, P10|i)
∝ p(i|P01, P10)p(P01)p(P10)

∝ p(P01)p(P10)p(i0)
∏

t:it=1,it−1=0

P01

∏

t:it=0,it−1=0

(1 − P01)

∏

t:it=0,it−1=1

P10

∏

t:it=1,it−1=1

(1 − P10)

Rearrangement of this expression under the assumption of uniform or beta
distributed priors p(P01) and p(P10) leads to univariate conditionals which
are in the form of the beta distribution, p(x|α, β) ∝ xα−1(1 − x)β−1, sam-
pling from which is a standard procedure.
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de la fréquence fondamentale de la parole. PhD thesis, Université du
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α-stable noise, 238
nth order moment, 53
z-transform, 22–24

definition, 23
frequency response, 23
poles, 23
stability, 23
time shift theorem, 23
transfer function, 23
zeros, 23

45rpm, 4

All-pole filter, 86
Analogue de-clicking, 128
Analogue restoration methods, 5
Autocorrelation function, 64
Autoregressive (AR) model, 86–

89
approximate likelihood, 88, 196
backward prediction error, 132
conditional probability, 88
covariance estimate, 88
exact likelihood, 89, 157
excitation energy, 116
Gaussian excitation, 88

observed in noise, 90
separation of two AR processes,

156–157
state-space form, 90
statistical modelling and es-

timation, 87
Autoregressive moving average (ARMA)

model, 86
Axioms of probability, 41

Background noise, 6
Background noise reduction, see

Hiss reduction
Band-pass filter, 67
Bayes factor, 80
Bayes risk, 75
Bayes rule, 43, 47

cumulative distribution func-
tion (CDF), 49

inferential procedures, 47
probability density function,

50
probability mass function (PMF),

48
Bayesian decision theory, 79–85
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Bayesian estimation, 73–79
Bayesian regulariser, 178
Bell, Alexander Graham, 4
Berliner, Emile, 4
Bernoulli model, 101, 211
Beta distribution, 304
Blumlein, Alan, 4
Breakage, 158
Breakages, 6, 153
Broadband noise reduction, see Hiss

reduction
Burst noise, 192

Caruso, 5
CEDAR Audio, 16
Central moment, 53
Change-points, 234
Characteristic function, 53

inverse, 54
moments of a random vari-

able, 54
Chi-squared, 56
Cholesky decomposition, 116
Classification error probability, 80
Click detection, see Detection of

clicks
Click removal, 99–134

Gibbs sampler, 241
implementation/results, 248

Clicks, 6
Compact disc (CD), 5, 16
Conditional distribution, 47

cumulative distribution func-
tion (CDF), 49

probability density function
(PDF), 49

probability mass function (PMF),
48

Conditional probability, 42
Convolution, 20–22

sum of random variables, 54
Convolution of PDFs, 51
Cost function

Bayesian, 75
quadratic, 76

uniform, 76
Cost functions

Bayesian, 77
Covariance matrix, 60
Crackles, 6
Cross-correlation function, 65
Cumulative distribution function

(CDF), 45, 46

Data windows
seeWindows, 175

Derived distribution, 55
Derived PDF, 58
Detection of clicks, 101, 127–133

i.i.d. Gaussian noise assump-
tion, 198

adaptations to AR detector,
131–132

analysis and limitations, 130–
131

ARMA model, 133
autoregressive (AR), 128
Bayesian, 191–204

autoregressive (AR), 195
complexity, 201
loss functions, 200
marginalised, 201
relationship with LS inter-

polator, 200
relationship with simple AR,

203
results, 215–231
selection of optimal state,

200
Bayesian sequential

complexity, 210
Kalman filter implementa-

tion, 210
state culling, 207
state culling strategy, 212
update equations, 209

false Alarms, 101
false detection, 131
Gibbs sampler, 244
high-pass filter, 128
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likelihood for Gaussian AR
data, 197

Markov chain model, 192
matched filter, 132
matched filter detector, 132–

133
missed detection, 101
model-based, 128
multi-channel, 203
noise generator prior, 194, 210
noisy data case, 193
noisy data model, 202
non-standard Bayesian loss func-

tions, 213
probability of error, 127
probability ratio test, 199
Recursive update for poste-

rior probability, 207
sequential Bayesian, 203, 205–

214
sinusoid+AR residual model,

133
statistical methods, 134
switched noise model, 194
threshold selection, 101, 131
uniform prior, 194

Deterministic signals, 38
Differential mappings, 55
Digital audio tape (DAT), 16
Digital filters, 24–25

finite-impulse-response (FIR),
25

infinite-impulse-response (IIR),
24

Digital re-sampling, 173
Discrete Fourier transform (DFT),

25–27, 34, 126, 136, 175
inverse, 26

Discrete probability space, 41
Discrete time Fourier transform

(DTFT), 19–20, 66
Distortion

peak-related, 99

Edison, Thomas, 4

Electrical noise, 135
Elementary outcomes, 40
Ensemble, 61
Equalisation, 135
Event based probability, 39

fundamental results, 42
Event space, 40
Evidence, 80

linear model, 81
Expectation, 52–54

function of random variable,
52

linear operator, 52
random variable, 52

Expectation-maximisation (EM),
92–93, 181, 234

Expected risk, 80

Fast Fourier transform (FFT), 26,
34–38, 136

butterfly structure, 35
in-place calculation, 37

Finite-impulse-response (FIR) fil-
ters, 25

Flutter, 6, see Pitch variation de-
fects

Fourier series, 17
Fourier transform

relation with characteristic func-
tion, 53

Frequency modulation, 173
Frequency response, 22, 23
Frequency shift theorem, 17
Frequency tracking, 173

birth and death of components,
183

Fully Bayesian restoration, 233–
259

Functions of random variables, 54
Functions of random vectors, 58

Gamma density, 277
Gamma function, 277
Gamma integral, 277
Gaussian, 55, 59
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multivariate, 59, 275
multivariate integral, 276
univariate, 275

Generalised Gaussian, 238
Gibbs sampler, 94, 119, 234
Global defects, 6
Global degradation, 6
Gramophone discs, 1

fluctuation in turntable speed,
172

imperfectly punched centre hole,
171

Hamming window, 32, 136
Hanning window, 29, 32, 136
Heavy-tailed noise distribution, 233
High-pass filter

removal of low frequency noise
pulses, 154

Hiss reduction, 135–149
model based, 148–149
noise artefacts, 141
Spectral domain

psychoacoustical methods,
148

spectral domain, 136–148
maximum likelihood (ML),

148
minimum mean-squared er-

ror (MMSE), 148
sub-space methods, 148
wavelets, 148
Wiener, 138

Impulse train, 17
Impulsive stimuli, 154
Independence, 44
Infinite-impulse-response (IIR) fil-

ters, 24
Innovation, 71
Interpolation, 101–127

autoregressive (AR), 106–122
adaptations to, 110
AR plus basis function rep-

resentation, 111

examples, 108
incorporating a noise model,

119
least squares (LS), 106–107
maximum a posteriori (MAP),

107–108
pitch-based adaptation, 111
random sampling methods,

116–119
sequential methods, 119–122
sinusoid plus AR, 115–116
unknown parameters, 108–

110
autoregressive moving-average

(ARMA), 122–126
autoregressive(AR)

AR plus basis function rep-
resentation, 116

expectation-maximisation (EM),
239

frequency domain, 126–127
Gaussian signals, 103–105

incorporating a noise model,
105

Gibbs sampler, 242
model-based, 102
transform domain methods,

126
Interpolation of corrupted samples,

see Interpolation
Inverse image method, 54
Inverted-gamma density, 277
Inverted-gamma prior, 238

Jacobian, 59, 178
Jeffreys prior, 238, 278, 286
Jeffreys’ prior, 79
Joint PDF, 50

Kalman filter, 90, 91, 125, 205
evaluation of likelihood, 91
prediction error decomposi-

tion, 91

Laplace transform, 22
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Least squares (LS)
relationship with maximum

likelihood, 73
Likelihood function, 71
Linear model, general, 70

MAP estimator, 77
Linear prediction, 86
Linear time invariant (LTI), 20
Localised defects, 6
Localised degradation, 6
Location parameter, 79
Loss function, 80

symmetric, 80
Low frequency noise pulses, 153–

170
cross-correlation detector, 156
detection, 156
experimental results, 162
Kalman filter implementation,

163
matched filter detection, 156
template method, 153, 154
unknown parameter estima-

tion, 160
Low-pass filter, 19
LP (vinyl), 5

Magnetic tapes, 1, 4, 135
unevenly stretched, 171

MAP classification, 195
Marginal density, 119
Marginal probability, 50, 57, 179
Marginalisation, 77–78
Markov chain, 192

noise generator model, 206
noise generator process, 211

Markov chain Monte Carlo (MCMC),
93–95

review of methods, 234
Masking

simultaneous, 148
Masking of small clicks, 133
Matched filter, 132
Maximum likelihood

general linear model, 73

Maximum likelihood (ML), 71–73,
102

ill-posed, 178
Maximum a posteriori (MAP), 102,

127
Maximum a posteriori (MAP) es-

timator, 76
Median filter, 102
Minimum mean-squared error

Kalman filter, 91
Minimum mean-squared error (MMSE),

76, 102
Minimum variance estimation, 103
Missing data, 77
Modelling of clicks, 100–101
Modelling of signals, 85–92
Multiresolution methods, 128
Musical noise, 141

elimination, 145
masking, 147

Musical signals
fundamental and overtones,

173
note slides, 173
tracking of tonal components,

175

Noise
additive, 100
bursts, 100
clicks, 99
clustering, 100
localised, 99, 100
replacement, 100

Noise artefacts, 141
Noise reduction, see Hiss reduc-

tion
Non-Gaussian noise, 234
Non-linear distortions, 6
Non-linear models

stiffening spring, 158
Non-uniform sampling, 185
Non-uniform time-warping, 172
Normal distribution, see Gaussian
Nyquist frequency, 190
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Nyquist sampling theorem, 16–19

Observation equation, 90
Optical sound tracks, 153
Outliers, 127, 191, 234
Overlap-add synthesis, 138

Parameter estimation, 70–79
Partials, see Musical signals
Phase

sensitivity of ear, 140
Phonautograph, 2
Phonograph, 4
Pitch period, 102, 111
Pitch variation defects, 171–190

additive model, 176
AR model, 180
Bayesian estimator, 178
deterministic models, 182
discontinuities in frequency tracks,

182
experimental results, 183
frequency tracking, 173
generation of pitch variation

curve, 176
log-additive model, 176
multiplicative model, 176
prior models, 180
smoothness prior, 179, 181

Point estimates, 75
Pops, see Low frequency noise pulses
Posterior probability, 43, 74

recursive update, 205
Power spectrum, 66
Power subtraction, 140
Pre-whitening filter, 132
Prediction error decomposition, 91
Prior distribution

choice of, 78
conjugate, 79
Gaussian, 78
inverted-gamma, 79
non-informative, 79

Prior probability, 43
Probability

frequency-based interpretation,
40

Probability density function (PDF),
45, 46

Probability mass function (PMF),
45, 46

Probability measure, 41
Probability spaces, 40
Probability theory, 39–60

Quasi-periodic signals, 127

Random experiment, 40
Random periodic process, 127
Random process, 60–67

autocorrelation function, 64
continuous time, 64
cross-correlation function, 65
definition, 64
discrete time, 64
linear system response, 67
mean value, 64
power spectrum, 66
stationarity, 65
strict-sense stationarity, 65
wide-sense stationarity, 66

Random signals, 38, 61
Random variables (RVs), 44–56

continuous, 45
definition, 45
discrete, 45
probability distribution, 45

Random vectors, 56–60
Bayes rule, 57
CDF, 56
conditional distribution, 57
PDF, 57

Real time processing, 15, 16, 133
Rectangular window, 32
Recursive least squares (RLS), 84

relationship with Kalman fil-
ter, 92

Residual noise, 141
Restoration

statistical methods, 133
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Risk function, 213

Sample rate conversion, 190
time-varying, 173
truncated sinc function, 190

Sample space, 40
Scale mixture of Gaussians, 233,

238
Scale parameter, 77, 79
Scratches, 6, 153
Second difference smoothness model,

162
Separation of AR processes, see

Autoregressive (AR) model
Sequential Bayes, see Click detec-

tion
Sequential Bayesian classification,

82–85
Linear model, 85

Sigma algebra, 40
Sinusoidal model, 71, 126

coding of speech and audio,
175

Smearing, 29
Smoothness prior, 181
Sonic Solutions, 16
Sound recordings

film sound tracks, 99
Source-filter model, 86
Spectral leakage, 29
Spectral subtraction, 140
State update equation, 90
State-space model, 90–92

non-Gaussian, 234
non-linear, 234

Stationarity, 65
short-term, 128

Step-like stimuli, 154
mechanical response, 158

Stiffening spring mechanical sys-
tem, 158

Stochastic processes, see random
processes

Strict-sense stationarity, 65
Student-t distribution, 238

Sum of random variables, 51, 54
Switched noise model, 194

Thumps, see Low frequency noise
pulses

Time series, 64
Tone arm resonance, 158
Total probability, 43

PDF, 51
probability mass function (PMF),

48
Transfer function, 23
Transient noise pulses, see Low

frequency noise pulses
Tremolo, 176, see Pitch variation

defects

Uniform prior, 179, 194, 238, 278
Uniform sampling, 64

Variance, 53
Vibrato, 176, see Pitch variation

defects
Viterbi algorithm, 212
Volterra model, 158

Wavelets, 126, 128
Wax cylinders, 1, 4, 135
Wide-sense stationarity, 66
Wiener, 135
Wiener filter, 138
Windows, 27–32

Bartlett, 32
continuous signals, 27
discrete-time signals, 31
frequency smearing, 29
generalised Hamming window,

32
Hamming, 32, 175
Hanning, 32
Hanning window, 29
Kaiser, 32
Parzen, 32
rectangular, 32
spectral leakage, 29
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Tukey, 32
Wow, 6, see Pitch variation de-

fects


